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Pulsed field ionization of Rydberg atoms

F. Robicheaux
Department of Physics, Auburn University, Auburn, Alabama 36849
(Received 27 February 1997

Fully quantum and classical trajectory Monte Carlo calculations are performed for a Rydberg alkali-metal
atom that is kicked by a pulsed electric field. The two calculations are compared to recent experimental results
through the ionization probability versus peak field strength. The energy distributions of the final electrons are
compared between the two calculations. There is a qualitative difference between the classical and quantum
momentum distributions which is measurable in principle. An experiment to detect the time-dependent pre-
cession of the orbital angular momentum in Cs is also propd&id50-294®7)51211-X|

PACS numbsgs): 32.80.Rm,32.60ki

Recent experimental and theoretical work has exploredhighly accurate method. With the accuracy that can be ob-
the dynamics of Rydberg alkali-metal atoms that are subtained, one could directly measure the precession of the or-
jected to a kick from a unidirectional, pulsed electric field bital angular momentum in a Cs atom in thep2state.

[1-13. The pulses in these experiments are typically short This method for measuring a component of the momen-
compared to the Rydberg period of the electron. In this casdUm distribution of a Rydberg electron has used the idea that
the electric field kicks the electron giving it an impulse in the Within the impulse approximation the electron’s change of
field direction. Approximately, the only effect of this im- €nergy iSAE=App,+Ap?/2 whereAp is the impulse(as-
pulse is to change the electron’s momentum in the field diSumed to be in the direction given to the electron. If the

rection by an amoumﬁ. This changes the electron’s energy change in energy is greater than the binding energy

by an amount that depends on the momentum at the time (#155: —1/2/), the electron will leave the atom. This means
y P at the percentage of the atoms ioniz€{p,), equals the

the pulse:AE=Ap-p+(Ap)?/2. The electron may or may percentage of the electrons with tagomponent of the mo-

not escape the atom, depending on whethEris larger or - mentum larger thap,= (1/v>— Ap?)/2Ap. The experiment
smaller than the binding energy of the initial state. This situ-measures

ation is in stark contrast to the dynamics in a static electric
field where no states are bound, but the only question is, how
fast does the electron tunnel and leave the atom?

In all of these papers describing kicked Rydberg atoms,
the theoretical work has been restricted to classical calculawhere D(p,) is the probability density for the electron to
tions or to fully quantum calculations for states m&17. have momentunp, and to have any value fgs, andp, .
The classical calculations are performed by generating a disFhe probability density may be obtained by differentiation of
tribution of trajectories with properties similar to the quan-the measured(p,):
tum state that is being kicked. The percentage of trajectories
at positive energy after the kick is generally in very good D _ dP(p,)
agreement with the experiments. This is not too surprising ()= dp,
since the initial state is a high Rydberg state and relatively
little information about the final electron distribution is mea- This simple step points to the main difficulty in measuring
sured. We might expect that the dominant quantum effect¢he z component of the electron’s momentum distribution:
interference and tunneling, play a minor role in these meaany experimental errors in measuriR§p,) become magni-
surements. It is the main purpose of this paper to directhfied when taking the difference that is needed to obtain
compare fully quantum and classical trajectory Monte CarloD(p,). In Ref.[13], Jones showed that this method for mea-
calculations to test the accuracy of the classical method. Thisuring the momentum distribution works well enough to
will provide guidance as to what sort of accuracy needs to beneasure the oscillation of a wave packet on an atom. But it
obtained in order to measure the difference between classicalust be remembered that these equations are approxima-
and quantum mechanics in this system. tions. One purpose of this paper is to compare the exact

The second purpose of this paper is to address the internomentum distribution to the distribution that would be
esting measurement scheme proposed by Jdi##sIin Ref.  measured in a perfect experiment similar to Réf]. For
[13], it was shown how a pulsed electric field could be usedhis purpose, the time-dependent equations are accurately
to measure a component of the momentum distribution of @olved numerically to obtain the ionization probability after
Rydberg state. Another secondary purpose of this paper is tine pulse; the parameteyp,) and —dP(p,)/dp, are then
show that the measured momentum distribution could be itompared. In fact, it is possible to distinguish between clas-
better agreement with the actual distribution than was indisical and quantum momentum distributions.
cated in Fig. 1 of Ref[13]. The method proposed by Jonesis  The quantum dynamics reduces to finding the solution of
a difficult method to implement but could, in principle, be athe time-dependent Schiimger equation for one electron

