
PHYSICAL REVIEW A NOVEMBER 1998VOLUME 58, NUMBER 5
Recurrence spectroscopy of atoms in electric fields: Scattering in the presence of bifurcations

John A. Shaw and F. Robicheaux
Department of Physics, Auburn University Auburn, Alabama 36849-5311

~Received 3 June 1998!

Closed-orbit theory gives a semiclassical formula for the photoabsorption oscillator strength density of
atoms in external fields. The oscillator strength can be calculated from the properties of the classical orbits of
the highly excited electron moving in the combined Coulomb and electric field. The deviation from the
Coulomb potential due to an alkali-metal atom core causes scattering between the classical orbits when a
closed orbit returns to the origin. Bifurcations of closed orbits happen when a focus moves through the origin
and we present a theory that describes the scattering of the electron waves by the alkali-metal core for atoms
in external electric fields in the presence of a bifurcation.@S1050-2947~98!03211-9#

PACS number~s!: 32.60.1i, 03.65.Sq, 34.60.1z
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I. INTRODUCTION

Highly excited electronic state atoms in external fie
have become good testing grounds for the connection
tween quantum and semiclassical mechanics. They are a
nable to both theoretical calculations and experimental m
surement@1–5#. Closed-orbit theory is a semiclassical theo
which predicts the positions and amplitudes of peaks in
Fourier transform of the photoabsorption spectrum: T
peaks are at the periods of classical orbits that go out
return to the nucleus; the amplitude depends on the di
gence rate of the neighbors of the orbits@6,7#. Closed-orbit
theory was developed for hydrogen in a magnetic field by
and Delos@7#. It was applied to alkali-metal atoms in a
electric field by Gao and Delos@8#. The general picture o
closed-orbit theory, in which waves excited by the laser
out and are turned around in the external fields, was sim
There were, however, the usual problems that occur in
primitive semiclassical formula. The semiclassical appro
mation for the returning wave near the core could, a
would, become infinite as a focus or caustic passed thro
the origin. These failures occur at the bifurcation energ
where closed orbits are created or destroyed as the pa
eters controlling the classical dynamics vary@9–12#. Uni-
form approximations to semiclassical wave functions wh
repair these failures have been developed in the chem
physics and mathematical literature@13–15# and have be-
come better known in atomic physics@16–19#. The nonhy-
drogenic core of an alkali-metal atom can be treated se
classically by either propagating trajectories through a mo
core potential@20# or by a scattering expansion in terms
hydrogenic closed orbits that are coupled together by
core@21#. The closed-orbit approach in Ref.@21# works well
for highly excited states where the effective size of\ is small
and one can partially avoid the neighborhood of bifurcatio
It is an open question how to apply this theory near a bif
cation. We present a closed-orbit theory for scattering
alkali-metal atoms in the presence of bifurcations that oc
in static electric fields. The theory can be generalized
handle other types of bifurcations in other static fields.

II. RETURNING WAVES FROM CLOSED ORBITS

A. Oscillator strength and the Green’s function

The closed-orbit theory starts from a semiclassical
proximation for the Green’s function in the formula for th
PRA 581050-2947/98/58~5!/3561~6!/$15.00
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average oscillator-strength density. The strength of a tra
tion is proportional to the imaginary part of the overlap m
trix

D f 522p21~E2Ei !Im^Dc i uGE
1uDc i&, ~1!

wherec i is the initial state,D is the relevant component o
the dipole operator of the laser, andGE

1 is the outgoing
Green’s function for electrons of energyE. In this formula,
uDc i& effectively constitutes a ‘‘source,’’ andGE

1uDc i& are
waves that go out at constant energy from this source. Th
waves that later return to the source contribute to the inte
^Dc i uGE

1uDc i& which governs the absorption rate.
‘‘primitive’’ semiclassical approximation to the Green’
function will give a sum of returning waves associated w
each distinct closed classical orbit. When the closed or
bifurcate, this approximation that the classical orbits are d
tinct and isolated breaks down.

