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Excitation and charge transfer in proton-hydrogen collisions
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Excitation and charge transfer cross sections for collisions of protons with hydrogen are calculated by direct
solution of the time-dependent ScHinger equation on a three-dimensional Cartesian lattice. h@j2, 3s,
3p, and 3 excitation cross sections and the, 2s, 2p, 3s, 3p, and 3 charge transfer cross sections from
the 1s ground state at 10-, 40-, and 100-keV incident proton energy are found by projecting a time-evolved
wave function onto the lattice target states of hydrogen. Excitation processes are calculated in the rest frame of
the hydrogen atom, while capture processes are calculated in the rest frame of the proton. The computed
excitation and charge transfer cross sections are in good agreement with recent experiments and other theo-
retical results based on coupled-channels metH&050-29478)03210-7

PACS numbes): 34.70+e

[. INTRODUCTION Schralinger equation for proton-impact excitation of and
charge transfer with the neutral hydrogen atom. A general
The proton-hydrogen collision remains a benchmark foradvantage of the lattice method lies in its application over a
the development of new atomic scattering theories. There awide energy range. A numerical lattice method makes no
three basic inelastic processes that take place: excitation @sumption regarding the suitability of any particular basis
the target, electron capture by the projectile, and direct ionSet expansion. A further advantage is that collision dynamics
ization. Despite the basic nature of this three-body collisionMay be easily visualized since the total wave function is
there are still discrepancies between theory and experimerft@lculated explicitly as a function of time. Our 3D lattice
and differences among the results of various theoretical apselution of the time-dependent Schioger equation is car-
proaches. On the experimental side, proton-hydrogen Coni[leq out in Cartesian coordinates. A _stralght—llne classical
sions have been studied extensively, and at present there idrgiectory for the proton across the lattice may then be char-
large number of experimental cross sections for excitatio®¢terized with a single impact parameter. We consider two
[1-4] and charge transfé6—15] over a wide energy range. alternatlv_e numerical method$i) low-order finite d|ff_er-
On the computational side, there is no general approach th&'Ces using a staggered leapfrog propagator(2ngourier
gives accurate inelastic cross sections at all energies. At higfPllocation using a  split-operator propagator. The first
collision energies the Born approximation does well, but itmethod was chosen because of its straightforward implemen-
does not predict the correct energy dependence for the ifation on distributed-memory parallel computers. The second
elastic cross sections at lower energies. For electron excitd€thod was chosen because the total wave function may be
tion and capture processes at intermediate impact energig§Presented to the same accuracy on a relatively more sparse
close-couplind16—19 and distorted wavg20—23 methods grid. Latt|_ce size is generally the main determinant of overall
have been widely applied. Although quite successful, thecomputayonal t|me..ln poth numerical methods, observgbles
close-coupling methods may run into basis state convergen@€ obtained by projecting the total wave function following
difficulties [17,18 when extended over too great an energythe collision onto the sta}tlor!ary states of the system. Excita-
range. tion processes are studied in the rest frame of the hydrogen
An additional theoretical approach for ion-atom collisions 210m target, while capture processes are studied in the rest
is the direct solution of the time-dependent Sclinger (or ~ frame of the proton projectile. The computational lattice
Hartree-Fock equation on a numerical lattij@3—27. Due ~ Methods are outlined in Sec. I, the results for excitation and
to the long-range nature of the Coulomb electrostatic forceCharge transfer to the=1,2,3 shells are presented and dis-
however, only the substantial advances in computer technof:Ussed in Sec. lll, and a brief summary is found in Sec. IV.
ogy realized over the last few years have allowed the possfAtomic units are used throughout unless otherwise noted.
bility of carrying out full three-dimensional lattice solutions.
Recently, a 3D lattice solution has been successfully em-
ployed to study the excitation and ionization of hydrogenic
atoms by collisions with antiprotorf28—30. In this paper The time-dependent Schiimger equation for a bare ion
we attempt a 3D lattice solution of the time-dependent(Z,) projectile colliding on a classical trajectory with a hy-
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drogenic atom Z;) target is given by symmetry. The termination criterion is based on the energy
differences obtained in two consecutive iterations. In practice
the method rapidly converges in just a few iterations.

