PHYSICAL REVIEW A

VOLUME 52, NUMBER 5

Radiative damping and interference in the resonance structure
of the electron-impact excitation cross sections for Ti***

T. W. Gorczyca, F. Robicheaux, and M. S. Pindzola
Department of Physics, Auburn University, Auburn, Alabama 36849

N. R. Badnell
Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 ONG, United Kingdom
(Received 28 March 1995)

We have performed R-matrix calculations for the electron-impact excitation of a highly charged ion in which
an optical potential is included to allow for radiative damping of intermediate resonance states. The present
case considered is that of electrons incident on Ti?®* ions. Comparisons with undamped R-matrix calculations,
distorted-wave calculations, and experimental measurement are made. The radiative optical potential accounts
for significant damping of high-n resonances. Configuration interaction between resonances, which is auto-
matically incorporated in the R-matrix method but usually omitted in the implementation of distorted-wave
techniques, was found to increase the resonance contributions considerably. Our radiative-damped R-matrix
cross sections show fairly good agreement with the resonance profile obtained from electron beam ion trap
measurements [S. Chantrenne et al., Phys. Rev. Lett. 69, 265 (1992)]. This system demonstrates the necessity
for simultaneously including radiative-damping and interfering-resonance effects within electron—highly
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charged ion scattering calculations.

PACS number(s): 34.80.Kw

I. INTRODUCTION

The collision of electrons with atomic ions constitutes a
fundamental process in laboratory and astrophysical plasmas.
Electron-impact excitation cross sections in particular serve
as important diagnostics for determining the temperature and
density of a plasma [1,2]. This excitation may be signifi-
cantly enhanced by resonance processes [3], whereby the
target ion is excited, temporarily captures the incident elec-
tron into the resonant state, and then autoionizes. There are
two important phenomena that affect the determination of
this resonance contribution. The first is radiative damping
[4]. When the temporary resonant state, consisting of the
target ion plus incident electron, is formed, there is also the
possibility that a photon can be spontaneously emitted. This
leads to a reduction in the resonance contribution seen in the
excitation cross sections, since the captured resonance state
has this radiative decay pathway in addition to the autoion-
ization pathways to the ground or excited continua. At lower
ionization stages, this radiative rate A, is typically several
orders of magnitude lower than the autoionization rate A,
so that this effect is negligible. But as the residual charge Z
on the target ion increases, the radiative rate, which scales
like Z* for An>0 core transitions, eventually becomes com-
parable to the autoionization rate, which does not scale with
Z. Thus the inclusion of this alternate decay pathway is es-
sential when studying excitation of highly charged ions.

A second important phenomenon is interference. In gen-
eral, the resonance process due to capture into one autoion-
izing configuration cannot be considered independent of ei-
ther the direct excitation process or the capture into a
neighboring resonance state. In the first case, the interference
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of a resonance with the direct, or background, cross section
can lead to an asymmetric profile [5]. The effect of this type
of interference in most cases disappears when the cross sec-
tion is thermally averaged. Interference between two adja-
cent resonances, on the other hand, may have a drastic effect
on the resonance profile. The two may interfere through a
common continuum, but this requires a small energy separa-
tion, and is of order V? in perturbation theory (V is the
electron-electron interaction potential V=1/r,). More im-
portant is the direct configuration interaction (CI) between
two resonances, which is of order V and can be appreciable
even when the resonances do not completely overlap. A re-
cent study of excitation in Mg-like ions [6] showed that in
some cases, CI effects lead to huge enhancements in the
resonance profile. Interference through a common continuum
was not appreciable, however.

One method often used to calculate the resonance contri-
bution to electron-impact excitation is the independent-
processes isolated-resonance distorted-wave (IPIRDW) ap-
proximation [7—10]. In this perturbative method, inclusion of
radiative-damping effects is straightforward. However, the
interference effects discussed above, while possible to in-
clude for two selected resonances [6], are difficult to imple-
ment within a general scheme for complete Rydberg series.