B. Isolated semiclassical returning waves

Isolated recurrences can be labeled by the two indi
(k,n), wherek labels the particular closed orbit andn is the
number of the return to the origin. For an isolated orbit, t
returning part of the wave functionGE

1uDc i&, call it
C return

k,n (r ,u), can be written as a partial-wave expansion
the regular zero-energy radial functions@22# and spherical
harmonics:

C return
k,n ~r ,u!5Nk

n (
l>umu

dl ,mA8Rl
regYl ,m~u,0!, ~2!

whereNk
n is a matching constant depending on the semic

sical amplitude and phase of the returning wave. Formu
for these constants were derived in@7,8# and explicit expres-
sions are given in@23#. They contain the actions and ampl
tudes of the classical closed orbits, and the initial angu
distribution of the waves excited by the laser,Y(u i). The
coefficientsdl ,m are chosen to give an azimuthally rotate
incoming zero-energy Coulomb wave coming in from t
directionu f :

dl ,m5
4p

A2
~21! l 2meid lYl ,m* ~u f ,0!, ~3!
3561 ©1998 The American Physical Society
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whered l5pm l are the quantum defects. This coefficient w
be important later when we calculate the partial-wave
pression for the uniform returning waves. The wave funct
in Eq. ~2! contains both incoming and outgoing parts. T
outgoing part has both a core-scattered and Coulo
scattered component: theeid l in Eq. ~3! combines with the
asymptotic form ofRl

reg in Eq. ~2! to give a T matrix for
scattering off the core, Eq.~10!.

We define

Rk
n[^Df i uC return

k,n &, ~4!

which we call the ‘‘(k,n) recurrence integral.’’ Formulas fo
these recurrence integrals were developed in@7,8#. One finds,
using Eqs.~2!, ~3!, ~4!, and the initial state wave function
that

Rk
n5

4p

A2
Ỹ~u f

k,n!Nk
n . ~5!

The overlap in Eq.~1! is then approximated by

D f 522p21~E2Ei !Im (
k,n

Rk
n . ~6!

When core scattering is included, returning waves on
kth closed orbit create core-scattered outgoing waves w
will go out on every closed orbit. A portion of the core
scattered wave goes out in the direction of the Coulom
scattered wave of thekth orbit, this constitutes the ‘‘shadow
ing’’ of the kth orbit by the core because the Coulom
scattered wave is reduced by the interference with the c
scattered wave. The rest of the core-scattered wave goe
and is a source of waves on all other orbits. These co
scattered outgoing waves are again turned around by the
ternal fields and return to the atom where they produc
whole new set of recurrences. These ‘‘combinatio
recurrences’’ are labeled by both of the hydrogenic orb
(k2n2 ;k1n1): the recurrence produced by then2th return of
the k2th closed orbit which itself had been initiated by th
core-scattered wave produced on then1th return of thek1th
closed orbit. This describes a single scattering event and
double scattering and multiple scattering we need lab
k1 ,k2 ,k3 , . . . andn1 ,n2 ,n3 , . . . . Multiply-scattered recur-
rence integrals will be denotedRk

n , with bold (k,n). Then
we define

Rk
n5RkJ11

nJ11F)
j 50

J

~Fkj 11kj

nj Rkj

nj !G , ~7!

whereJ is the total number of core scatterings. IfJ50, we
take the quantity in the square brackets to be ‘‘one’’ and
result reduces to the previous formula for Eq.~6!. The for-
mula for the modulations in oscillator strength from t
closed orbits for an alkali-metal atom is then

D f 52
2

p
~E2Ei !Im (

n,k
Rk

n . ~8!

The sum in Eq.~8! is shorthand for
-
n
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n,k

Rk
n5 (

n1 ,k1

Rk1

n11 (
n2 ,k2

(
n1 ,k1

Rk2

n2Fk2k1

n1 Rk1

n1

1 (
n3 ,k3

(
n2 ,k2

(
n1 ,k1

Rk3

n3Fk3k2

n2 Rk2

n2Fk2k1

n1 Rk1

n11•••.

~9!

The scattering between each pair or orbitsk to k8 is de-
scribed by theT-matrix-like quantity@24#

Fk8,k
n

5
i

Ỹ~u f
k,n!Y~u i

k8!

1

4p (
l>umu

~e2id l21!

3Ylm* ~u f
k,n,0!Ylm~u i

k8,0!. ~10!

C. Uniform semiclassical returning waves

Bifurcations occur when two or more closed orbits mer
with or are created from one another as the parameters
trolling the classical dynamics are changed. Whethe
closed orbit is isolated or not depends on its action differe
in units of \ from its neighboring orbits. In the Coulom
plus electric field problem, orbits are created from the or
parallel to the electric field axis (u i50 on the1z axis!. At
the bifurcation energy they are identical to the parallel orb
but then move away from the parallel orbit, to increasingu i
and to increasing actions,S. At energies less thanE5
22AF the orbits can reachu5p radians and collide with
the orbit which is along the2z axis and be destroyed b
merger with that orbit. This is the inverse of the bifurcatio
that created the orbit. These are the only times orbits in
system can bifurcate, so we need uniform approximati
which are valid for the‘‘uphill’’ and ‘‘downhill’’ orbits and
the neighborhood of the6z axes.