With the initial conditionW(r,t=0)= i;4(r), the time-
dependent Schdinger equation was propagated in real time
wherer is the electron position vector with respect to theusing an explicit “staggered leapfrog” algorithfi32]. The
target andR(t) is the time-dependent distance between themethod is ideal for distributed-memory parallel computers
projectile and target. The above equation may also be used &nce it involves only simple matrix-vector multiplication at
describe a hydrogenic atom projectile colliding with a bareeach time step. Spurious wave reflection at the lattice bound-
ion target. We solve Eq(1) with the boundary conditions ary is eliminated through the use of exponential masking. In
described below using two different lattice techniques to obone coordinate the masking function has the form
tain a discrete representation of the wave function and all
operators on a three-dimensional Cartesian coordinate grid. Fnasi(X) = 1— e~ £0max ) — g+ &min=x), (6)

vy (1 Z Zp\oo.
S B A ] UL

A. Finite-difference method where ¢ is a suitable positive constant that depends on the

. . I lattice extent. At each step in the time propagation the wave
For easy implementation on distributed-memory parallel C o ! :
S function is multiplied by a mask function for each coordi-
computers, second-order finite-difference methods are em- S i
. ) . -~ . nate. We note that the mask function in theoordinate does
ployed with uniform mesh spacing. For example, the kinetic . . o
ot contain the exponential term with,;,=0.

energy has a lattice representation in terms of a tridiagon:ﬂ To calculate excitation cross sections we center the hydro-
matrix, while the electron-ion interaction operator is a diag- y

onal matrix. For straight-line motion in the direction, genic wave functiony(r), at the origin of the coordinate
system and let the bare ion move across the lattice. The
R(t)=(x=b)*+[y—(yo+uvt)]*+ 2 (2)  probability of excitation to af,, (r) state for a given pro-

. o . jectile velocity and impact parameter is given by
wherey, and the impact parametérlocate the initial posi-

tion of the projectile andy is the projectile velocity. The 2
choice of arxy scattering plane guarantees that the collision Pom(vb)=| | &y, (DT t=T) (7)
Hamiltonian has reflection symmetry with respect to the ’

=0 plane. We divide the _Iattlce inwy planar layers and whereT is the time when the projectile reaches the lattice
propagate the wave function for each layer on a separatg

processor. Solution of the Sclfiager equation only in- oundary. The §—n/'m excitation cross section for a given

volves nearest surface layer message passing. Due to the’ rojectile velocity is given by

=0 plane reflection symmetry, the layers only extend from o

z=0 to z=z,,,« With the additional condition of'(x,y,0}) a'n/m(v)=277f dbbPR,, m(v,b). ©)]
=0 for \F(F,O) equal to an initial function that is odd i 0

and g (x,y,01)/9z=0 for ¥(r,0) equal to an initial func-  pue to the reflection symmetry through the:0 plane, we
tion that is even ire. need only consider final states with the samel)” "™ re-

The eigenfunctions),(r), and eigenenergiek,,, forthe  flection number as the initial statee., evenr number for
ground and low-lying excited states c_)_f the hydrogenic atonthe 1s statg. To calculate charge transfer cross sections we
may be found by propagating the Sciiger equation in  center the translated hydrogenic wave functign(r)e'Y,
imaginary time ¢=it) [31] atr=(b,y,,0) and let the hydrogenic atom move across the
lattice. The capture probabilities and cross sections are cal-

g _ A—HpAT g
Un(r, 7+ A7) =e "0 y(r, 7), 3 culated as before using Eq§) and(8).
where
B. Fourier collocation method
Ho=— EVZ— é (4) The Fourier-collocation method for the time-dependent
2 r Schralinger equation describing ion-atom collisions with a

