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Time-dependent close-coupling calculations of correlated photoionization processes in helium
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Various correlated photoionization processes in helium are calculated by direct solution of the time-
dependent Schdinger equation. An inhomogeneous set of time-dependent close-coupled partial differential
equations are partitioned on a numerical lattice for easy implementation on massively parallel computers.
Projection of the time evolved wave function onto lattice eigenstates féryitads cross sections for photo-
ionization with excitation and double photoionization. The computational results are compared with recent
experimental measuremenfS§1050-294®8)07701-4

PACS numbes): 32.80.Fb
I. INTRODUCTION Il. THEORY

The time-dependent wave function for any two-electron
An accurate description of the correlation between twoatomic system may be divided into two parts:

electrons moving in the long-range Coulomb field of a third _
body, as found in the double photoionization of helium, re- W (Fy,Fo,t) = ¢o(Fr,F)e  Fo+y(Fy,Fpt), (D)
mains a challenging theoretical problem. However, the diffi-
culties are somewhat mitigated if examined in the time dowhere ¢, is the exact eigenfunction anfl, is the exact
main. As pointed out by Bottch¢f], the time evolution of a eigenenergy of the time-independent atomic Hamiltonian.
wave function localized in space, as found in the groundSubstitution into the time-dependent Satirmer equation
state of helium, obviates the need for answers to questiongelds (in atomic unitg
about the asymptotic form of the wave function in coordinate

space or its singularities in momentum space. In this paper a IP(Fy,M,) Lo
time-dependent close-coupling methp2,3] developed to : at = (Hatomt Hrad ¥(F1,72,1)

study the electron-impact ionization of atomic idrg has L e

been extended to include radiative dipole coupling. This +Hragdo(M1,F2)e ™0, @)

larger set of coupled partial differential equations may then ] o ] . ) ]
be time propagated on a lattice to yield accurate cross sedhereéHg is the Hamiltonian for interaction with a time-

tions for a variety of correlated photoionization processes ifiePendent radiation field. In the weak-field perturbative

two-electron atomic systems. limit, one may solve the somewhat simpler time-dependent
We begin with test calculations for the photoionization of €guation given by

ground-state helium above the complete fragmentation .o

threshold. Recent synchrotron Iigh'F experiments hav_e nar- ; IP(1.F2.0) = Hotonth(F1,F2,t) + Hagbo(F1, o) e Eot.

rowed the measurement uncertainties both for photoioniza- dt

tion with excitation[5] and double photoionizatio6—8|] of ()

ground-state helium so as to provide benchmarks for the de-

velopment of new theoretical methods. Additional compari-The second term on the right-hand side acts as a source for

sons may be made with the vast number of time-independefipe time evolution ofy(f';,;,t) from zero at timet=0 to

computational theories developed to understand correlatetP™e final value at timeé=T. This inhomogeneous time-

processes in the photoionization of helium. The most populaf€Pendent equation is the photoabsorption analog of the

methods for photoionization with excitation are based Orpme-depgndent Qre_ensfunctmn metr @] mtrodu_ced_for

many-body perturbation theof9,10] and standardR-matrix e'leqtron'-lmpa'c't |on|zat|on of.atoms. The e_quaﬂon is also

theory[11,12. Recent calculations for double photoioniza- 5|m|lgr in_spirit to_the t_lme—lndependent _dlpole response

tion, which involve the full three-body Coulomb breakup, function method[17-19 in that only outgoing waves are

; generated. As shown below in some detail, cross sections for
.ha.“./e been based on many-body pgrturbatmn thmqu’. a variety of photoionization processes may be easily ex-
initial-state dipole response functioh&7-19, asymptoti-

