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Recurrence spectroscopy of atoms in electric fields: Scattering in the presence of bifurcations
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Closed-orbit theory gives a semiclassical formula for the photoabsorption oscillator strength density of
atoms in external fields. The oscillator strength can be calculated from the properties of the classical orbits of
the highly excited electron moving in the combined Coulomb and electric field. The deviation from the
Coulomb potential due to an alkali-metal atom core causes scattering between the classical orbits when a
closed orbit returns to the origin. Bifurcations of closed orbits happen when a focus moves through the origin
and we present a theory that describes the scattering of the electron waves by the alkali-metal core for atoms
in external electric fields in the presence of a bifurcat{@1050-294®8)03211-9

PACS numbd(s): 32.60:+i, 03.65.Sq, 34.60:.z

[. INTRODUCTION average oscillator-strength density. The strength of a transi-
tion is proportional to the imaginary part of the overlap ma-
Highly excited electronic state atoms in external fieldstrix
have become good testing grounds for the connection be- _
tween quantum and semiclassical mechanics. They are ame- Df=—27"YE—E)Im(Dy;|Gg|D ), (1)
nable to both theoretical calculations and experimental mea-
suremenf1-5]. Closed-orbit theory is a semiclassical theory where ¢; is the initial stateD is the relevant component of
which predicts the positions and amplitudes of peaks in théhe dipole operator of the laser, af@f is the outgoing
Fourier transform of the photoabsorption spectrum: TheGreen’s function for electrons of ener@y In this formula,
peaks are at the periods of classical orbits that go out anfh ;) effectively constitutes a “source,” anG;|D ;) are
return to the nucleus; the amplitude depends on the diveiyayes that go out at constant energy from this source. Those
?heenocrfl C\?até 3;\52% Seeélglf(\)?%r ;d?gégﬁ %fgﬁgggézzi?éggg 5 L\t/vaves that later return to the source contribute to the integral
. ; , Dyi|G¢|D¢;) which governs the absorption rate. A
and Delos[7]. It was applied to alkali-metal atoms in an “primitive” semiclassical approximation to the Green’s

electric field by Gao and Deld8]. The general picture of function will give a sum of returning waves associated with
closed-orbit theory, in which waves excited by the laser go 9 9

out and are turned around in the external fields, was simpl ach distinct closed classical orbit. When the closed orbits
There were, however, the usual problems that ’occur in an?ifurcate, this approximation that the classical orbits are dis-

primitive semiclassical formula. The semiclassical approxi-inct and isolated breaks down.

mation for the returning wave near the core could, and

would, become infinite as a focus or caustic passed through B. Isolated semiclassical returning waves
the origin. These failures occur at the bifurcation energies
where closed orbits are created or destroyed as the para
eters controlling the classical dynamics vd8~12]. Uni-

Isolated recurrences can be labeled by the two indices
rﬂi,n), wherek labels the particular closed orbit ands the

form approximations to semiclassical wave functions Whichnumb.er of the return to the origin. Eor af isolated orb'.t’ the
repair these failures have been developed in the chemic&flUMing part of the wave functiorGg|Dy), call it
physics and mathematical literatuf#3—15 and have be- Yrewn(r.6), can be written as a partial-wave expansion in
come better known in atomic physif§6—19. The nonhy- the regular zero-energy radial functiof2] and spherical
drogenic core of an alkali-metal atom can be treated sembarmonics:
classically by either propagating trajectories through a model
core potentia[20] or by a scattering expansion in terms of k.n T re
hydrogenic closed orbits that are coupled together by the Y reurd " 0) Nk|;m| ) mVBR™Y1,n(6.0). @
core[21]. The closed-orbit approach in R¢21] works well
for highly excited states where the effective sizéia$ small ~ whereN} is a matching constant depending on the semiclas-
and one can partially avoid the neighborhood of bifurcationssical amplitude and phase of the returning wave. Formulas
It is an open question how to apply this theory near a bifurfor these constants were derived i8] and explicit expres-
cation. We present a closed-orbit theory for scattering irsjons are given ifi23]. They contain the actions and ampli-
alkali-metal atoms in the presence of bifurcations that occufydes of the classical closed orbits, and the initial angular
in static electric fields. The theory can be generalized tQjistribution of the waves excited by the lasei6,). The
handle other types of bifurcations in other static fields. coefficientsd, ,, are chosen to give an azimuthally rotated
IIl. RETURNING WAVES FROM CLOSED ORBITS g}fg{:{:g}gazero energy Coulomb wave coming in from the
f .
A. Oscillator strength and the Green’s function