) o ) single active electron has been previously discussed in detail
SinceAr is inversely related to the maximum ener@.«.  [29]. The reader is referred to this paper for a description of
on the lattice, we may also use an iterative relaxation inhe strengths and weaknesses of our implementation of this

energy: numerical approach. An advantage of such high-order meth-
N ods is an improved numerical representation of the high-
W) = H (EE H )z//i () 5) energy part of the energy-momentum dispersion relationship

n =y | NTmax TR0 ¥kt [33]. This characteristic often results in fewer lattice points

being required for a solution with specified accuracy as com-
In practice we have found that=4 works quite well, start- pared to low-order methods, assuming the solutions are suf-
ing from the analytic wave functions for a hydrogenic atom.ficiently smooth. The lattice parameters used in performing
Schmidt orthogonalization in every iteration prevents col-the calculations presented in this work are identical to those
lapse of excited states to lower-energy states of the samesed befor¢29] (i.e., 13% lattice points in a cubic numerical



2874 A. KOLAKOWSKA et al. PRA 58

TABLE I. Hydrogen atom solutions on a finite-difference lattice. For eatim state, the first row
contains results obtained on the grid that includes zero, while the second row list results obtained with no
zero on the grid.

State (Ho) (r) <1> AT)+V) V(Ho)?—(Hg)

1s, —0.49999 1.49 0.97 +7.3x10°° 3.2x10°4
—0.49515 1.51 0.98 —-8.9x10°° 2.3x1074
23, —0.12525 5.99 0.25 +9.1x1074 3.6x10°4
—0.12457 6.00 0.25 -2.1x10°4 3.7x10°4
2Py —0.12505 4.99 0.25 —-1.9x10°4 9.3x10°4
—0.12514 4.99 0.25 —2.8x1074 2.0x10°3
2p_, —0.12505 4.99 0.25 —1.9x1074 9.3x10™*
—0.12514 4.99 0.25 —2.8x1074 2.0x10°3
3s, —0.05562 13.47 0.11 +6.0x1074 4.1x10°4
—0.05541 13.48 0.11 —-1.0x1074 4.1x10°4
3P4 —0.05557 12.48 0.11 +1.2x1074 2.8x10°*
—0.05559 12.48 0.11 +1.8x1074 3.1x10°4
3p_, —0.05557 12.48 0.11 +1.2x1074 2.8x10°*
—0.05559 12.48 0.11 +1.8x10°4 3.1x10°4
3d, —0.05556 10.49 0.11 +3.8x10°° 2.3x10°4
—0.05557 10.49 0.11 +3.8x10°° 2.3x1074
3d,, —0.05556 10.49 0.11 +9.3x10°° 2.6x10°%
—0.05557 10.49 0.11 +1.0x107° 2.7x107%
3d_, —0.05556 10.49 0.11 +9.3x10°8 2.6x1074
—0.05557 10.49 0.11 +1.0x10°° 2.7x1074

box of length 52 a.u. with a complex potential absorbingatom solutions on the finite difference lattice are presented in
outgoing flux near the edges of the hokse of an efficient Table I, while similar quantities for the Fourier collocation
split-operator method of time propagation in the presentattice are found in Tables | and Il of the paper by Wells
work has also resulted in a significant decrease in computaet al.[29] on antiproton collisions with hydrogen. Due to the
tional effort over our previous work using a Taylor seriesadoptedz reflection symmetry in the finite difference lattice
expansion of the time propagator. We note that the Fouriergnly the evenr-number functions(1s,, 2Sy, 2p<1, 3So,
collocation method is implemented via fast Fourier trans-3,, . 3d,, 3d.,) need to be calculated for later use in the

forms. As a result of this choice, we do not take advantage of .o« _section projections. The energy expectatidg), the
the symmetry with respect to the collision plane as is dis- )

d ding th ¢ finite.diff h adial expectation valueg) and(1/r), the virial theorem,
cussed regarding the present hnite-ditterences me OE%md the energy fluctuation can be compared with their exact
Implementation of this approach on shared-memory paralle

_ 2 —[an2—
computers is straightforward, since good parallel fast—FourieYalueS (<H8>_ Zt/z.n » (n=[3n"—I(l * D)2z, and'
transform software routines are available. (1/ry=2Z,/n°) to provide a test of each lattice representation.