) ) tracted from the final wave functio#(';,r,,T).
cally correlated final statg20—-24, hyperspherical25] and Utilizing a standard procedure found in time-independent

convergent[26] close-coupling theory, and eigenchannel gcttering theory31-33, the time-dependent wave function
[27,28 and Laguerre pseudostg29] R-matrix theory. In  for a givenLS symmetry is expanded in coupled spherical
the following paragraphs we first develop the time-dependentsrmonics:

close-coupling method as applied to the photoionization of

two-electron atoms in Sec. Il, compare our test results for PLS (1.1,.1)

ground-state helium with experiment in Sec. Ill, and then MRIED gt 12 YLo(F.F 4
. . . l//(rlarZI ) 141 (r11r2)1 ( )

give a brief summary in Sec. IV. LS I3, rifz 12

1050-2947/98/5)/318(7)/$15.00 57 318 © 1998 The American Physical Society
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wherel; andl, are the angular momenta of the two electrons, larahd S are the total orbital and spin angular momenta of
the atomic system. Upon substitution into E§), the time-dependent close-coupled radial partial differential equations are
given by

IPyS, (r1,fp,t)
. 172 _ LS L LS
P =T,,,,(r.r2)P, 7 (i, r2, ) + ,E/, V/lfz/i/g(rl’rZ)P/;/;(rl'rZ’t)

ot
10
LL LoS —i

+ > W/O/ /rr/n(rlar2at)P/?r/u(rlyr2)e o, ®)

/’]/-’/; 1727172 12

where

. 18 18 (Nt F(ftl) 2 Z "
() ==75 s 205 2r2 " 2r2 ry ry’ ©

Pb‘is/z(rl,rz) are the radial wave functions for the initial wave functigig, and Z is the atomic number. The Coulomb
interaction operator is given HB4]

L

V/l/z,/i/;(rl’rZ):(_1)“/2%«2/1* 1)(2/1+1)(2/ 3+ 1)(2/5+1)

N o1 Z o1 o1 o1
r- /1 A /1)</2 A /Z)L /2 /1

T 7
X; ”1(0 0 0/\0 0 0/|n 71 7)) @)

rs

wherer _=min(r,,r,) andr-=max(,r,). The selection rules of thej3and § symbols limit the multipole expansion to a
small number of terms. The radiation field operator is giveri3#}

Lo’
W

o (T2 =0, (= 1) 2\(2/1+1)(2/+1)(2L+1)(2L" +1)

/101 /1)(L 1 L’)[/’l /sy L]

Xg(rl)F(t)(o o o/lo o of/lLy 1 ~
/1

+6,, /(1) W2/ D2/ 5+ D(2L+ 1) (2L + 1)
/o 1 /5\(L L L[/ /L
( ) : 8

Xg(rZ)F(t)<o o o/lo o of/lLy 1 ~

The time dependence of the linearly polarized electric field isvherew is the frequency of the radiation field. We note that
given by coupled spherical harmonic expansions may also be substi-
tuted into Eq.(2), yielding a set of time-dependent close-
coupled radial partial differential equations similar to those
F(t)=f(t)cog wt), (9  used by Parkeet al.[35] to study intense-field multiphoton
ionization of two-electron atoms.

We solve the time-dependent close-coupled equations us-
ing lattice techniques to obtain a discrete representation of
the radial wave functions and all operators on a two-
dimensional grid. For easy implementation on massively par-
g(r)=r, (10 allel computers, low-order finite difference methods are em-
ployed with uniform mesh spacing. For example, the kinetic
energy has a lattice representation in terms of a tridiagonal
. o , matrix, while the Coulomb interaction operator becomes a
(o Z(/+D)=/(/+1) diagonal matrix. We divide the radial wave functions as fol-

9(r)= w E+ 2r ’ (13) lows:

where the ramp functiofi(t) =t/T for t<T/4, f (t)=1 for
t>T/4. In the length gauge

while in the velocity gauge
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Ls (j—-1R iR To extract cross sections from the time evolved radial
P (T2, )#0  for 0<r;<R, N <2< wave functions, we use standard projection techniques

(12 [38,39. The probability of ionization with excitation to a
bound staten/m is given by

with each stripj=1,2,..N on a separate processor. To XOrL\/Sm:f AP (g S(FL, P2, T X m(F2) P
evaluate first and second derivatives, one only needs to pass
P.° , (r1,r2=(j—1)RIN,t) to processor j—1) for ] e ) o
=23,...N and PS°  (ry,r;=jRI/N,t) to processor j( _n,/z,m, Ko™ 1,2, DX e (F2) X F2))]
+1) forj=1,2,...,N—1).