The closed-orbit theory starts from a semiclassical ap- d, m=4—w(—1)'*me‘5IYf‘m( 0;,0), 3
proximation for the Green’s function in the formula for the mo2 ’
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whered,= mu, are the quantum defects. This coefficient will n nne n
be important later when we calculate the partial-wave ex- E RE:nZ( Rkﬁ nZ( nZ( Rkij;klei
pression for the uniform returning waves. The wave function o 272 T

in Eq. (2) contains both incoming and outgoing parts. The

outgoing part has both a core-scattered and Coulomb- +n24( nZ«( nZ? REj’FEijREEFEklREiJF e
scattered component: the’ in Eq. (3) combines with the 878 T2tz T
asymptotic form ofR[*? in Eq. (2) to give aT matrix for 9)
scz‘il/t\irgegﬁﬁg the core, Eq10). The scattering between each pair or orbit$o k' is de-
scribed by theT-matrix-like quantity[24]
EE<D¢i|\PIr<e,Pur ! (4) i 1
Fﬂ/ :f_ ; e2|§|_1)

which we call the “(,n) recurrence integral.” Formulas for K’k W g'fﬂ“)y( gik ) 47 1 5Tm|
these recurrence integrals were developdd jé]. One finds, ,
using Egs.(2), (3), (4), and the initial state wave function, XYE(65,0)Y m(65,0). (10
that

4 C. Uniform semiclassical returning waves

T~
RE=—)(6“™NF. (5 Bifurcations occur when two or more closed orbits merge
V2 with or are created from one another as the parameters con-

trolling the classical dynamics are changed. Whether a
closed orbit is isolated or not depends on its action difference
in units of 2 from its neighboring orbits. In the Coulomb
Df= —27 YE-E)Im E RY. (6) plus electric field problem, orbits are created from the orbit
kn parallel to the electric field axis#{=0 on the+z axis). At

the bifurcation energy they are identical to the parallel orbit,

When core _scattering is included, returning waves on t_h%ut then move away from the parallel orbit, to increasihg
kth closed orbit create core-scattered outgoing waves whichnq to increasing actionsS. At energies less thaiE=

will go out on every closed orbit. A portion of the core- _, &= he orbits can reacli= = radians and collide with
scattereg wave gf]os:thoutbl_n tr?_e d'reCF'O” ththef, Eoglombfhe orbit which is along the-z axis and be destroyed by
scattered wave of t orbit, this constitutes the “shadow- merger with that orbit. This is the inverse of the bifurcation

ing” of the kth orbit by the core because the Coulomb-y i created the orbit. These are the only times orbits in this

scattered wave is reduced by the interference with the cores ciam can bifurcate. so we need uniform approximations
scattered wave. The rest of the core-scattered wave goes QWfich are valid for thé“uphill” and “downhill” orbits and

and is a source of waves on all other orbits. These COreha neighborhood of the: z axes.

scattered outgoing waves are again turned around by the ex- 14 gescribe the wave function near the bifurcations, we
ternal fields and return to the atom where they produce First define semiparabolic coordinates: '
whole new set of recurrences. These “combination-

recurrences” are labeled by both of the hydrogenic orbits T=1u2+v?), r=rF2

(kony;kqeng): the recurrence produced by theth return of

The overlap in Eq(1) is then approximated by

the k,th closed orbit which itself had been initiated by the 7=1(UP—p?), 7=zFM2 (11)
core-scattered wave produced on th¢h return of thek;th 2 ' '
closed orbit. This describes a single scattering event and for gt
double scattering and multiple scattering we need labels ——u2+p2  1=tF¥4
kq,ko,Ks, ... andng,n,,ng, . ... Multiply-scattered recur- dr
rence integrals will be denotefd,, with bold (k,n). Then S . . . .
we define ¢ o () The Hamiltonian in these scaled semiparabolic coordinates is
2 2
J - m m
- - H=3(p2+p?)+ —+ ——e(U?+v?)+3(u*—v*=2,
Ri=R I (R R | LA AR CRCRA