The R-matrix method [11,12], on the other hand, uses a
close-coupling formalism whereby all orders of interference
are automatically taken into account. The only drawback to
this method had been that the existing formulation for in-
cluding radiative damping [4] was either impractical for
complex cases [13] or incomplete [14,15]. Recently, we have
outlined a general formulation for the inclusion of radiative-
damping effects in the close-coupling equations [16]. It was
shown how this R-matrix method, using a radiative optical
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potential, was successful in calculating cross sections for di-
electronic recombination and photoionization of certain
atomic ions. The primary purpose of this paper is to investi-
gate the use of this method for radiative damping of reso-
nances in the electron-impact excitation of highly charged
ions, in a case where interference effects are expected to be
important.

The collision of electrons with heliumlike Ti®"™ ions rep-
resents a relatively simple system for which the inclusion of
both radiative-damping and interference effects are required.
The residual charge Z=20 is so large that the radiative decay
rates of resonances are comparable to the autoionization
rates. And since there are multiple Rydberg series, resonance
overlap is inevitable. Measurements of the excitation cross
sections for electrons incident on Ti?** have been performed
at the Electron Beam Ion Trap (EBIT) [17]. These results
were compared to distorted-wave calculations [18], and cer-
tain discrepancies between the theoretical and experimental
resonance profiles were noticed. We reinvestigated this col-
lisional excitation process in order to see whether or not
interference effects, which were omitted in those calculations
[18], could be attributed to the existing discrepancy between
theory and experiment.

The remainder of the paper is organized in the following
manner. In the next section, we outline the present numerical
techniques used. Specifically, we describe the inclusion of
radiative damping within the present R-matrix calculations,
and discuss the CI between resonances within the distorted-
wave method. We then present a results section which com-
pares (1) R-matrix calculations with and without radiative
damping, (2) distorted-wave calculations with and without
CI between resonances, and (3) radiative-damped R-matrix
calculations with the EBIT experiment. We conclude with a
summary of the present work.

20+

II. NUMERICAL METHODS

Our present method for treating electron-ion collisions
utilizes the R-matrix method [11,12]. Specifically, we use the
latest version [19] of programs coded for the Iron Project
[20]. These codes utilize an intermediate coupling scheme to
incorporate a Breit-Pauli Hamiltonian into the R-matrix
method [21,22], which allows for the inclusion of spin-orbit,
mass-velocity, and one-body Darwin potentials. The portion
of this computer package known as STGF [23], which com-
putes the final R-matrix, and calculates the outer-region so-
lutions using asymptotic methods of Seaton [23-25], has
been extensively modified to include a nonlocal, energy-
dependent radiative optical potential [16]. The R-matrix is
first obtained by computing eigenvalues €, and eigenvectors
of the full Hamiltonian, yielding the following expression at
all values of the energy E:

1 Wi W
_ iaVja
R(E)= 2Va2 - _F (1)

a €4

Here w;, are the values of the channel eigenvectors on the
surface of the R-matrix “‘box,” r=r,, which is chosen to be

large enough that all of the atomic orbitals required for the
target states are contained within this region. Outside of the
R-matrix box (r,<r<=), the wave function is instead a
solution to the asymptotic equations

1 d> Z(/i+1) Z kP
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The residual charge Z is equal to the net charge on the ion,
and the potential V;;, in the absence of the radiative optical
potential, takes the simplified form

_ a O
Vi(r)= 2, 57T &)

where the C%, are long-range potential coefficients. Perturba-
tive methods are used to solve this equation at every energy
E [23-25]. The zeroth order solutions are obtained by ne-
glecting the interaction potential V;;, yielding Coulomb
functions. For open channels (k,-2/2>0), the regular [s;(r)]
and irregular [¢;(r)] Coulomb functions are linearly inde-
pendent solutions to these equations. For closed channels
(k?/2<0), on the other hand, the physically allowed solu-
tions are given by the exponentially decreasing function [26]

o(r)=r"e 7" B,r" . @)