The eigenfunctionsg,, and eigenenergieg,, for the s e s I
ground and low-lying excited states of any two-electron +J Aol >(F1, P2, T X m(FL)
atomic system may be found by relaxation of the Sehro
dinger equation in imaginary timer&it) [36]:

- 2 |<'/’LS(F1,F2:T)|Xn/m(|71)Xn'/'m'('?2)>|2-

n'/'m’'

a(b (F11F217-) N (15)
- —— " =Haann(F1.72,7). (13
The cross section for photoionization with excitation to a
bound staten/m is given by

For a givenL S symmetry,¢,(F;,f,,7) may be expanded in

coupled spherical harmonics resulting in a coupled set of w dptS

radial partial differential equations. An explicit exponential oS =— ”/m, (16)

time propagator is used to “relax” an initial guess to the It

lowest eigenenergy for that symmetry. A spectrum of excited

states may then be built up with successive relaxations with . . : L .

projectiony P wherel is the intensity of the radiation field. The probability
The eigenfunctionsy, and eigenenergie, for the for double ionization is given by

ground and all bound and continuum excited states of any

one-electron atomic system may be found by direct diago-

nalization of the time-independent ScHilmger equation: pggn:w'-s(rl,rzjﬂ¢LS(F1,FZ,T)>_ Z @hfm
n/m
Nator¥a() = €nxn(1)- (19 =2 2 KL T X (PO xo P2,
n/m n///m/

17

For a given orbital angular momentum, () may be written

as a product of a radial function and a spherical harmonic

resulting in an uncoupled set of ordinary differential equa-yhile the cross section for double photoionization is given

tions. Each radial equation is diagonalized on a oney,

dimensional grid; the same uniform mesh as used for the

two-electron atomic system. The number of eigenfunctions

and eigenenergies for each angular momentum equals the ® apﬁ%n

total number of lattice points. cr'aif,n=|— T
After calculation of the two-electron eigenfunction for the J

initial atom ¢y and the one-electron eigenfunctions for the

final iqn, Xn, the time-dependgnt clos_e-coupled equatio_nswe note that Eqs(16) and(18) relate the cross section to a
found in Eq.(5) are propagated in real time for the appropri- rate divided by the photon flux

ate LS symmetry and the initial conditioeri/z(rl,rz,t

=0)=0. An explicit “staggered leapfrog” approximation IIl. RESULTS

[37] is used for time propagation. The method is ideal for

massively parallel computers since it involves only simple The time-dependent close-couplétDCC) equations are
matrix-vector multiplications at each time step. The norm ofsolved for the photoionization of helium in its ground state
the wave function continues to grow in a strict linear manneifor photon energies ranging from 90 to 200 eV, well above
if we adjust the time step to be less than one divided by théhe complete fragmentation threshold. We employ two lat-
eigenvalue with largest absolute value of the discrete Hamiltices: one with 208200 points and one with 400
tonian operator. X 400 points. Each radial direction from 0 to 40 is spanned