Table | presents a comparison between the results ob-
tained on a finite-difference lattice that includes zero and one
that does not include zero. In the first case, the Coulomb

Excitation and charge transfer cross sections from the 1 potential is modified by the introduction of a soft-core po-
ground state of hydrogen at 10-, 40-, and 100-keV incidentential, — Z,/r — — Z,//c+r?, to avoid the singularity at the
proton energy are calculated by the direct solution of theorigin. The adjustable parameteiis set to 4.503% 10 3 to
time-dependent Schdinger equation on a three-dimensional yield a ground-state energy close .5 for a lattice spac-
Cartesian lattice. The finite difference calculations use a lating of 0.2. In the second case, the singularity is avoided by
tice of 300< 300X 150 points with a uniform grid spacing of placing the origin half-way between the lattice spacing for alll
Ax=Ay=Az=0.2. Thus the lattice extends from30 to three coordinates. In each case the iteration process is termi-
+30 in thex andy directions, and from 0 te+ 30 in thez  nated when two consecutive energies differ by less than
direction. The Fourier collocation calculations use a lattice ofl0”?, which usually happens in less than 30 iterations. In
135X 135X 135 points with a uniform grid spacing of 0.385. general, three or four decimal places in the listed energies
Thus the lattice extends from 26 to +26 in thex, y, andz  can be obtained with less than six iterations. We note that
directions. Both the finite difference and Fourier collocationrelatively small values of r)+(V), particularly for 3
lattices are sufficiently large to support nearly spectroscopistates, do not necessarily mean that the excited part of the
n=1,2,3 orbitals. To cover the=4 shell will require even spectrum is approximated better than, say, the ground state.
larger lattice sizes. While the result of the virial theorem test for thes btate

Energies and other observables for the1,2,3 hydrogen certainly reflects the difficulty of the lattice representation of

Ill. RESULTS AND DISCUSSION
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the Coulomb potential at=0, then=3 numerical orbitals sponding analytical results shows reasonable agreement. In
are difficult to determine accurately due to the finite size ofthe finite difference calculations presented in the following
the lattice. It is safe to say that while the virial theorem is notparagraphs of this section, we chose the lattice that does not
exactly valid on the lattice it can still serve as a tool in theinclude zero since deviations from exact energy values are
evaluation of the computational method; however, cardess than 1%, and the differences from exact radial expecta-
should be taken when it is used to probe the quality of station values fall below 3%.

tionary solutions obtained on the lattice. A similar observa- We illustrate the visualization power of the lattice method
tion is also valid for other expectation values. A comparisonby presenting probability density plots in the 0 scattering

of the numerical observables for both cases with the correplane as a function of time in Figs. 1 and 2 for a proton-
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FIG. 3. Probability of excitation to the2state as a function of FIG. 4. Probability of excitation to thef@state as a function of
impact parameter for selected impact energi@sE=10 keV, (b) impact parameter for selected impact energi@sE= 10 keV, (b)

E=40 keV, (c) E=100 keV. Diamonds are the results from the E=40 keV, (c) E=100 keV. Diamonds are the results from the
finite-difference method, asterisks are the results from the Fouriefinite-difference method, asterisks are the results from the Fourier
collocation method, and the solid curve is a cubic spline interpola<ollocation method, and the solid curve is a cubic spline interpola-
tion through the finite-difference results. tion through the finite-difference results.