To describe the wave function near the bifurcations,
first define semiparabolic coordinates:

r̂ 5 1
2 ~u21v2!, r̂ 5rF 1/2,

ẑ5 1
2 ~u22v2!, ẑ5zF1/2, ~11!

d t̂

dt
5u21v2, t̂5tF3/4.

The Hamiltonian in these scaled semiparabolic coordinate

Ĥ5 1
2 ~pu

21pv
2!1

m2

2u2
1

m2

2v2
2e~u21v2!1 1

2 ~u42v4!52,

~12!

where m̂5mF1/4 is the scaledz component of the angula
momentum,e is the scaled energy, andpu andpv aredu/dt
and dv/dt, respectively. We can now derive Hamilton
equations of motion and calculate the closed orbits in
(u,v) space. Since we are interested in the orbits on the6z
axis, we takem50 and start the orbits fromu5v50 and
launch them at an initial angleu i52 tan21(pv i

/pui
) with

0<pv i
<2 andpui

5A42pv i

2 . We define a Poincare´ surface

of section, (pv ,v) with u50, and recordpv f
and v f when
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the trajectory crosses the surface in either direction. For
downhill orbit, we must define a surface of section, (pu ,u)
with v50. The following discussions will also hold for th
downhill orbit if we replace (pv ,v) by (pu ,u) everywhere.

Gao and Delos showed that for hydrogen the uniform
proximation for the returning wave for thek50 near a bi-
furcation can be written as

Cunif
0,n 5D8E

pv

A~pv!exp„iF ~pv!…

3Y~u i !J0~pvv/\̂ !J0~puu/\̂ !pvdpv , ~13!

where

A~pv!5Upv i

pv f

]pv i

]pv f

U1/2

, ~14!

F~pv!5H S̃0
n~e!2

a1~e!

2
pv

22
a3~e!

4
pv

4J Y \̂2n
p

2
,

~15!

and the final momenta inA(pv) and in the integral are evalu
ated on the surface of sectionu50. The constantD8 is
2p23/2 if the indexn is chosen to ben5m012, wherem0 is
a constant equal to the Maslov index of the central o
before the bifurcation creates~or after the bifurcation de-
stroys! the new orbits.

We show in the Appendix that this returning wave fun
tion has a partial-wave expansion

Cunif,pw
0,n 5D8E

pv

A~pv!Y~u i !exp„iF ~pv!…

3H(
l

dl0A8Rl
regYl0~u,0!J pvdpv , ~16!

wheredl0 is given by Eq.~3!. This is an important result —
the uniform wave function is constructed by superimpos
the azimuthally rotated zero-energy incoming waves w
amplitudes and phases determined by the diffraction integ
The exact form ofF(pv) andA(pv) depends on the type o
bifurcation, but Eq.~16! only depends on the principle o
superposition and the azimuthal symmetry.

This wave function also includes the outgoing scatte
wave: theeid l in dl ,0 combines with the asymptotic form o
Rl

reg to give theT matrix connecting the incoming waves
the outgoing core-scattered wave.

To check Eq.~16!, we show that it reduces to the formu
las derived in Ref.@19#. We can form the overlap of Eq.~16!
with ^Df i u to get the uniform recurrence integral analogo
to Eq. ~4! for the primitive semiclassical recurrence. Repe
ing the procedure that leads to Eq.~5!, we have

Rk,unif
n 5

4p

A2
D8E

pv

g~pv!exp„iF ~pv!…pvdpv , ~17!
e

-

it

g
h
l.

d

s
-

where

g~pv![A~pv!Y~u i
k,n!Ỹ~u f

k,n!. ~18!

The indexk here does not necessarily refer to an isola
orbit, but is a bookkeeping device referring to the cent
orbit. The anglesu i

k,n andu f
k,n are functions ofpv on thenth

return of the central orbit. The uniform recurrence strength
Eq. ~17! is similar to the results derived by Gao and Del
@19# and used in@23#, but now theY’s are complex and
contain the quantum defects. Now let us examine the s
tered portion of the wave and its effect on the recurren
spectrum.