(18
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40.0 : ‘ : TABLE I. Bound-state lattice eigenenergies for He
F a Energy(eV) Energy(eV)
nl 200 points 400 points
300 - B
1s —52.405 —53.890
2s —13.472 —13.572
o 200 F . 2p —13.652 —13.617
3s —6.020 —6.040
3p —6.068 —6.052
100 - 8 3d —6.049 —6.048
4s —-3.393 —3.399
4p —3.412 —3.404
: : 4d —3.403 —3.402
209 300 @0 4t ~3.402 ~3.402
n 5s ~2.173 ~2.176
400 \ , , 5p -2.183 -2.178
5d —2.178 —-2.177
I b 5f —-2.177 —-2.177
300 - 4 6s —1.464 —1.464
6p —1.477 —1.472
6d —1.483 —1.481
<200 4 6f —1.494 —1.493
7s —0.753 —0.749
i 7p -0.789 -0.779
100 - A 7d —0.833 —0.827
7f —0.897 —0.893
! ! !
10.0 200 300 400 aPB(i /2( r1,f5,7)
r, - T
400 =T/, (11 F)PY, (F1,12,7)
C
o | l + 2 vo/l/z/i/é(rl,rz)PS‘z/é(rl,rz,T).
b
(19
w2007 | Relaxation of a trial function on the 2600 lattice yields a
ground-state wave function with probability density as
shown in Fig. 1 and with an energy ef2.785 a.u. A 400
100 - 1 X 400 lattice calculation yields a similar density plot and an
energy of—2.871 a.u. Further improvements in the absolute
value of the total energy of ground-state heliganemical
0.0 o ‘ : ‘ : ‘ accuracy is—2.904 a.u. could be achieved by smaller mesh
0.0 10.0 20.0 30.0 40.0

spacing and the use of higher-order differencing operators
ry [40]. However, as will be shown below, it appears that the
initial-state correlation retained in these ground-state lattice
FIG. 1. Probability densities for the three channel ground statevave functions is sufficient for our purposes.
of helium, (a) ss channel,(b) pp channel, andc) dd channel. The lattice wave functions for Heare obtained by direct
diagonalization of the radial Schiimger equation associated
by a uniform mesh; on the first lattice the mesh spacing isvith Eq. (14). The bound-state energies for a 200-point and a
Ar=0.2, while on the second lattickr =0.1. 400-point radial mesh are given in Table I. The box radius of
Three coupled channelg’{/,=sspp,dd) are sufficient 40 only supports spectroscopic states fet5. The bound
to obtain a fully correlated'S ground state of helium on states fom>5 contain some continuum character, whereas
either lattice. After expanding E@13) in coupled spherical the low-energy continuum box states contain some bound
harmonics, the Schdinger equation in imaginary time has character. We note that the total cross-section expressions
the form found in Eqs(15)—(18) require only bound-state projections.
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FIG. 2. Probability densities for the six-channel photoionization of heliutn:éT, (a) sp channel(b) ps channel,c) pd channel(d)
dp channel,(e) df channel, andf) fd channel.

We retain

=sp,ps,pd,dp,df,fd) in solving Eq.(5) for the photoion-
ization of ground-state helium. For the 20Q00 lattice the
time step isAt=0.005, while for the 408 400 lattice the
time step isAt=0.001. The total propagation time i

=3R/\2(w—A), where A is the single photoionization

Six

coupled

channels /(>

ionized does not have time to reflect from the box boundary
R and return far enough to disturb the second electron. For a
photon energyw =85 eV on the 208 200 lattice, the prob-
ability density is shown in Fig. 2 for the six-channel wave
function at timet=3T. Thesp andps channels are strongly
dominated by single photoionization, whose density flow is

threshold. This guarantees that the first photoelectron that isearing the boundary. Besides monitoring the probability
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TABLE Il. Ratio of photoionization withn=2 excitation to
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single photoionization for helium.

10) TDCC TDCC Experiment 5]
(eV) Ar=0.2 Ar=0.1 (erron
89.5 8.17% 7.60% 8.17%0©.04)
100.0 7.78% 7.23% 7.63%0.04)
120.0 7.32% 6.78% 6.96%0.05
160.0 6.84% 6.27% 6.3990.10
197.7 6.67% 5.96% 5.9199.06

TABLE lll. Ratio of photoionization withn=3 excitation to

single photoionization for helium.