(12

whereJ is the total number of core scatterings.Ji 0, we
take the quantity in the square brackets to be “one” and th
result reduces to the previous formula for E6). The for-
mula for the modulations in oscillator strength from the
closed orbits for an alkali-metal atom is then

Where m=mF* is the scaledz component of the angular
momentume is the scaled energy, amq, andp, aredu/dr
and dv/dr, respectively. We can now derive Hamilton’s
equations of motion and calculate the closed orbits in the
(u,v) space. Since we are interested in the orbits onttlae
o 2 axis, we takem=0 and start the orbits from=v=0 and
1‘=—;(E—Ei)lm2k Rg - (8) launch them at an initial anglé,=2 tanfl(pvi/pui) with

n,

0<p, <2 andp, = \/4—p;. We define a Poincarsurface
The sum in Eq(8) is shorthand for of section, ¢, ,v) with u=0, and recorcpvf andv; when
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the trajectory crosses the surface in either direction. For thevhere

downhill orbit, we must define a surface of sectiop,, (u) _

with v =0. The following discussions will also hold for the a(p,)=A(p,) V(M I(6F™). (18)
downhill orbit if we replace g, ,v) by (p,.u) everywhere.

Gao and Delos showed that for hydrogen the uniform apThe indexk here does not necessarily refer to an isolated
proximation for the returning wave for the=0 near a bi-  Orbit, but is a bookkeeping device referring to the central
furcation can be written as orbit. The angleg*" and #¥"" are functions op, on thenth

return of the central orbit. The uniform recurrence strength in
Eq. (17) is similar to the results derived by Gao and Delos
‘PS}?if:le A(p,)expliF (p,)) [19] and used in[23], but now the)’s are complex and
Py contain the quantum defects. Now let us examine the scat-

- - tered portion of the wave and its effect on the recurrence
XN0:)Io(p,v/f)Io(puulfi)p,dp,,  (13) spectrum.

where D. Scattering of uniform wave function

The core-scattered wave can be extracted from the
asymptotic form of the partial-wave expansion E6) for
' (14 the outgoing wave. The result is

'S a(e) ag(€) - T o (r,0)= 2Y4712p el \/8—;4_ 3m/4))
F(pu)=(s{;(e)— - pg_Tpg]/ﬁ_V? :
(15

Po, 9Py, |

p_Uf apvf

A(p,) =

% f A(p,)e'F Py 9i)|;m| Yio(6)

and the final momenta iA(p,) and in the integral are evalu-
ated on the surface of sectian=0. The constanD’ is

32 ; ; _ :
— 2”7 if the indexv is chosen to be= o+ 2, whereuo is  The initial outgoing wave produced by the laser is
a constant equal to the Maslov index of the central orbit

X (e 1=1)Y,o(6)p,dp, - (19

before the bifurcation creatder after the bifurcation de- _ _ 37
stroy9 the new orbits. W ol 0) = —i w223~ Fex I( V8r— =230,
We show in the Appendix that this returning wave func- (20)

tion has a partial-wave expansion
so the core-scattered wave can be rewritten as

D’ | A0 exeF (p,) . 4 I
Py unif(a):wout(a)ED/fg(pu)el (p”)F(ef' ,0)p,dp, .

X{Zl d|0\/§R|rng|0( 0!0) pvdpul (16) (21)

HereF(H‘f"”,e) is the analog of E¢(10) where we have not

whered,, is given by Eq.(3). This is an important result — yet takené to be 0ik and e‘f““ is integrated over the range of

the uniform wave function is constructed by superimposingPy - 1he portions of this scattered wave that go out in the
the azimuthally rotated zero-energy incoming waves withdiréction of another closed orbit of the system can be propa-
amplitudes and phases determined by the diffraction integra@{€d again to get the “combination” recurrence. So the
The exact form of(p,) andA(p,) depends on the type of combination recurrence formed'by scattering the uniform
bifurcation, but Eq.(16) only depends on the principle of wave function into the directios!’ is
superposition and the azimuthal symmetry.

This wave function also includes the outgoing scattered ./, /47 ko k' iF(p)
wave: thee'¥ in d, , combines with the asymptotic form of Rier i unir= Rier ED f 9(p,)F(67", 67 )e™ Po'p,dp,
R[®9to give theT matrix connecting the incoming waves to 22)
the outgoing core-scattered wave.