P(pz>=wa<p;>dp;, @

Pz

@
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with a time-dependent Hamltonian given Wy(t)=H.,  distancer;, so thatall of the radial functions have the prop-
+F(t)z. Hyom is the effective one-electron atomic Hamil- erty R, (r¢) =0. With this condition, there is no continuum;
tonian for the Rydberg alkali-metal atom amdt) is the there are only discrete states. For lawthis condition does
pulsed electric field. For all of the calculatio®qt) was not perturb the quantum states. Buteisicreases, eventually
chosen to have the forni(t)= Fpea,gxp[—4ln(2)t2/ 7] the states can reach and these states become perturbed. As
whereF .. is the peak field strength andis the full width  n increases further, eventualky, . becomes greater than 0
at half maximum(FWHM) of the pulse. The initial time in and a whole sequence of discrete states in the positive-
the calculations was chosen to tbe — 37 and the final time  energy continuum is generated.

was t=37; with these choices the electric field has not The cutoff radius is chosen to be large enough so that the
turned on yet at the initial time and has completely turned offinitial state is easily contained withiry ; the initial state is

at the final time. At the initial timel is set equal to the not perturbed byR,,,(r;)=0. Ther; must also be chosen to
initial state, ¥ (r, —37)= ¢|(F)- be large enough so that none of the wave function hits the

We solved Schiinger's equation by expandir@(ﬁt) boundary before the pulse turns off. This condition is re-

into a basis set of radial functions times spherical harmonicuired because otherwise the final energy distribution of

The radial functions were eigenstates of the radial atomi€iectrons is changed. For the calculations pres_ented h_pre,_
as chosen to be 2500 a.u. The number of basis functions in

Hamiltonian such that all of the functions go to zero at some" , .
fixed radial distancer;. The radial potentiaV (r) is a each/ was 140-/ and the maximum” was 100. It was

model potential that was used to give the correct quantunf€Cessary to go to large because2 the impulse can give an
defects in the Rydberg region; none of the calculated quari"z‘m-:]UIar _momentum O'fmév}Ap:,ZV Ap to. thg electron; for

tum defects differed from the experimental ones by mordh® maximum field used in this study this gives a maximum
than 0.002. The second derivative inwas approximated angular momentum of 100. If the maximum angular momen-

using a five-point differencing method with the radial meshtum.iS not Iarge enough, the electron will “reflect” from the

points on a square-root mefb4|. The radial orbitals could _ba”'ef to excite high angular mome.ntL(mpres.ented_ by not

be obtained efficiently using a relaxation technique so thaPC!Ud'n?f.h.'gh Ian%ular momtlant!;mhm the _basmd W'Hant

the calculation of orbitals and Hamiltonian matrix elements'©niZ€ efficiently. For example, If the maximum angular mo-

was a negligibly small part of the calculation. mentum is reduced te-50, the ionization probability at 20
Since the wave function is expanded in an orthonormalV/cm is reduced by a factor of 2.

basis set, it is only necessary to time propagate the coeffi- The calculation of the ionization probability can be per-
cients. TheC,,(t) are defined by formed using the coefficients, (37). The ionization prob-
. n/

ability is simply the sum of the probabilities to be in each of
the positive-energy states:

V(D=2 RoAN)Y, m(Q)Co (DI (3
— 2
The coefficients are solutions of the equation P_nZ‘ Co (377 for  €,>0. )
dC, At
n/( )z —j E Hn/nr o (1) Crr (1), (4) To obtain the distribution of final energies it is only neces-
at n'/’ sary to calculate the probability for being in a state in a

certain energy range. In these calculations the highest-energy
basis function had energy 0.01 a.u. which is roughly double
_ A oln? /1 the energy of the highest-energy electron after being kicked
i /(0= €n/ G 0+ FO(N/ 7). (9) by a 20-kV/cm half cycle pulse.
The dipole matrix elementén/|z/n’/") were calculated The classical calculations were performed by numerically
numerically using a fifth-order integration scheme; the ma=solving the classical equations of motion for an electron with
trix elements between afl,” andn’,/ =1 were computed random initial conditions that match the quantum state. All
to ensure the accuracy of avoided crossings between diffeffajectories start with energy equal to the binding energy of
entn manifolds. A nice feature of this Hamiltonian is that it the 2%l state of Na and all trajectories start with total angular
is block tridiagonal, so that a very large number of basismomentum equal to 2.fthe semiclassicati-wave angular
functions may be used without encountering storage probmomentum and withm=0. The random conditions on the
lems on a workstation. This simple form obtains because wérbit are obtained by starting(t;) =r,cosy, y(t;)=0, and
chose our basis set to be eigenstates of the atomic Hami(t;) =roSiny, wherer, was always the outer radial turning
tonian with zero field. The time propagation in H¢) was  Point, y is a randomly chosen number between 0 and 2