D. Scattering of uniform wave function

The core-scattered wave can be extracted from
asymptotic form of the partial-wave expansion Eq.~16! for
the outgoing wave. The result is

Cunif
core,1~r ,u!521/4p1/2D8

exp„i ~A8r 23p/4!…

r 3/4

3E A~pv!eiF ~pv!Y~u i ! (
l>umu

Yl0* ~u f !

3~e2id l21!Yl0~u!pvdpv . ~19!

The initial outgoing wave produced by the laser is

Cout~u!52 ip1/223/4r 23/4expF i SA8r 2
3p

4 D GY~u!,

~20!

so the core-scattered wave can be rewritten as

Cunif
1 ~u!5Cout~u!

4p

A2
D8E g~pv!eiF ~pv!F~u f

k,n ,u!pvdpv .

~21!

HereF(u f
k,n ,u) is the analog of Eq.~10! where we have not

yet takenu to beu i
k8 andu f

k,n is integrated over the range o
pv . The portions of this scattered wave that go out in t
direction of another closed orbit of the system can be pro
gated again to get the ‘‘combination’’ recurrence. So t
combination recurrence formed by scattering the unifo

wave function into the directionu i
k8 is

Rk8;k,unif
n8,n

5Rk8
n8 4p

A2
D8E g~pv!F~u f

k,n ,u i
k8!eiF ~pv!pvdpv

~22!

for scattering into the direction leading to an isolated clos

orbit. If F(u f
k,n ,u i

k8) could be factored out from under th

integration, Eq.~22! could be written asRk8
n8Fk8,k

n Rk,unif
n using

Eq. ~17! for the uniform recurrence integral. Howeve

F(u f
k,n ,u i

k8) depends onpv throughu f
k,n and this cannot in

general be done. It is a nice shorthand when manipulating
scattering series, if we remember that it is just a symbo
representation of Eq.~22!. It can also be shown tha
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Rk8
n8Fk8,k

n Rk,unif
n and Rk8,unif

n8 Fk8,k
n Rk

n are equivalent when the
uniform approximation is needed fork8 instead ofk.

The combination recurrence formed by coupling two
furcating orbits is given by

Rk8,unif;k,unif
n8,n

58p2D82E
pv8

g~pv8!e
iF ~pv8!

3E
pv

g~pv!F~u f
k,n ,u i

k8!eiF ~pv!pvdpvpv8dpv8

~23!

for scattering into an orbit labeled by (k8,n8).
In the isolated orbit limit the integrals in Eqs.~22! and

~23! can be evaluated by stationary phase and they reduc
the primitive semiclassical scattering formula for a sing
scattering off the core, Eq.~7! with J51.

We can now write the scattering series, Eq.~9!, and sym-
bolically replaceRk

n by Rk,unif
n wherever there is a bifurca

tion. In practice, it is easier to extract thes, p, andd com-
ponents of the scattered wave by interchanging the orde
summation and integration in Eq.~19!. In the electric field,
whereA(pv) andF(pv) are given by Eqs.~14! and~15!, the
diffraction integrals overpv for each angular momentuml
are evaluated at the real and complex stationary phase p
by the methods in Ref.@23#. These components are then us
to calculate the scattered wave in a directionu from Eq.~21!.
This scattered wave is now a source of outgoing waves on
closed orbits of the system. Again it is necessary to inclu
the effect of the scattered wave on the subsequent return
the orbit that underwent the bifurcation, i.e., shadow
when k5k8 in Eq. ~9!, but now the scattered wav
Fk8,k

n Rk,unif
n contains contributions from both the central orb

and the adjacent stationary phase points. Also, when
combination recurrences formed by coupling other orb
i.e., kÞk8 in Eq. ~9!, to the uniform recurrence are com
puted, they will contain contributions from both central a
adjacent stationary phase points. Thus we label the unif
recurrence byu f

k,n of the central orbit when the uniform re

currence is the source of the outgoing wave and byu i
k8 when

the uniform recurrence is the recipient of the outgoing wa
and this properly accounts for the combined effects of
central and adjacent orbits. Comparisons of the recurre
spectra computed with this improved semiclassical appr
mation and quantum calculations are given in the next s
tion.

III. COMPARISON WITH QUANTUM CALCULATIONS

Quantum calculations for the triplet heliumm50 recur-
rence spectra were done at several scaled energies betw
23.0,e,22.0 where both the uphill and downhill orbit
exist and undergo numerous bifurcations. The princi
quantum numbers of the states were in the range 20,n
,30, which leads to relatively large electric field strengt
and sizes of the effective Planck’s constant,\̂5\F21/4.
Triplet helium has fairly larges andp phase shifts from the
quantum defects,d050.30p andd150.07p.

