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Differential cross sections in the ejected energy for ah. =0 model
of the electron-impact ionization of hydrogen
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A calculational procedure is formulated for extracting differential cross sections in the ejected energy from
a time-dependent wave-packet method for the electron ionization of hydrogen. The procedure is applied to an
s-wave model for electron-hydrogen scattering. In contrast to recent time-independent methods, the differential
cross sections are found to be smooth and symm¢8i050-294{@7)08706-4

PACS numbds): 34.80.Dp

In the last year a time-dependent wave-packet method hake outgoing linear momenta of the two electrons following
been employed to calculate the total cross section for thénization, the differential cross section in ejected energy is
electron-impact ionization of hydrogefl,2]. The time- given by
dependent results are in excellent agreement with both ex-
perimental measurement8] and recent time-independent 2000
close-coupling calculatior{g—6]. In this paper we formulate
a calculational procedure for extracting differential cross sec :
tions in the ejected energy from the time-dependent wave 1500
packet method. The formulation is based on an extension ¢ :
an idea by Bottchef7]. We then apply the procedure to
calculate singlet and triplet differential cross sections for the o000 §
Temkin-Poet mode[8,9] of electron-hydrogen scattering.
The specific application is in response to discrepancies foun t
between two different time-independent close-coupling cal- s00 §
culations for the singlet differential cross sectidi®]. :

The time-dependent Schrodinger equation for the

Temkin-Poet model is given bfin atomic unit$ 00
0.0 50.0 100.0 150.0 200.0
n
. al//(rlar21t)
! T:H(rl,rz)lﬂ(rl,rz,t), oy

where the time-independent Hamiltonian is

’ B 16 167 1 1+1 )
(ry,rp)= 2o 2l 1y, 2

andr- =max(,,r,). We solve this time-dependent equation
on a two-dimensional lattice using an explicit leapfrog
propagatof2]. At timet=0 the wave function is constructed
as a symmetric product of an incoming radial wave packe
for one electron and the lowest-energy bound stationary stal
of the other electron. Cross sections may be extracted fror
the wave function at a time=T following the collision. The
(rq,r,) plane may be divided into angular segments speci
fied by the hyperspherical anglen, where tang)
=(r,/ry). The differential cross section in the hyperspherical
angle is given by7]:

)
lim= [(ry,r5,T)|2drdry, (3

a_ 4kg 5*)05

do  m(25+1) 1J'a+(5/2
a=(8l2)

. ) ) FIG. 1. Probability densityy(r,,r,,T)|? following a S colli-
whereS is the total spin angular momentum akglis the  sion at 54.4 eV. At the top is a contour map in thg ¢,) plane,
linear momentum of the incident electron. Since in the long-while the bottom is the corresponding 3D projection. The radial

time limit we also have tam)=(k,/k;), wherek,; andk, are  coordinates are in atomic unif$ a.u=5.29x10"° cm).
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FIG. 3. Probability densityy(r,r,,T)|? following a S colli-
sion at 54.4 eV. At the top is a contour map in the,f,) plane,
while the bottom is the corresponding 3D projection. The radial
coordinates are in atomic unité a.u=5.29x10"° cm).

FIG. 2. Probability densityQu(r,r,,T)|? following a S col-
lision at 54.4 eV. At the top is a contour map in thg (,) plane,
while the bottom is the corresponding 3D projection. The radial
coordinates are in atomic unité a.u=5.29x10"° cm).

This projection operator is constructed so tQat is a func-

d_‘T: i d_" (4) tion of (r,r,), in which neither electron is in a bound state.

de kik; da’ The single-particle bound eigenfunctioRg(r) are obtained
where e=k3/2,E=(k§/2)+1,=(Ki/2+ (k3/2) is the total by diagonalizing h(r)=—3(¢%/r®)— (1) on a one-
energy and I, is the ionization potential of the target dimensional lattice. In practice, the double bound-state term

] ] ] on the right-hand side of E@5) makes little contribution.
To make accurate calculations of the differential cross sec- The dramatic effect of the projection operator is illus-

tion for small(a~0) and large(a~n/2) angles, we choose to  trated by comparing Figs. 1 and 2. We employ & pint
replace the total wave functiop(r,,r,,T) found in EQ.(3)  |attice with a uniform mesh spacing in both andr, of
by a pure double-continuum wave functi@(r,,r,,T).  Ar=0.2, which corresponds to a box size Bf=200. At
The projection operatd@ needed to extract only the double- time t=0 the symmetric'S wave packet is centered at
continuum part of the total time evolved wave function is R/2=100. At timet=T=100, following a collision with an

given by incident electron energy of 54.4 gVelocity =2.0), the total
probability density| 4(r,,r,,T)|? is shown as a contour map
=1— P (r OWP(r)]— P (r)\WP.(r and a three-dimension&BD) projection in Fig. 1. In sharp