where the Hamiltonian matrix elments are

performed using the staggered leapfrog algorithm with a flat distribution, andj= —37—B7ryy (7rya is the
Rydberg period ang is a randomly chosen number between
C(t+68t)=C(t—8t)—2i StH(t)C(t), (6) 0 and 1 with a flat distribution The initial velocity is com-

pletely determined by the initial position; andE, depend-
which is fairly accurate and easy to implement because it i#ng on whether the angular momentum in telirection is
an explicit method. positive or negative; the sign of thg component of the
The most important idea that enables the calculation ofingular momentum was chosen randomly for each trajectory.
the ionization probability has been glossed over. The trick isThe flat distributions in3 and y automatically produce the
that the radial functions are obtained within a finite radialcorrect distribution inr, p,, and ¢ at the true starting time
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t=—37. The codes were run for each of 100 different peak  ;,

field strengths. After the field was off &t 37, the energy of

the electron was determined. The probability for ionization

was obtained by finding the percentage of the trajectories 08

that finished at positive energy. The energy distribution was

obtained by finding the percentage of trajectories with ener-

gies betweelk — §/2 andE + 6/2. The classical and quantum

final energy distributions were the same for the large value of

6 that would be expected in an experiment. 04
Putting a reasonable bin of trajectories around the values

of E, |L|, andL, (instead of using only the quantum valuies

06 |

does not change any of the qualitative features of the classi o2

cal momentum distribution in the direction. A reasonable

bin in energy would extend from the average of thel 24d 00 5 10 5 20
25d energies to the average of thed2&nd 2@l energies; F eaKV/CM)

since the momenta scale likenlthis would make a change
in the momentum distribution of less than 2% FIG. 1. lonization probability versus peak field for a 0.5-ps
([1/2]X[1/25]). A reasonable bin ih., would extend from  FWHM pulse. Solid line, experimental results of RgL3]]; dotted
—1/2 to 1/2. The momentum distribution in thxedirection line, quantum calculation;. dashed line, classical trajectory Monte
for L,#0 can be exactly obtained from the distribution for Carlo calculation.

L,=0 by dividing theL ,= 0 distribution by sia and chang-
ing the scale op, by a factor of sim, whereq is the positive
angle between the angular momentum vector and theis;

since sifa=1—L%L?, the change in the distribution is less
than 2% (1/8]x[1/2.5]). A reasonable bin if[| would  WNEre coB=p;/\p;+p, andp=yp;+p; and

D(p,) =4 fOxIY/,m(cosep,O)leﬁ/(p)ppdpp, 8

extend betweefiL|+1/2. The main change in the momen- 2
tum distribution in thez direction arises from the change in Qn/(p)=J JA(pr)Ry(r)rdr. C)
the eccentricity of the orbit because the change in the radial 0

velocity is negligible over most of the orbit; since the changeBoth the classical and quantum measurements were per-

in the eccentricity isE times the change ih?, this gives @  formed using a 500-fs FWHM pulse electric field. There
change in the distribution of less than 1%. were runs for 100 equally spaced peak field strengths from 0
The main results of this paper relate to the behavior of theg 20 kv/cm.

25d m=0 state of Na kicked by a 500-fs electric-field pulse.  Several interesting features of these distributions are ap-
The dynamics of the system for 100 peak field strengthgarent. The most interesting is the qualitative difference be-
between 0 and 20 kV/cm are obtained and used to “meagpyeen the classical and quantum distributions mear0: the
sure” the z component of the momentum distributions, asclassical distribution has a minimum and the quantum distri-
suggested by Jones. This is the same system used in Refution has a maximum. This difference arises from the con-

[13]. _ o structive interference at,=0 for all states, such that+m
In Fig. 1, the experimentally measured ionization prob-

ability versus peak field strength is shown with the solid line,

and the theoretically measured probability is shown with the
dashed line for the classical calculation and the dotted line
for the quantum calculation. It is clear that all three of these
curves are in substantial agreement with each other. This
shows that the basic mechanism for ionization is correctly 50 |
described in both the quantum and classical calculations.
However, this is an integrated parameter. The differential
parameteD (p,) shows a qualitative difference between the

guantum and classical calculations.

