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Time-dependent close-coupling calculations of correlated photoionization processes in helium

M. S. Pindzola and F. Robicheaux
Department of Physics, Auburn University, Auburn, Alabama 36849

~Received 29 July 1997!

Various correlated photoionization processes in helium are calculated by direct solution of the time-
dependent Schro¨dinger equation. An inhomogeneous set of time-dependent close-coupled partial differential
equations are partitioned on a numerical lattice for easy implementation on massively parallel computers.
Projection of the time evolved wave function onto lattice eigenstates for He1 yields cross sections for photo-
ionization with excitation and double photoionization. The computational results are compared with recent
experimental measurements.@S1050-2947~98!07701-4#

PACS number~s!: 32.80.Fb
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I. INTRODUCTION

An accurate description of the correlation between t
electrons moving in the long-range Coulomb field of a th
body, as found in the double photoionization of helium,
mains a challenging theoretical problem. However, the d
culties are somewhat mitigated if examined in the time
main. As pointed out by Bottcher@1#, the time evolution of a
wave function localized in space, as found in the grou
state of helium, obviates the need for answers to quest
about the asymptotic form of the wave function in coordin
space or its singularities in momentum space. In this pap
time-dependent close-coupling method@2,3# developed to
study the electron-impact ionization of atomic ions@4# has
been extended to include radiative dipole coupling. T
larger set of coupled partial differential equations may th
be time propagated on a lattice to yield accurate cross
tions for a variety of correlated photoionization processes
two-electron atomic systems.

We begin with test calculations for the photoionization
ground-state helium above the complete fragmenta
threshold. Recent synchrotron light experiments have n
rowed the measurement uncertainties both for photoion
tion with excitation@5# and double photoionization@6–8# of
ground-state helium so as to provide benchmarks for the
velopment of new theoretical methods. Additional compa
sons may be made with the vast number of time-indepen
computational theories developed to understand correl
processes in the photoionization of helium. The most pop
methods for photoionization with excitation are based
many-body perturbation theory@9,10# and standardR-matrix
theory @11,12#. Recent calculations for double photoioniz
tion, which involve the full three-body Coulomb breaku
have been based on many-body perturbation theory@13–16#,
initial-state dipole response functions@17–19#, asymptoti-
cally correlated final states@20–24#, hyperspherical@25# and
convergent @26# close-coupling theory, and eigenchann
@27,28# and Laguerre pseudostate@29# R-matrix theory. In
the following paragraphs we first develop the time-depend
close-coupling method as applied to the photoionization
two-electron atoms in Sec. II, compare our test results
ground-state helium with experiment in Sec. III, and th
give a brief summary in Sec. IV.
571050-2947/98/57~1!/318~7!/$15.00
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II. THEORY

The time-dependent wave function for any two-electr
atomic system may be divided into two parts:

C~rW1 ,rW2 ,t !5f0~rW1 ,rW2!e2 iE0t1c~rW1 ,rW2 ,t !, ~1!

where f0 is the exact eigenfunction andE0 is the exact
eigenenergy of the time-independent atomic Hamiltoni
Substitution into the time-dependent Schro¨dinger equation
yields ~in atomic units!

i
]c~rW1 ,rW2 ,t !

]t
5~Hatom1H rad!c~rW1 ,rW2 ,t !

1H radf0~rW1 ,rW2!e2 iE0t, ~2!

where H rad is the Hamiltonian for interaction with a time
dependent radiation field. In the weak-field perturbat
limit, one may solve the somewhat simpler time-depend
equation given by

i
]c~rW1 ,rW2 ,t !

]t
5Hatomc~rW1 ,rW2 ,t !1H radf0~rW1 ,rW2!e2 iE0t.

~3!

The second term on the right-hand side acts as a sourc
the time evolution ofc(rW1 ,rW2 ,t) from zero at timet50 to
some final value at timet5T. This inhomogeneous time
dependent equation is the photoabsorption analog of
time-dependent Green’s function method@30# introduced for
electron-impact ionization of atoms. The equation is a
similar in spirit to the time-independent dipole respon
function method@17–19# in that only outgoing waves are
generated. As shown below in some detail, cross sections
a variety of photoionization processes may be easily
tracted from the final wave functionc(rW1 ,rW2 ,T).