To check Eq(16), we show that it reduces to the formu- for scattering into the direction leading to an isolated closed
las derived in Refl 19]. We can form the overlap of EGLE)  qrpit. If F(¢5",6K') could be factored out from under the

with (D ¢;| to get the uniform recurrence integral analogous, . ld b : P —— :
to Eq.(4) for the primitive semiclassical recurrence. Repeat-ntegration, Eq(22) could be written a&y, Fy, Ry, unit USing
ing the procedure that leads to E§), we have Eqg. (17) for the uniform recurrence integral. However,

F(6°",65) depends orp, through 6" and this cannot in
4 general be done. Itis a nice shorthand when manipulating the

n 7 /f i scatterin ies, if ber that it is just boli
=D L)expliF (p,)p,dp, . 1 g series, if we remember that it is just a symbolic
kounit V2 pvg(p) PF (p.))p,dp 7 representation of EQ(22). It can also be shown that
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scaled energyg=—2.70 compared with a quantum calcula-
tion of the recurrence spectrum. In Figial, the primitive
semiclassical recurrence spectrum shows extreme overesti-
mates of the recurrence strengths at scaled actions starting

from S=5.3 near a bifurcation of the 13th return of the uphill

RN _g 2D,2J iF(p, ) orbit (ey;=—2.773) and a=6 from a bifurcation of the

K, unif;k,unif — & p,g(pvr)e ’ 13th return of the downhill orbit ,;= —2.703). These di-
’ vergent amplitudes are then coupling through scattering to
all other orbits at higher actions and thus the recurrence spec-

trum for actions larger tha®=5.3 is completely wrong in

the primitive semiclassical approximation with scattering. By
including the uniform approximation for the divergent am-
P : o plitudes of the 13th returns of the uphill and downhill orbits
for scattering into an orbit labeled b ,n’). and the “shadowing” effects of the core, but neglecting the

In the isolated orbit limit the integrals in Eq&2) and L . : .
(23) can be evaluated by stationary phase and they reduce 03 re-scaftered combination orbits, Figbjl shows an im-

the primitive semiclassical scattering formula for a singlep.roved semiclassical recurrence spectrum which is no longer
scattering off the core, Eq7) with J=1 divergent. However, it is only when both shadowing and

We can now write the scattering series, £, and sym- combination orbits are included that the semiclassical spec-

: n n . ; _ trum agrees with the quantum calculation, see Figs. dnd
t_;ohcally repIgceRk-by Ry uni wherever there is a bifurca 1(d). Clearly the combination orbits give new peaks in the
tion. In practice, it is easier to extract tlse p, andd com-

ponents of the scattered wave by interchanging the order gipectrum, se&=6.4, 7'6.' and 8.1 in Flgs.(n) and.](c) for :
summation and integration in EL9). In the electric field, example, but they also interfere destructively with the uni-
whereA(p,) andF(p,) are given by Eqs(14) and(15), the
diffraction integrals ovemp, for each angular momentuin

are evaluated at the real and complex stationary phase points
by the methods in Ref23]. These components are then used
to calculate the scattered wave in a directéoftom Eq.(21).

This scattered wave is now a source of outgoing waves on all

@)
closed orbits of the system. Again it is necessary to include 10 () ‘ _

RE,’FE,’k R unit and RE,"unifFE,’kRE are equivalent when the
uniform approximation is needed f&' instead ofk.

The combination recurrence formed by coupling two bi-
furcating orbits is given by

% fp g(pv)F(glf(’n'eik/)e”:(pv)pvdpvpv’dpv’

(23

10

IR(Ssell

the effect of the scattered wave on the subsequent returns of

w
the orbit that underwent the bifurcation, i.e., shadowing 25 ]
when k=k’ in Eq. (9), but now the scattered wave - M
FE,VkR’k"umf contains contributions from both the central orbit 0 Ea
and the adjacent stationary phase points. Also, when the — 10 g i
combination recurrences formed by coupling other orbits, &
i.e., k#k’ in Eqg. (9), to the uniform recurrence are com- £ 57
puted, they will contain contributions from both central and MMM LW
adjacent stationary phase points. Thus we label the uniform 18 L) o l
recurrence byy¥" of the central orbit when the uniform re- =
currence is the source of the outgoing wave antﬂ}ﬁywhen 2 5| T
the uniform recurrence is the recipient of the outgoing wave o MMA[ M m MM
and this properly accounts for the combined effects of the % 2 4 6 8 10
central and adjacent orbits. Comparisons of the recurrence s

spectra computed with this improved semiclassical approxi-

mation and quantum calculations are given in the next sec- FIG. 1. The recurrence spectrum for helium tripiet-0 at e
tion. =—2.70 is calculated in several approximatiot@-—(c), and com-

pared to the quantum recurrence spectr(p, In (a) the primitive
semiclassical approximation is used with core scattering included,
Eq. (9) [21]. The divergent amplitudes &=5.4 and 6 from the