Here v is the effective quantum number defined by
k*=—2Z?%/v?, the coefficients B,, are computed by standard
asymptotic recurrence relations, and the overall normaliza-
tion is such that [ :: #%(r)dr=1. Another quantity of interest
which is easily computed from Eq. (4) is the energy deriva-
tive of 6(r):

do(r)

0'(n=—3g

®)

The zeroth-order solution matrix F;;(r) has n, rows and n,
columns, where n, is the total number of channels, and n,, is
the number of open channels. It can be written as

(S(r)+0(r)Koo)
F(r)= s

601 K. (©)

which defines the physical reactance matrix K,,. The first-
order solutions are obtained using standard Green’s function
techniques [23,26]:

Fpe”(r)=F(r)+ij(r,r’)V(r')F(r')dr’ . @)

The Green’s function takes the form
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G(r,r’)=( 0

c(r)s(r')—s(r)e(r')

0
0'<r)0<r')—o(r>o'(r'>)' ®)

For the particular case of a diagonal potential, each closed-channel solution 6(r) is perturbed as follows:

Hpe"(ra)=0(ra)( 1- fmdr’é)’(r’)V(r’)H(r')) +0’(ra)jwdr’ﬁ(r’)V(r’)B(r’) . ©)

One appealing aspect of using 6 and 6’ is that they are both
exponentially decaying functions at large r, so the integrals
appearing in Eq. (9) are well behaved. The regular and ir-
regular Coulomb functions for closed channels, on the other
hand, diverge exponentially as r— o, and therefore give rise
to numerical problems in evaluating the integrals in Eq. (7).

When the closed-channel energy becomes small, however,
the radius at which Eq. (4) can be used to evaluate the
6(r) and 6'(r) functions diverges, and so the regular and
irregular functions are used instead. From these, the expo-
nentially converging and diverging functions

3\ — 12
e_(r):(T) [s(r)cosmv—c(r)sinmv], (10)

3\ 112
e+(r)=(T) [e(r)cosmv+s(r)sinTv] (11)

replace 6(r) and 6'(r). They are evaluated at r=r,, and
integrated outward to a sufficiently large radius that the per-
turbation integrals are nearly converged yet the diverging
behavior of the e*(r) function is not problematic [27]. We
emphasize that this alternate method is only used near the
Rydberg limit, typically for effective quantum numbers
v>50. We now discuss how various types of damping phe-
nomena are treated within the R-matrix method.

A. Inner-region damping

The first type of damping included, which will be referred
to as inner-region damping, is that for which the final decay
state is entirely contained within the R-matrix box (r<r,).
Inner-region damping is accounted for by modifying the R
matrix as a result of the optical potential for this decay,
which vanishes outside the box (r>r,). The size of the
R-matrix box is chosen so as to completely contain the target
orbitals; the resulting collision strengths are not sensitive to
this choice since long-range potentials are included outside
this region. The optical potential, in the length gauge, takes
the form [16]

rad_ IE

3l>lb>(b|l> ; (12)

where w=FE—E, is the energy difference between energies
of the scattering and final states, D=3*=" r.C! is the di-
pole operator, Ci‘n is the renormalized spherical harmonic

=\47/(2\+ I)Y:‘,, , and |b) represents a normalized fi-
nal state. This potential contributes an additional term to the
Hamiltonian matrix:

3
w
Hoaow—Haw =120 33077y @lIP 1)l

(13)
where J is the total angular momentum of the scattering-state
symmetry. We run the R-matrix codes in their photoioniza-
tion mode in order to produce dipole matrix elements D ,g
between basis functions of the initial (a) and final (8) sym-

metries. The program STGB [23] is run in order to compute
the expansion coefficients a4 of the wavefunction |b):

|b>=§ aglB) . (14)

The reduced dipole matrix element in Eq. (13) can then be
computed as

(al|r|[b)=§ D,pag . (15)

The effect of adding an imaginary potential to the Hamil-
tonian is to modify the R matrix as [16]