Figure 1 shows the semiclassical recurrence spectrum
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scaled energye522.70 compared with a quantum calcul
tion of the recurrence spectrum. In Fig. 1~a!, the primitive
semiclassical recurrence spectrum shows extreme over
mates of the recurrence strengths at scaled actions sta

from Ŝ55.3 near a bifurcation of the 13th return of the uph

orbit (ebif522.773) and atŜ56 from a bifurcation of the
13th return of the downhill orbit (ebif522.703). These di-
vergent amplitudes are then coupling through scattering
all other orbits at higher actions and thus the recurrence s
trum for actions larger thanŜ55.3 is completely wrong in
the primitive semiclassical approximation with scattering.
including the uniform approximation for the divergent am
plitudes of the 13th returns of the uphill and downhill orb
and the ‘‘shadowing’’ effects of the core, but neglecting t
core-scattered combination orbits, Fig. 1~b! shows an im-
proved semiclassical recurrence spectrum which is no lon
divergent. However, it is only when both shadowing a
combination orbits are included that the semiclassical sp
trum agrees with the quantum calculation, see Figs. 1~c! and
1~d!. Clearly the combination orbits give new peaks in t
spectrum, seeŜ56.4, 7.6, and 8.1 in Figs. 1~b! and 1~c! for
example, but they also interfere destructively with the u

FIG. 1. The recurrence spectrum for helium tripletm50 at e
522.70 is calculated in several approximations,~a!–~c!, and com-
pared to the quantum recurrence spectrum,~d!. In ~a! the primitive
semiclassical approximation is used with core scattering includ

Eq. ~9! @21#. The divergent amplitudes atŜ55.4 and 6 from the
bifurcations of the uphill and downhill orbits become mixe
throughout the spectrum. In~b! the primitive semiclassical ampli
tudes for these orbits are replaced by the uniform amplitudes,
combination orbits are not included. The divergences are remo
but combination recurrence peaks are missing and the interfer
effects of the combination recurrences are absent. The core sc
ing is included in theshadowingof the orbits. In~c! both the com-
bination recurrences and the shadowing are included. There is
good agreement. The principal quantum numbers for all spe
were in the range 20,n,30 and the average electric field streng
wasF5661 V/cm.
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form recurrence peaks atŜ55.3 and 6, further suppressin
their contributions to the spectrum. Both the bifurcations
the uphill and downhill orbits at this scaled energy ha
complex stationary phase points.

A similar calculation ate522.61 also shows good agree
ment with the quantum calculations, Fig. 2. The sixth retu
of the downhill orbit, atŜ52.82, has a bifurcation ate5
22.636. Abovee522.636 the stationary phase points
the diffraction integral are real. Belowe522.636 the sta-
tionary phase points are complex. The recurrence streng
the peaks atŜ53.28 and 3.75 ate522.61 is sensitive to the
coherent sum of the combination recurrences formed fr
the uniform recurrence~both the central orbit and the rea
stationary phase points! plus the first and second returns
the uphill orbits. The agreement between the uniform se
classical spectrum and the quantum spectrum for these p
is quite good.

At some scaled energies the semiclassical recurre
spectra do show discrepancies in the peak amplitudes w
compared to the quantum spectra. Approximations have b
made in the program that calculates the combination re
rences. For example, the current programs calculate the s
owing effects of the core recursively at the average fi
strength to get the shadowed recurrence strengths for
return of an orbit. The uniform scattering in this part of t
code is treated exactly. The program then couples these s
owed recurrence strengths up to a maximum inJ, see Eq.
~7!, to get the combination recurrences. In this part of
code the shadowed recurrences are coupled byFk8,k

n , which
is only an approximation when one of the shadowed rec
rences is a shadowed uniform recurrence. The good ag
ment shown in Figs. 1 and 2 and other calculations show
this method does describe the essential physics of the
tering system. Further comparisons of the quantum and s
classical recurrence spectra are being made.