Quantum calculations for the triplet helium=0 recur- bifurcations of the uphill and downbhill orbits become mixed
rence spectra were done at several scaled energies betwe&foughout the spectrum. ifb) the primitive semiclassical ampli-
—3.0< e<—2.0 where both the uphill and downhill orbits tudes for these orbits are replaced by the uniform amplitudes, but

exist and undergo numerous bifurcations. The principanmbinaﬂon orbits are not included. The divergences are removed,

. ut combination recurrence peaks are missing and the interference
guantum numbers of the states were in the range&r20 p fth binati b h
<30, which leads to relatively large electric field strengthsfs ects of the combination recurrences are absent. The core scatter-
T i o i ing is included in theshadowingof the orbits. In(c) both the com-
and sizes of the effective Planck's constafit=AF~~".  pination recurrences and the shadowing are included. There is now
Triplet helium has fairly larges andp phase shifts from the good agreement. The principal quantum numbers for all spectra
guantum defectsd,=0.30r and 6§;=0.077. were in the range 20n<30 and the average electric field strength

Figure 1 shows the semiclassical recurrence spectrum atasF=661 V/cm.

IIl. COMPARISON WITH QUANTUM CALCULATIONS
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10 A atoms in external electric fields. The form of this approxima-
5l | tion, a partial wave expansion of the outgoing wave whose
— coefficients depend on the diffraction integral, E46),

a0 should be generalizable to other types of bifurcations that
& occur in magnetic and combined electric and magnetic fields

ST T by changing the form of the diffraction integral. This should
gl b allow the computation of the recurrence spectra in the pres-
01 2 3 4 5 6 ence of bifurcations and scattering in other atom-field sys-

S tems.

FIG. 2. The recurrence spectrum for helium triphet=0 at e
=—2.61 from a quantum calculaticftop) is compared to the uni- ACKNOWLEDGMENTS
form semiclassical calculatiofbottom). The principal quantum

numbers for this calculation are in the range<20<30 and the .
a\ljera e electri:: field ustrein th w&ly 708 V/gm The peak af ment of Dr. John Delos and Dr. Jing Gao. Dr. Tom Morgan
9 9 : P and Len Keeler are thanked for sharing unpublished experi-

=2.82 is the sixth return of the downhill orbit and is treated by amental helium sinalet and triolet spectra. This work was sup-
uniform approximation in the semiclassical spectrum. The peaks at 9 P P ) P

§=3.3 and5=3.8 are sensitive to the combination recurrencesported by the NSF and the U.S. Department of Energy with

) - A Auburn University.
formed by scattering from the uniform return 8&2.8 and the
agreement with the quantum spectrum is good.

J.S. would like to acknowledge the help and encourage-

APPENDIX: PARTIAL-WAVE EXPANSION

form recurrence peaks &=5.3 and 6, further suppressing OF UNIFORM WAVE FUNCTION

their contributions to the spectrum. Both the bifurcations of To calculate the uniform wave function near the nucleus,
the uphill and downhill orbits at this scaled energy havewe would like to find the expansion of the product of Bessel

complex stationary phase points. functionsJo(p,u/h)Jo(p,v/#) in semiparabolic coordinates

A similar calculation at= —2.61 also shows good agree- in terms of the regular radial functio®¥®%(r)Y, (8, #), in

ment with the quantum calculations, Fig. 2. The sixth returnSpherical coordinates.