Utilizing a standard procedure found in time-independ
scattering theory@31–33#, the time-dependent wave functio
for a givenLS symmetry is expanded in coupled spheric
harmonics:

c~rW1 ,rW2 ,t !5(
L,S

(
l 1 ,l 2

Pl 1l 2
LS ~r 1 ,r 2 ,t !

r 1r 2
Yl 1l 2

L ~ r̂ 1 , r̂ 2!, ~4!
318 © 1998 The American Physical Society
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57 319TIME-DEPENDENT CLOSE-COUPLING CALCULATIONS . . .
wherel 1 and l 2 are the angular momenta of the two electrons, andL andS are the total orbital and spin angular momenta
the atomic system. Upon substitution into Eq.~3!, the time-dependent close-coupled radial partial differential equations
given by

i
]Pl 1l 2

LS ~r 1 ,r 2 ,t !

]t
5Tl 1l 2

~r 1 ,r 2!Pl 1l 2

LS ~r 1 ,r 2 ,t !1 (
l 18 ,l 28

V
l 1l 2 ,l

18 ,l
28

L
~r 1 ,r 2!P

l
18l

28
LS

~r 1 ,r 2 ,t !

1 (
l 19 ,l 29

W
l 1l 2 ,l

19l
29

LL0 ~r 1 ,r 2 ,t !P
l

19l
29

L0S
~r 1 ,r 2!e2 iE0t, ~5!

where

Tl 1l 2
~r 1 ,r 2!52

1

2

]2

]r 1
22

1

2

]2

]r 2
2 1

l 1~ l 111!

2r 1
2 1

l 2~ l 211!

2r 2
2 2

Z

r 1
2

Z

r 2
, ~6!

P
l 1 ,l 2

L0S (r 1 ,r 2) are the radial wave functions for the initial wave functionf0 , and Z is the atomic number. The Coulom

interaction operator is given by@34#

V
l 1l 2 ,l

18l
28

L
~r 1 ,r 2!5~21!L1l 21l 28A~2l 111!~2l 1811!~2l 211!~2l 2811!

3(
l

r ,
l

r .
l11 S l 1 l l 18

0 0 0
D S l 2 l l 28

0 0 0
D H L l 28 l 18

l l 1 l 2
J , ~7!

wherer ,5min(r1,r2) and r .5max(r1,r2). The selection rules of the 3j and 6j symbols limit the multipole expansion to
small number of terms. The radiation field operator is given by@34#

W
l 1l 2 ,l

18 ,l
28

LL8 ~r 1 ,r 2 ,t !5d l 2 ,l
28
~21! l 2A~2l 111!~2l 1811!~2L11!~2L811!

3g~r 1!F~ t !S l 1 1 l 18

0 0 0
D S L 1 L8

0 0 0 D H l 1 l 2 L

L8 1 l 18
J

1d l 1 ,l
18
~21! l 1A~2l 211!~2l 2811!~2L11!~2L811!

3g~r 2!F~ t !S l 2 1 l 28

0 0 0
D S L 1 L8

0 0 0 D H l 2 l 1 L

L8 1 l 28
J . ~8!
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The time dependence of the linearly polarized electric field
given by

F~ t !5 f ~ t !cos~vt !, ~9!

where the ramp functionf (t)5t/T for t,T/4, f (t)51 for
t.T/4. In the length gauge

g~r !5r , ~10!

while in the velocity gauge

g~r !5
i

v S ]

]r
1

l 8~ l 811!2l ~ l 11!

2r D , ~11!
iswherev is the frequency of the radiation field. We note th
coupled spherical harmonic expansions may also be su
tuted into Eq.~2!, yielding a set of time-dependent clos
coupled radial partial differential equations similar to tho
used by Parkeret al. @35# to study intense-field multiphoton
ionization of two-electron atoms.