D) TDCC TDCC Experiment 5]
(eV) Ar=0.2 Ar=0.1 (erron
89.5 1.56% 1.46% 1.51%9.03
100.0 1.41% 1.33% 1.3899.03
120.0 1.24% 1.16% 1.1699.03
160.0 1.06% 0.98% 0.9690.09
197.7 0.98% 0.88% 0.8590.04)

TABLE IV. Ratio of double photoionization to single photoion-

ization for helium.

® TDCC TDCC  Experiment{6] Experiment7]
(eV) Ar=0.2 Ar=0.1 (erron (erron
90.0 2.12% 1.69% 2.45%9.04) 1.66%(0.02
120.0 3.94% 3.59% 3.66%0.13 3.26%(0.03
140.0 4.31% 4.00% 3.9199.05 3.70%(0.03
160.0 4.52% 4.17% 4.1499.06 3.89%(0.03
190.0 4.50% 4.23% 4.20%0.05 3.97%(0.09

TABLE V. Ratio of double photoionization to single photoion-

ization for helium.

D) TDCC TDCC Experiment 8]
(eV) Ar=0.2 Ar=0.1 (erron
90.0 2.12% 1.69% 1.409%9.05
100.0 3.04% 2.65% 2.28%0.05
130.0 4.16% 3.84% 3.23%9.07)
175.0 4.51% 4.22% 3.7099.07)
200.0 4.61% 4.22% 3.60%0.08

density, we also calculate the probabilitie},, andpJ, at
intermediate times. After an initial turn on from zero, all the
probabilities become a linear function of time for 1 T. The
slopes are extracted and the cross sections are computed
from Eqgs.(16) and (18).

Cross-section ratios for photoionization with excitation of
helium are compared with a recent experiment by Wehlitz
et al. [5] in Tables Il and Ill. The ratios are found from
summing over the degenerate levels for eacdnd then are
expressed as a percentage of the single photoionization cross
section at that photon energy. Although the A@MO0 lattice
calculations are slightly under experiment at low energies,
the agreement by 200 eV is quite good. The many-body per-
turbation theory results of Chan®] cross our 408400
lattice calculations around 120 eV, being slightly higher at
low energies and slightly lower at high energies.

Cross-section ratios for double photoionization of helium

are compared with the recent experiments of Levin, Armen,
and Sellin[6,7] and Dorneret al. [8] in Tables IV and V.
Although the 40& 400 lattice calculations agree quite well
with the experiments of Levin, Armen, and Sellié], they
are about 15% higher than the experiments of Doetel.
[8] and the more recent experiments reported by LéVin
All the time-independent close-coupling calculatigr6—
28] lie between the Levin, Armen, and Sel[ié] and Dorner
et al. [8] experimental measurements.

All the time-dependent close-coupling results presented in
Tables I[I-V were calculated in the length gauge of &d).
Spot calculations at 89.5 and 200 eV in the velocity gauge of
Eqg. (11) on both lattices produced cross-section ratios in ex-
cellent agreement with the length gauge results. It appears
that the lattice calculations are almost gauge invariant.

IV. SUMMARY

Overall the time-dependent close-coupling calculations
for the photoionization of helium agree well with the recent
synchrotron light experiments. Improvements in the accuracy
of these test calculations can be made by a combination of
smaller lattice spacing, higher-order differencing, and larger
boundary radius. Convergence studies are now possible on
the most powerful massively parallel computdlike the
Cray T3B. In the future we plan to apply the time-dependent
lattice method to study photoionization of excited-state He,
as well as ground-state Hand Li*. Inclusion of the radia-
tion Hamiltonian in the time evolved wave function, along
with the incorporation of fast electron absorbing boundary
conditions, may also allow a detailed study of correlated
multiphoton absorption processes in atoms.
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