hydrogen collision at 40 keV. The time propagation of thecearly visible in the contour plots. Looking at the final
Schrcdlpger equation is started for an initial projectile posi- frames in each sequence, i.e., Figd)land Fig. 2d), it can

tion of ry=(1.0,—15.0,0.0)(an impact parametdr=1.0), as  be seen that one is the mirror image of the other, as should
depicted in Fig. {a) and Fig. 2a). The time propagation is be expected, giving a good check on the overall numerical
terminated when the projectile reaches the lattice boundarghethods.

at F0:(1.0,+ 30.0,0.0), which isT=20.0 for an incident en- Excitation in proton-hydrogen collisions is examined us-
ergy of 40 keV. In Fig. 1 the projectile is the proton and theing both the finite-difference and Fourier collocation meth-
target is the hydrogen atom located at the origin. In Fig. 2 th@ds. The excitation probabiliti¢see Eq(7)] as a function of
roles are reversed, the projectile is the hydrogen atom aniinpact parameter are presented in Fig. 3 for tle-Rs

the target is the proton located at the origin. As mentioned iriransition and in Fig. 4 for thes— 2p transition at 10-, 40-,
Sec. Il, excitation cross sections can be most easily extracteahd 100-keV incident proton energy. The diamonds are the
in the rest frame of the hydrogen atom, while charge transfecalculational results from the finite-difference method, the
cross sections are easily extracted in the rest frame of thasterisks are the calculational results from the Fourier collo-
proton. An oscillation of the electron density between thecation method, and the solid curve is a cubic spline interpo-
projectile and target can be observed in both figures. Anothdation of the finite-difference results. As can be seen, there is
interesting aspect of the two-center collision dynamics is theggood agreement between the two lattice methods for the 2
rotation of electron density about an individual center,and 2 excitation probabilities. The overall agreement be-
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TABLE II. Excitation cross sectiongin units of 108 cn?) for proton-hydrogen collisions. Finite-
difference method results are label@tD), while Fourier collocation method results are labelEE).

Final state EnergykeV)
10 40 100
n=2 27.2 (FD) 92.3 (FD) 96.1 (FD)
25.0 (FO) 99.0 (FO) 88.2 (FO)
26.0 [18] 90.0 [18] 86.0 [18]
96.40+8.3 [1]? 91.00+5.5 [1]?
88.86+8.3 [1]° 83.88+5.5 [1]°
2s 5.62 (FD) 16.1 (FD) 9.64 (FD)
5.54 (FC) 18.2 (FO) 10.1 (FO)
5.0 [18] 17.0 [18] 10.0 [18]
5.0+1.5 [8] 17.7% [17)] 10.2 [17]
6.1+2.83[4] 13.9+4.97 [4] 8.7+3.31[4]
3.0+0.9 [10]
2p 21.6 (FD) 76.2 (FD) 86.5 (FD)
19.5 (FO) 80.8 (FO) 78.1 (FO)
21.2[18] 71.2 [18] 76.2 [18]
24.0x1.4 [9] 68.66 [17] 76.20[17]
25.0+5.0 [8] 62.9+7.548 [3] 82.1+9.852[3]
36.0+7.5 [5] 80.0+9.6 [2]
n=3 7.25 (FD) 21.0 (FD) 18.2 (FD)
5.59 (FC) 18.3 (FC) 15.7 (FC)
7.0 [18] 19.0 [18] 17.0[18]
18.14 [17] 17.02[17]
23.50+2.0 [1]? 21.7%+3.0 [1]F
21.66:2.0 [1]° 20.05+3.0 [1]°
3s 1.04 (FD) 3.51 (FD) 1.96 (FD)
0.701 (FO) 3.47 (FO) 1.74 (FO)
0.9 [18] 3.4 18] 2.1[18]
3.9 [17] 2.24[17]
3p 3.50 (FD) 12.6 (FD) 14.2 (FD)
3.22 (FO) 10.6 (FO) 12.3 (FC)
3.0 [18] 12.0 [18] 13.0 [18]
10.9% [17] 12.92[17]
9.5+1.235[3] 13.7+1.781[3]
3d 2.70 (FD) 4.93 (FD) 2.09 (FD)
1.67 (FO) 4.25 (FO) 1.62 (FO)
1.5 [18] 2.75[18] 1.75[18]
3.27F [17] 1.86 [17]

aNormalized to Born approximation.
PNormalized to Glauber approximation.
“Value interpolated from published data.