We solve the time-dependent close-coupled equations
ing lattice techniques to obtain a discrete representation
the radial wave functions and all operators on a tw
dimensional grid. For easy implementation on massively p
allel computers, low-order finite difference methods are e
ployed with uniform mesh spacing. For example, the kine
energy has a lattice representation in terms of a tridiago
matrix, while the Coulomb interaction operator become
diagonal matrix. We divide the radial wave functions as f
lows:
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320 57M. S. PINDZOLA AND F. ROBICHEAUX
Pl 1l 2

LS ~r 1 ,r 2 ,t !Þ0 for 0,r 1,R,
~ j 21!R

N
,r 2,

jR

N
~12!

with each strip j 51,2,...,N on a separate processor. T
evaluate first and second derivatives, one only needs to
Pl 1 ,l 2

LS (r 1 ,r 25( j 21)R/N,t) to processor (j 21) for j

52,3, . . . ,N and Pl 1 ,l 2

LS (r 1 ,r 25 jR/N,t) to processor (j

11) for j 51,2, . . . ,(N21).
The eigenfunctionsfn and eigenenergiesEn for the

ground and low-lying excited states of any two-electr
atomic system may be found by relaxation of the Sch¨-
dinger equation in imaginary time (t5 i t ) @36#:

2
]fn~rW1 ,rW2 ,t!

]t
5Hatomfn~rW1 ,rW2 ,t!. ~13!

For a givenLS symmetry,fn(rW1 ,rW2 ,t) may be expanded in
coupled spherical harmonics resulting in a coupled se
radial partial differential equations. An explicit exponent
time propagator is used to ‘‘relax’’ an initial guess to th
lowest eigenenergy for that symmetry. A spectrum of exci
states may then be built up with successive relaxations w
projection.

The eigenfunctionsxn and eigenenergiesen for the
ground and all bound and continuum excited states of
one-electron atomic system may be found by direct dia
nalization of the time-independent Schro¨dinger equation:

hatomxn~rW !5enxn~rW !. ~14!

For a given orbital angular momentum,xn(rW) may be written
as a product of a radial function and a spherical harmo
resulting in an uncoupled set of ordinary differential equ
tions. Each radial equation is diagonalized on a o
dimensional grid; the same uniform mesh as used for
two-electron atomic system. The number of eigenfunctio
and eigenenergies for each angular momentum equals
total number of lattice points.

After calculation of the two-electron eigenfunction for th
initial atom f0 and the one-electron eigenfunctions for t
final ion, xn , the time-dependent close-coupled equatio
found in Eq.~5! are propagated in real time for the approp
ate LS symmetry and the initial condition:Pl 1 ,l 2

LS (r 1 ,r 2 ,t

50)50. An explicit ‘‘staggered leapfrog’’ approximation
@37# is used for time propagation. The method is ideal
massively parallel computers since it involves only sim
matrix-vector multiplications at each time step. The norm
the wave function continues to grow in a strict linear man
if we adjust the time step to be less than one divided by
eigenvalue with largest absolute value of the discrete Ha
tonian operator.
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To extract cross sections from the time evolved rad
wave functions, we use standard projection techniq
@38,39#. The probability of ionization with excitation to a
bound statenl m is given by

`nl m
LS 5E drW1z^cLS~rW1 ,rW2 ,T!uxnl m~rW2!& z2

2 (
n8l 8m8

z^cLS~rW1 ,rW2 ,T!uxn8l 8m8~rW1!xnl m~rW2!& z2

1E drW2z^cLS~rW1 ,rW2 ,T!uxnl m~rW1!& z2

2 (
n8l 8m8

z^cLS~rW1 ,rW2 ,T!uxnl m~rW1!xn8l 8m8~rW2!& z2.

~15!

The cross section for photoionization with excitation to
bound statenl m is given by

snl m
LS 5

v

I

]`nl m
LS

]t
, ~16!

whereI is the intensity of the radiation field. The probabilit
for double ionization is given by

`dion
LS 5^cLS~rW1 ,rW2 ,T!ucLS~rW1 ,rW2 ,T!&2 (

nl m
`nl m

LS

2 (
nl m

(
n8l 8m8

z^cLS~rW1 ,rW2 ,T!uxn8l 8m8~rW1!xnl m~rW2!& z2,

~17!

while the cross section for double photoionization is giv
by

sdion
LS 5

v

I

]`dion
LS

]t
. ~18!

We note that Eqs.~16! and ~18! relate the cross section to
rate divided by the photon flux.