of the downhill orbit, atS=2.82, has a bifurcation at= The wave functions in the outer region must smoothly
—2.636. Abovee=—2.636 the stationary phase points of connect to the solutions in the inner region. If we require the
the diffraction integral are real. Below=—2.636 the sta- incoming parts of these functiorilenoted by a superscript
tionary phase points are complex. The recurrence strength ofnc ) 1o be equal "= ¢/ in the regionr =50a,, then

the peaks a$=3.28 and 3.75 a¢= —2.61 is sensitive to the

s.C. pws

coherent sum of the combination recurrences formed from - P e inc
the uniform recurrencéboth the central orbit and the real [Jo(Puu/%)Jo(p,v/h)]™= E| CiIVBRI®UN)Y0(6,0)|
stationary phase pointglus the first and second returns of (A1)

the uphill orbits. The agreement between the uniform semi-

classical spectrum and the quantum spectrum for these peaiqre the coefficients, are to be determined and the regu-

Is quite good. . . . lar radial functions are defined in terms of the zero-energy
At some scaled energies the semiclassical recurrencg, tions of the Schiinger equation aE8,22]
spectra do show discrepancies in the peak amplitudes when '

compared to the quantum spectra. Approximations have been
made in the program that calculates the combination recur- ereg(r)zcos(gIM_sm(glM_ (A2)
rences. For example, the current programs calculate the shad- J8r J8r

owing effects of the core recursively at the average field

strength to get the shadowed recurrence strengths for ea@y orthogonality of the spherical harmonics we haueop-
return of an orbit. The uniform scattering in this part of the ping the “inc” temporarily to simplify the equations

code is treated exactly. The program then couples these shad-

owed recurrence strengths up to a maximuml,jrsee Eq. - -

(7), to get the combination recurrences. In this part of the CiV8RI®{(r)= JQYTO( 6,0)Jo(puU/f)Jo(p,v/fi)d).

code the shadowed recurrences are coupleﬂﬂpx, which (A3)

is only an approximation when one of the shadowed recur-

rences is a shadowed uniform recurrence. The good agregye can evaluate this integral by the following substitutions:
ment shown in Figs. 1 and 2 and other calculations show that

this method does describe the essential physics of the scat- pu=|P|co® p,=|P|sin® (Ad)
tering system. Further comparisons of the quantum and semi- ! pro v P
classical recurrence spectra are being made.

u=Rco®, v=RsinO,
IV. CONCLUSIONS dQ =sindd d p=4coB sin®dOd b, (A5)

A method of calculating the scattered wave near a classi-
cal bifurcation energy has been developed for alkali-metahere we have use= \u?+v? and =20. This gives
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C J§R’n‘ig(r)=8wj cosind Y}5,(20)

X Jo( PRIAcogd ,cod)
X Jo(PRIASING ,sin@)dO.  (A6)

ﬁ 3/2
Yee=2"m"2 (20, ( ﬁ)
X exp(— i (PR/fi — 3/4)). (A9)

If we set Eq.(A8) equal to Eq(A9), then the coefficient€,

Now we expand both sides of this equation asymptoticallygre

[25]. The incoming part off, . in Eq. (A6) becomes

nc_ o fw/Z | coPsin® (Ei x 0
se= 4T, cod ,sin®,\ 7 PR 0(20)

X (exp{ —i[PRIAcog ©,— ©) — m/2]}
+termsin(0,+0)). (A7)

The incoming part ofj,,, in Eq. (A6) becomes

3/2

inc_ —1/2
lﬂ'pw— C|277' PR

x(—){exd —i(PR#A—3m/4+8)]}, (A8)

where we have used the ident®R/% = \/8r (valid when we
can neglect the potentjallf we evaluate the integral in Eq.
(A7) by stationary phase abo@,=0, then

Ci=2%m(—)'e" v} (0y), (A10)

since 2, is the angle of the incoming trajectoty . This is
exactlyd, , for m=0, the formula for an azimuthally rotated
incoming zero-energy Coulomb wave when there is an
alkali-metal core.

If we insert Eq.(A10) into Eg. (A1) and then insert Eq.
(A1) back into Eq(13) we can prove Eq.21). If the isolated
orbit approximation holds, then thg, integral evaluated by
stationary phase is just a complex multiplicative constant
evaluated for thek(;n) orbit coming in fromé;. We get the
matching constantsly back. If the orbit is not isolated, we
do the Fresnel integrals and get the uniform recurrence for-
mula back.

With the explicit form of the coefficients that go into the
partial-wave expansion of the uniform wave function, we can
calculate the scattered component of that wave.
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