R=W ! wT X
TV e—E e—FE
1
T
x T e XT— w7 16
14| x7 X2 €k 0o
e—E
+iwW ! X ! xT ! wT 17
! e—FE 1 2 e—FE : a7
1+| XT—=Xx
e—E

Here the array X is given by

2(E—E
X~ \prgri(allriBas - (9

Since the continuum orbitals are still constructed from the
same model potential, we use the same form of the Buttle
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correction for this new complex Hamiltonian as is used for
an unmodified, real Hamiltonian. It should be noted that con-
struction of the R matrix requires a matrix inversion at every
energy. However, the matrix inverted has a rank equal to the
number of final bound wave functions, n,, and not the size
of the total basis. Nevertheless, even the inversion of this
smaller matrix can lead to a substantial increase in computa-
tional time.

B. Type I damping

The second type of damping is the result of a core transi-
tion, i.e., it has the form

D6, ,— AP0, o (19)

where ®; and @/ are the initial and final target states con-
nected by the usual selection rules, 6, is the valence orbital
for an outer-region electron with principle quantum number
n and angular momentum [/, ./ is an antisymmetrizing op-
erator, and a photon is emitted with energy iw=E,—E;.
This damping is included by modifying the binding energy
of the valence orbital 6,, [16]:

i
€ny 7 €Eny E; Fiﬂf . (20)

In this equation, I';_,;=A,(i—f) is the radiative width of
the core transition which can be computed from the long-
range dipole potential to be [19]

A, (i—f)
@ (27 +1)(C}, )
_2 WK LK,/ LD 2K+ Dmax(£;,7)

21

Here K; refers to the angular momentum of the target J;
coupled to the spin s;= 1/2 of the colliding electron, J is the
total angular momentum, the W are Racah coefficients, and
Cl/,-/j is the long-range dipole potential coupling channel

Z; to channel /;. The orbitals 6 are evaluated using stan-
dard asymptotic expansions. The energy can be modified by
simply substituting the complex energy for the real energy
when evaluating the function 6, [26]. The result is to pro-
duce the complex functions 6, and 6, . An alternate method
is to use quantum-defect methods and replace the threshold
energy for the closed channel with a complex threshold en-
ergy, although this method can not accurately account for
long-range potentials, which effect the mixing of closed-
channel orbitals.

In calculating the perturbed solutions, we neglect the
complex energy in evaluating the long-range integrals, but
include it in the zeroth-order solutions themselves:

e':”'(ra>=ec(ra)(1—fmdr'a'<r'>v<r'>o<r'>

Ta

+ Gé(ra)fwdr' o(r")YV(rHe(r') . (22)

Thus we have a way of including both type I damping and
the long-range potentials in the outer-region solutions.

We can also include this type of damping when using the
alternative solutions e ~(r) and e*(r). If no long-range po-
tentials are included, and the solutions s(r) and c(r) are
insensitive to small changes in the energy, then the solutions
are obtained by just using cos(7v,) and sin(wv,), where
v.=1/yJ/(1/v*—iT’/2). The resulting S matrix obtained by
using these modified functions can be written using
quantum-defect theory as [16]

S_ ()0 OC(SCC _ZTHVC)SCO * (23)
However, this alternate method of treating outer-region per-
turbations assumes slow variance of the solutions s(r) and
c(r) with respect to energy [27], which is only true for high
v, and thus this method is inappropriate for including outer-
region perturbations for low and intermediate resonances.

It must be pointed out that the type I damping potential
actually exists in both the inner and outer regions, so that the
inner-region solutions should be modified as well. For high
n, 6,, is essentially zero inside the R-matrix box, and so the
damping potential can be neglected. However, for lower n, a
significant portion of the valence-electron wave function re-
sides in the inner region. Thus the final decay state on the
right-hand side of Eq. (19) must be included in the inner-
region optical potential of Eq. (12). If quantum-defect meth-
ods are used to include type I damping, on the other hand,
these inner-region decay states do not have to be included.
This is because the effect of using the complex v, in Eq. (23)
is to modify the target thresholds in both the inner and outer
regions. Although such ambiguity between inner and outer
region damping does not arise in the present case of Ti*’*,
we have studied other systems for which we verified that,
when modifying the 6, , functions, inner decay states also
had to be included in order to obtain results identical to those
using Eq. (23) alone.