In Figs. 2 and 3 are presented the main results of this
paper. In Fig. 2, the classical momentum distribution for the
25d state is shown with the solid line and the measured
distribution[using 16 classical trajectories per field and Eq.
(2)] is shown with the dashed line. In Fig. 3, the quantum
momentum distribution for the 2bstate is shown with the
solid line and the measured distributignsing n,,,= 140
and/ ma=100) is shown with the dashed line. The quantum  FIG. 2. Solid line, classical momentum distributibr{p,) in the
momentum distribution in the direction (with p, andp,  z direction;, dashed line, classical momentum distribution inzhe
anything for ann/m state is given by direction as “measured” using dP(p,)/dp,.
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75 : made using equal steps in the peak field strength. At the
higher fields, this results in smaller stepspjy. The statisti-

cal noise in going from onp, to the next is enhanced. In the
qguantum distribution there is an oscillation d(p,) for
negativep, whose source is completely unknown. This os-
cillation does not appear to be a numerical artifact: different
runs with/,,x increased by 20%, a1, increased by 20%,

or r; increased by 20%, oft decreased by a factor of&l
gave exactly the same results.

This interference effect in the quantum distribution is ex-
perimentally measurable, in principle, but of course the mea-
surement will be difficult. For example, in the experiment of
Ref.[13], the initial state, thg = 3/2 state, was excited; this
would wash out the interference effectgt=0 because the
j=3/2|mj|=1/2 has bothm=0 and|m|=1. One then might
consider how to enhance this effect. One possibility would
be to excite a Csp state wheren~20— 30, with a pulsed
laser that has a pulse time much shorter thatXE, where
AE is the energy splitting of theaps, andnp,,, states. For
n=27, 2o/AE=61 ps. If this excitation occurs with light
linearly polarized in thez direction, the atom will be in a
superposition ohps, and np,, states such that the spatial
part of the packet will be purelyn=0. Since/+m is odd,
the momentum distributio® (p,) will go to 0 atp,=0. But
after a timew/AE, the spatial part of the wave function will

1 be 89% in anm=1 or m=—1 state. Since”+m is even,
D(O)=4|Y/m(cosﬂzo,¢=0)|2<—>, (100 the momentum distribution will constructively interfere at

P p,=0 and thus be substantially above the classical value. A
bonus is that the precession of the orbit about the spin will be
directly measurable.

(2/+1)(/+m)(/—m)! 1+(_1)/+m/ 1 In conclusion, classical and quantum calculations were
= YIUN, 5 \—> performed for the Na 2b m=0 state kicked by a 500-fs

29(/N)°m P electric-field pulse with peak field strengths from 0 to 20
(11) kV/cm. It was shown that good agreement with experimen-

Of course, the classical distribution does not have this propt—""IIy measured ionization probabilities could be obtained.

erty. For the 28 m=0 state, the constructive interference Preorhgsesé rgorﬁomoggﬂy}n't V:iﬁii Slgoggtitr:]ajiéﬂeb?t\e;ggg
causes a very large maximumm@t= 0, whereas the classical prop y P p 9

distribution has a minimum. The important point of this dis- duantum and classical distributions. This method would al-
tribution is that it is measurable in principle, using Jones’slow the direct measurement of the orbit’s precession about

method. The measured classical distribution shows a dip :'H]e spin in Cs.

p,=0, while the quantum distribution is clearly peaked. | greatly appreciate experimental data given to me by
Another interesting feature is the noise in the classicaR.R. Jones and enlightening conversations with him. This

distribution at negativep,. This arises because the runs arework was supported by the NSF.
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FIG. 3. Solid line; quantum momentum distributi@(p,) in
the z direction; dashed line, quantum momentum distribution in the
z direction as “measured” using-dP(p,)/dp,.

is even. When’+m is odd, there is destructive interference

and the distributiorD(p,=0)=0. This can be seen in Eq.
(8) where the distribution ap,=0 is given by

which equals

D(0)
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