IV. CONCLUSIONS

A method of calculating the scattered wave near a cla
cal bifurcation energy has been developed for alkali-me

FIG. 2. The recurrence spectrum for helium tripletm50 at e
522.61 from a quantum calculation~top! is compared to the uni-
form semiclassical calculation~bottom!. The principal quantum
numbers for this calculation are in the range 20,n,30 and the

average electric field strength wasF5708 V/cm. The peak atŜ
52.82 is the sixth return of the downhill orbit and is treated by
uniform approximation in the semiclassical spectrum. The peak

Ŝ53.3 and Ŝ53.8 are sensitive to the combination recurrenc

formed by scattering from the uniform return atŜ52.8 and the
agreement with the quantum spectrum is good.
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atoms in external electric fields. The form of this approxim
tion, a partial wave expansion of the outgoing wave who
coefficients depend on the diffraction integral, Eq.~16!,
should be generalizable to other types of bifurcations t
occur in magnetic and combined electric and magnetic fie
by changing the form of the diffraction integral. This shou
allow the computation of the recurrence spectra in the p
ence of bifurcations and scattering in other atom-field s
tems.
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APPENDIX: PARTIAL-WAVE EXPANSION
OF UNIFORM WAVE FUNCTION

To calculate the uniform wave function near the nucle
we would like to find the expansion of the product of Bes

functionsJ0(puu/\̂)J0(pvv/\̂) in semiparabolic coordinate
in terms of the regular radial functionsRl

reg(r )Ylm(u,f), in
spherical coordinates.

The wave functions in the outer region must smooth
connect to the solutions in the inner region. If we require
incoming parts of these functions~denoted by a superscrip
‘‘inc’’ ! to be equal,cs.c.

inc5cpw
inc, in the regionr 550a0 , then

@J0~puu/\̂ !J0~pvv/\̂ !# inc5F(
l

ClA8Rl
reg~r !Yl0~u,0!G inc

,

~A1!

where the coefficientsCl are to be determined and the reg
lar radial functions are defined in terms of the zero-ene
solutions of the Schro¨dinger equation as@8,22#

Rl
reg~r !5cosd l

J2l 11~A8r !

A8r
2sind l

Y2l 11~A8r !

A8r
. ~A2!

By orthogonality of the spherical harmonics we have~drop-
ping the ‘‘inc’’ temporarily to simplify the equations!

ClA8Rl
reg~r !5E

V
Yl0* ~u,0!J0~puu/\̂ !J0~pvv/\̂ !dV.

~A3!

We can evaluate this integral by the following substitution

pu5uPucosQp , pv5uPusinQp , ~A4!

u5RcosQ, v5RsinQ,

dV5sinududf54cosQsinQdQdf, ~A5!

where we have usedR5Au21v2 andu52Q. This gives

at
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ClA8Rnl
reg~r !58pE cosQsinQYl0* ~2Q!

3J0~PR/\̂cosQpcosQ!

3J0~PR/\̂sinQpsinQ!dQ. ~A6!

Now we expand both sides of this equation asymptotica
@25#. The incoming part ofcs.c. in Eq. ~A6! becomes

cs.c.
inc52pE

0

p/2A cosQsinQ

cosQpsinQp
S 2

p

\̂

PR
D Yl0* ~2Q!

3„exp$2 i @PR/\̂cos~Qp2Q!2p/2#%

1terms in~Qp1Q!…. ~A7!

The incoming part ofcpw in Eq. ~A6! becomes

cpw
inc5Cl2p21/2S \̂

PR
D 3/2

3~2 ! l$exp@2 i ~PR/\̂23p/41d l !#%, ~A8!

where we have used the identityPR/\̂5A8r ~valid when we
can neglect the potential!. If we evaluate the integral in Eq
~A7! by stationary phase aboutQp5Q, then
e,

r-
rs

ys

os
y

cs.c.
inc525/2p1/2Yl0* ~2Qp!S \̂

PR
D 3/2

3exp„2 i ~PR/\̂23p/4!…. ~A9!

If we set Eq.~A8! equal to Eq.~A9!, then the coefficientsCl
are

Cl523/2p~2 ! leid lYl0* ~u f !, ~A10!

since 2Qp is the angle of the incoming trajectoryu f . This is
exactlydl ,m for m50, the formula for an azimuthally rotate
incoming zero-energy Coulomb wave when there is
alkali-metal core.

If we insert Eq.~A10! into Eq. ~A1! and then insert Eq.
~A1! back into Eq.~13! we can prove Eq.~21!. If the isolated
orbit approximation holds, then thepv integral evaluated by
stationary phase is just a complex multiplicative const
evaluated for the (k,n) orbit coming in fromu f . We get the
matching constantsNk

n back. If the orbit is not isolated, we
do the Fresnel integrals and get the uniform recurrence
mula back.

With the explicit form of the coefficients that go into th
partial-wave expansion of the uniform wave function, we c
calculate the scattered component of that wave.
on

J.

r,

in
d
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