Q ; [Pr(r1))(Pa(r)| ; [Po(r2))(Pa(r2)| contrast the total probability densityfQu(rq,r,,T)|? is

shown in Fig. 2. In the figures the probability density is

+ P (rOPrIMP(rOPA(r)]. 5 moving toward the upper right-hand corner in the contour
; ; [Pm(11)P(r2) KPr(11)Pa(r2)] ©® map, and toward the lower left-hand corner in the 3D pro-
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FIG. 5. Singlet differential cross section in the ejected energy
for a collision at 54.4 eV. The five lines are successive calculations
at larger box sizes. 1 Mb is 18® cn? and 1 hartree is 27.212 eV.

represents an equal energy sharing of the outgoing electrons,
finite for singlet scattering, but zero for triplet scattering. The
peaks of the distribution represent the ejection of one slow
electron and one fast electron. The fast electron sees a neu-
tral atom, while the slow electron “feels” a 1/r attractive
Coulomb potential. Although the fast electron may be out
near the box radius, the slow electron is in closer, and still
feels a sizeable force. AR— o« the cross section peaks will
merge into the walls of the figures to yield symmetric curves
with no structure.

Recently two different close-coupling calculations have
reported[10] singlet and triplet differential ionization cross
sections for the Temkin-Poet model at an incident energy of
54.4 eV. Both theR-matrix with pseudostates method and
the converged close-coupling method are time-independent
. _ ) ) 3 scattering treatments utilizing explicit boundary conditions
Iisi('):r:i.tg 4T%k37b£'tt¥hietg?t%§g(cglr{tr éd:iagoz:)\;vrg?(rj) ?Iggle- to extract theS matrix and thus cross sections. The time-

' ' ' dependent wave packet and time independent close-coupling

while the bottom is the corresponding 3D projection. The radial co- lculati . t 1o the total ionizati
ordinates are in atomic unitd a.u=5.29x10° cm). calculations are in agreement as to the total ionization cross

jection as a function of increasing time after the collision. 1
Essentially the large peaks along the axes, representing elas-
tic scattering and inelastic excitation to bound states, have
been eliminated. Note that the contours have been rescaled
between the figures so that absolute heights cannot be com-
pared. For the same scattering parameters, the effect of the
projection operator on the antisymmetrd8 wave packet is
found by comparing Figs. 3 and 4.

The singlet and triplet differential cross sections in the
Temkin-Poet model of electron-hydrogen scattering are
shown in Figs. 5 and 6 for an incident electron energy of
54.4 eV. The five lines in each figure represent five succes-
sive calculations on larger lattices. The mesh spacing is kept
fixed at Ar=0.2, while the box size is increased froR 0 ; ; . ‘
=100 to 500 in steps of 100. For singlet scattering the total 0 0.3 0.6 0.9 1.2 1.5
ionization cross section is found to be the same value of 1.38 Energy (hartree)

Mb for each successive calculation, while for triplet scatter-

ing the total cross section is a constant 0.30 Mb. The con- FIG. 6. Triplet differential cross section in the ejected energy for
tinual spreading of the cross-section peaks is due to the longr collision at 54.4 eV. The five lines are successive calculations at
range Coulomb interaction. The center of the distributionlarger box sizes. 1 Mb is T0% cn? and 1 hartree is 27.212 eV.
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sections for singlet and triplet scattering. At least in the curmetric aboutE/2, in contrast to recent results from time-
rent formulations, the time-independent close-couplingndependent close-coupling methods. In the future we plan to
methods produce asymmetric differential cross sectionsextend our differential cross-section calculations to lower in-
which go to zero for energies greater thBf2. This is in  cident energies to gain further insight into the threshold law
sharp contrast to the symmetric results found in Figs. 5 and €r the electron ionization of atoms.
for the time-dependent wave-packet method. The discrepan-
cies found between the two time-independent close-coupling
calculations for the singlet differential cross section, and the We would like to thank Dr. Igor Bray of Flinders Univer-
report of remarkable structure, may be due to an unphysicality for his encouraging us to examine the differential cross
cutoff of the nonzero cross section Bf2. section in the ejected energy for the Temkin-Poet model. In
In summary we have made use of a projection operator tthis work, M.S.P. was supported in part by a NSF Grant
extract differential cross sections in the ejected energy for @&NSF-PHY-9122199with Auburn University, and F.R. was
time-dependent wave-packet method for electron-atom scasupported in part by a NSF Young Investigator GrasSF-
tering. The wave functio®# represents the double-electron PHY-9457903 with Auburn University. Computational
continuum and may be graphically displayed in the,(,)  work was carried out at the National Energy Research Su-
plane as found in Figs. 2 and 4. The differential cross secpercomputer Center in Livermore, California and the
tions obtained usin@¢ are found to be smooth and sym- Center for Computational Sciences in Oak Ridge, Tennessee.
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