III. RESULTS

The time-dependent close-coupled~TDCC! equations are
solved for the photoionization of helium in its ground sta
for photon energies ranging from 90 to 200 eV, well abo
the complete fragmentation threshold. We employ two l
tices: one with 2003200 points and one with 400
3400 points. Each radial direction from 0 to 40 is spann
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57 321TIME-DEPENDENT CLOSE-COUPLING CALCULATIONS . . .
by a uniform mesh; on the first lattice the mesh spacing
Dr 50.2, while on the second latticeDr 50.1.

Three coupled channels (l 1l 25ss,pp,dd) are sufficient
to obtain a fully correlated1S ground state of helium on
either lattice. After expanding Eq.~13! in coupled spherica
harmonics, the Schro¨dinger equation in imaginary time ha
the form

FIG. 1. Probability densities for the three channel ground s
of helium, ~a! ss channel,~b! pp channel, and~c! dd channel.
is

2
]Pl 1l 2

00 ~r 1 ,r 2 ,t!

]t

5Tl 1l 2
~r 1 ,r 2!Pl 1l 2

00 ~r 1 ,r 2 ,t!

1 (
l 18 ,l 28

V
l 1l 2 ,l

18l
28

0
~r 1 ,r 2!P

l
18l

28
00

~r 1 ,r 2 ,t!.

~19!

Relaxation of a trial function on the 2003200 lattice yields a
ground-state wave function with probability density
shown in Fig. 1 and with an energy of22.785 a.u. A 400
3400 lattice calculation yields a similar density plot and
energy of22.871 a.u. Further improvements in the absolu
value of the total energy of ground-state helium~chemical
accuracy is22.904 a.u.! could be achieved by smaller mes
spacing and the use of higher-order differencing opera
@40#. However, as will be shown below, it appears that t
initial-state correlation retained in these ground-state lat
wave functions is sufficient for our purposes.

The lattice wave functions for He1 are obtained by direc
diagonalization of the radial Schro¨dinger equation associate
with Eq. ~14!. The bound-state energies for a 200-point an
400-point radial mesh are given in Table I. The box radius
40 only supports spectroscopic states forn<5. The bound
states forn.5 contain some continuum character, where
the low-energy continuum box states contain some bo
character. We note that the total cross-section express
found in Eqs.~15!–~18! require only bound-state projection

te

TABLE I. Bound-state lattice eigenenergies for He1.

nl
Energy~eV!
200 points

Energy~eV!
400 points

1s 252.405 253.890

2s 213.472 213.572

2p 213.652 213.617

3s 26.020 26.040

3p 26.068 26.052

3d 26.049 26.048

4s 23.393 23.399

4p 23.412 23.404

4d 23.403 23.402

4 f 23.402 23.402

5s 22.173 22.176

5p 22.183 22.178

5d 22.178 22.177

5 f 22.177 22.177

6s 21.464 21.464

6p 21.477 21.472

6d 21.483 21.481

6 f 21.494 21.493

7s 20.753 20.749

7p 20.789 20.779

7d 20.833 20.827

7 f 20.897 20.893
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FIG. 2. Probability densities for the six-channel photoionization of helium att5 1
2 T, ~a! sp channel,~b! ps channel,~c! pd channel,~d!

dp channel,~e! d f channel, and~f! f d channel.
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We retain six coupled channels (l 1l 2
5sp,ps,pd,dp,d f , f d) in solving Eq.~5! for the photoion-
ization of ground-state helium. For the 2003200 lattice the
time step isDt50.005, while for the 4003400 lattice the
time step isDt50.001. The total propagation time isT
5 3

2 R/A2(v2D), where D is the single photoionization
threshold. This guarantees that the first photoelectron th
 is

ionized does not have time to reflect from the box bound
R and return far enough to disturb the second electron. F
photon energyv585 eV on the 2003200 lattice, the prob-
ability density is shown in Fig. 2 for the six-channel wav
function at timet5 1

2 T. Thesp andps channels are strongly
dominated by single photoionization, whose density flow
nearing the boundary. Besides monitoring the probabi
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TABLE II. Ratio of photoionization withn52 excitation to
single photoionization for helium.

v
~eV!

TDCC
Dr 50.2

TDCC
Dr 50.1

Experiment@5#
~error!

89.5 8.17% 7.60% 8.17%~0.04!