tween the two lattice methods for thes,33p, and 3 exci- ods are compared with each other, selected alternative theo-
tation probabilities is also fairly good, with the small dis- retical approaches, and available experimental measurements
crepancies attributed to the different overall box sizes. in Table Il. The two lattice methods are in reasonable agree-
The total excitation cross sectiofsee Eq.(8)] for  ment for all transitions at all energies. Comparison is made
intermediate-energy proton-hydrogen collisions calculatedvith the recent single-center expansion coupled states calcu-
with both the finite-difference and Fourier collocation meth-lation of Fordet al. [17] and the two-center atomic orbital
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close-coupling method of Kuang and Lib8]. For excitation % 0.020
at 40 keV, the single-center expansion method results are a
linearly interpolated from the reported cross sections at 30 0.010
and 45 keV. The lattice calculations are found to be in good 0.000
agreement with the theoretical predictions of the single- .
center expansion and two-center atomic orbital methods. 6 2 4 6 8 10 12
Comparison is made with experimental measurements by impact parameter (a.u.)
Park et al. [1] of the total excitation cross section to the —— , EE—
=2 andn=3 shells. For excitation at 100 keV, the experi- 0.008 - (c)
mental cross sections were linearly interpolated from re- L E= 100 keV
ported measurements at 95 and 105 keV. The experimental .. 0.006
cross section§l] are normalized at 200 keV to theoretical %
values obtained with either the Born or the Glauber approxi- § 0.004
mations. Both “normalized” measurements are included in 2
Table 1. The lattice cross sections for=2 andn=3 exci- 0.002
tation fall within the error bars of the experiment at all en-
) . . . : 0.000
ergies. Comparison is made with a number of experimental , , , ,
measurementf2-5,8-1Q of the total excitation cross sec- 0o 2 4 6 8 10 12
tion to the &, 2p, and 3 subshells. The lattice results are impact parameter (a.u.)

close to or fall within the error bars for all the measurements,
except for the & cross section at 10 keV reported by Chong
and Fite[10] and the 2 cross section at 10 keV reported by
Stebbingset al. [5].

Charge transfer in proton-hydrogen collisions is examine
using only the finite-difference method. The capture prob-

abilities as a function of impact parameter are presented ify,ym distorted-wave calculations of Bélkét al. [20], and

Fig. 5 for the — 1s transition and in Fig. 6 for both the he symmetrized variational coupled distorted-wave method
1s—2s and 1s—2p transitions at 10-, 40-, and 100-keV ot Brown and Crother§22]. The two-center atomic orbital
incident proton energy. The diamonds and the triangles argnq symmetrized variational coupled distorted-wave method
the calculatl_onal results from the finite-difference r_netho_dresults are digitized from plots in the original publications.
and the solid, dashed, and dotted curves are cubic splinfhe |attice calculations are found generally to be in good
interpolations of the finite-difference results. Since th@ 1 ygreement with the other theoretical approaches. The largest
capture probabilities drop rapidly as a function of the 'mpaCtdiscrepancy, by a factor of 3, is with the continuum
parameter, they are displayed on a logarithmic scale. Thgjstorted-wave method for charge transfer to tlesgate at
overall functional dependance on the impact parameter reg kev. Comparison is made with a number of experimental
mains the same for the=2 andn=3 probabilities, with the  measurement§5—12,14 of the total charge-transfer cross
absolute values being generally one or two orders of magnisection to the 8 2p, and 3 subshells. The lattice results

tude smaller. _ are close to or fall within the error bars for all the reported
The total integrated charge transfer cross sections fofeasurements.