100.0 7.78% 7.23% 7.63%~0.04!

120.0 7.32% 6.78% 6.96%~0.05!

160.0 6.84% 6.27% 6.39%~0.10!

197.7 6.67% 5.96% 5.91%~0.06!

TABLE III. Ratio of photoionization withn53 excitation to
single photoionization for helium.

v
~eV!

TDCC
Dr 50.2

TDCC
Dr 50.1

Experiment@5#
~error!

89.5 1.56% 1.46% 1.51%~0.03!

100.0 1.41% 1.33% 1.38%~0.03!

120.0 1.24% 1.16% 1.16%~0.03!

160.0 1.06% 0.98% 0.96%~0.04!

197.7 0.98% 0.88% 0.85%~0.04!

TABLE IV. Ratio of double photoionization to single photoion
ization for helium.

v
~eV!

TDCC
Dr 50.2

TDCC
Dr 50.1

Experiment@6#
~error!

Experiment@7#
~error!

90.0 2.12% 1.69% 2.45%~0.04! 1.66%~0.02!

120.0 3.94% 3.59% 3.66%~0.13! 3.26%~0.03!

140.0 4.31% 4.00% 3.91%~0.05! 3.70%~0.03!

160.0 4.52% 4.17% 4.14%~0.06! 3.89%~0.03!

190.0 4.50% 4.23% 4.20%~0.05! 3.97%~0.04!

TABLE V. Ratio of double photoionization to single photoion
ization for helium.

v
~eV!

TDCC
Dr 50.2

TDCC
Dr 50.1

Experiment@8#
~error!

90.0 2.12% 1.69% 1.40%~0.05!

100.0 3.04% 2.65% 2.28%~0.05!

130.0 4.16% 3.84% 3.23%~0.07!

175.0 4.51% 4.22% 3.70%~0.07!

200.0 4.61% 4.22% 3.60%~0.08!
density, we also calculate the probabilities`nl m
10 and`dion

10 at
intermediate times. After an initial turn on from zero, all th
probabilities become a linear function of time fort. 1

2 T. The
slopes are extracted and the cross sections are comp
from Eqs.~16! and ~18!.

Cross-section ratios for photoionization with excitation
helium are compared with a recent experiment by Weh
et al. @5# in Tables II and III. The ratios are found from
summing over the degenerate levels for eachn and then are
expressed as a percentage of the single photoionization c
section at that photon energy. Although the 4003400 lattice
calculations are slightly under experiment at low energi
the agreement by 200 eV is quite good. The many-body p
turbation theory results of Chang@9# cross our 4003400
lattice calculations around 120 eV, being slightly higher
low energies and slightly lower at high energies.

Cross-section ratios for double photoionization of heliu
are compared with the recent experiments of Levin, Arm
and Sellin@6,7# and Dorneret al. @8# in Tables IV and V.
Although the 4003400 lattice calculations agree quite we
with the experiments of Levin, Armen, and Sellin@6#, they
are about 15% higher than the experiments of Dorneret al.
@8# and the more recent experiments reported by Levin@7#.
All the time-independent close-coupling calculations@25–
28# lie between the Levin, Armen, and Sellin@6# and Dorner
et al. @8# experimental measurements.

All the time-dependent close-coupling results presente
Tables II–V were calculated in the length gauge of Eq.~10!.
Spot calculations at 89.5 and 200 eV in the velocity gauge
Eq. ~11! on both lattices produced cross-section ratios in
cellent agreement with the length gauge results. It appe
that the lattice calculations are almost gauge invariant.

IV. SUMMARY

Overall the time-dependent close-coupling calculatio
for the photoionization of helium agree well with the rece
synchrotron light experiments. Improvements in the accur
of these test calculations can be made by a combinatio
smaller lattice spacing, higher-order differencing, and lar
boundary radius. Convergence studies are now possible
the most powerful massively parallel computers~like the
Cray T3E!. In the future we plan to apply the time-depende
lattice method to study photoionization of excited-state H
as well as ground-state H2 and Li1. Inclusion of the radia-
tion Hamiltonian in the time evolved wave function, alon
with the incorporation of fast electron absorbing bounda
conditions, may also allow a detailed study of correlat
multiphoton absorption processes in atoms.
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