intermediate-energy proton-hydrogen collisions calculated
with the finite-difference method is compared to other theo-
retical approaches and experimental measurements in Table
[1l. Comparison is made with the two-center atomic orbital By direct solution of the time-dependent Sctiirger
close-coupling method of Kuang and Lii8], the con- equation on a three-dimensional Cartesian lattice, we have

FIG. 6. Probability of charge transfer to the 2solid curve$
and the D (dashed curvgsstates as a function of impact parameter
for selected impact energie&) E=10 keV, (b) E=40 keV, (¢
oE: 100 keV.

IV. SUMMARY
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TABLE Ill. Charge-transfer cross sectiofis units of 10 8 cn?) for proton-hydrogen collisions. Only
finite-difference method results are presented for comparison.

Final state EnergykeV)
10 40 100
1s 789.0 113.0 6.54
137.0[20] 6.39 [20]
120.0[18] 8.50 [18]
n=2 53.3 28.2 1.54
39.40 [20] 1.66 [20]
2s 20.3 21.3 1.26
24.0 [22] 11.8 [22] 1.00 [22]
17.8+1.0 [10] 28.1[20] 1.24 [20]
26.0=8.0 [8] 25.0 [18] 1.80[18]
21.0+6.3 [11] 18.0+1.44 [12] 1.80+0.144[12]
24.0+3.0 [7] 20.0+3.0 [7] 1.10+0.3 [6]
2p 33.0 6.94 0.280
40.0 [22] 5.0 [22] 0.118[22]
26.4+1.3 [9] 11.2 [20] 0.291[20]
31.0+5.0 [8] 7.0 [18] 0.4 [18]
38.0+19.0 [5]
n=3 9.71 9.11 0.500
13.8 [20] 0.577[20]
3s 2.60 6.47 0.386
8.96 [20] 0.402 [20]
7.0 [18] 0.6 [18]
4.12+1.06 [14] 6.27+0.40 [14] 0.28+0.09 [14]
3p 3.96 2.24 0.103
3.85[20] 0.154 [20]
1.90[18] 0.090[18]
3d 3.14 0.304 0.0107
1.02 [20] 0.0213[20]
0.20 [18]

calculated excitation and charge-transfer cross sections fanultiple electron targets through the use of core pseudopo-
proton-hydrogen collisions at intermediate energies. Twdentials and/or time-dependent Hartree-Fock theory. Due to
different lattice methods have been shown to yield subshethe low symmetry nature of the formulation, the lattice
cross sections in good agreement with selected alternatii@ethod may also be quite easily adapted to the study of
theoretical methods and the available experimental measurgyn-atom collisions in external fields.

ments. This study of proton scattering from the hydrogen
atom, combined with earlier work on antiproton scattering
from hydrogenic atom§28—-30, has demonstrated that the
lattice method can be successfully employed to calculate in-
elastic cross sections for one-electron ion-atom collisions. The work of A.K., M.S.P., and F.R. was supported by
This success can be attributed in large measure to the subkational Science Foundation grants with Auburn University.
stantial advances in computer technology realized over justhe work of D.R.S. and J.C.W. was supported by the Office
the last few years. We are currently extending the Fourieof Basic Energy Sciences of the U.S. Department of Energy
collocation method to also handle capture processes and peand the Center for Computational Sciences at Oak Ridge
forming further studies on the contribution to excitation andNational Laboratory, which is managed by Lockheed-Martin
capture fromn>3 states. This will allow us to make a rea- Energy Research Corporation. Computational work was car-
sonable estimate of the total ionization cross section. Theied out at the National Energy Research Supercomputer
challenge in the future is to extend the lattice approach t&enter in Berkeley, CA.
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