C. Type II damping

Type II damping is the result of a valence transition:

AP,0,,— A4D;0, . 1tho , n'<n . (24)
To include this type, we have utilized a distorted-wave ap-
proximation to perturb the outer-region solutions:

ep"’(ra>=0<ra>+a'(r>fwdr'0<r'>vo,,,(r,r'>o<r'> 25)

n/—»n /*1

=0(r,)— zE R 0'(0)] (26)

where 0'(r)=d60(r)/dE. We make use of the fact that the
potential is spherically symmetric, and so does not couple
between various closed channels. The width I" is calculated
in the hydrogenic approximation
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3
— 4 r 21\|2
Fn/——rn’/’_3C§(ZJC+1)I<n/”r||n 4 >| . (27)

The bra |n/) refers to the hydrogenic wave function
Pnl(r).

D. Distorted-wave method

We used perturbative methods for the resonance contribu-
tions to electron-impact excitation via the computer program
AUTOSTRUCTURE [28]. These were added to background
cross sections from two-state Breit-Pauli R-matrix calcula-
tions. By modifying the total width of each resonance, radia-
tive damping is included [10]:

M= Ti+2 T, . (28)
7 &

Here I'?_;
state i to a continuum state j, and I'
for decay to a final bound state k.

The calculations were done in one of two modes. In the
first, the resonances were treated as isolated, and thus de-
scribed by a single distorted-wave valence orbital coupled to
a target state. This enables the determination of the reso-
nance contribution for each set of quantum numbers n/’, and
is computationally efficient. In the second mode, configura-
tion interaction between all such isolated states within a cer-
tain energy range was allowed. This takes into account what
is expected to be the dominant interference mechanism [6].
However, inclusion of CI at the Rydberg limit becomes im-
practical due to the infinite number of resonances in this
energy range.

is the width for autoionization from the resonant
. is the radiative width

i—k

III. RESULTS

The test case chosen is electron-impact excitation in
Ti?®*. The target orbitals {1s,2s,2p,3s,3p,3d} were gener-
ated from the multiconfiguration Hartree-Fock (MCHF)
computer package of Froese Fischer [29]. The energies of the
first 17 target levels, which are numbered for easier identifi-
cation, are listed in Table I. The experiment [17] measured
the x-ray emission of the {Z,Y,X,W} lines, corresponding to
excitations of levels {2,4,6,7}, respectively, with radiative re-
distribution taken into account. That is, the actual reported
experimental cross sections below the n=3 thresholds are
measurements of the x rays emitted from certain n=2 ex-
cited states. One has to consider the probability that a higher-
lying n=2 state might be populated and radiatively decay to
a lower n =2 state rather than decaying to the ground state.
By factoring in these branching ratios [17], the experimental
cross sections can be related to the present theoretical exci-
tation cross sections by

07=01_,+(0.872)0,_3+(0.3)0 6, (29)
Oy=0_4, (30)

0'X=(0'7)0-1—>6’ (31)

TABLE L. Ti®®* levels and energies.

No. Transition Level Energy (eV)

1 152 1S, 0.0

2 Z 1s2s 38, 4706.0

3 1s2p 3P, 4728.5

4 Y 1s2p 3p, 4730.8

5 1s2s 1S, 47323

6 X 1s2p ’p, 4738.1

7 w 1s2p P, 4755.0

8 153s 38, 5573.1

9 1s3p P, 5579.3

10 1s3s 1S, 5579.8

11 1s3p 3P, 5579.9

12 1s3p 3P, 5582.0

13 1s3d ’D, 5585.6

14 1s3d D, 5585.7

15 1s3p p, 5586.5

16 1s3d D, 5586.5

17 1s3d D, 5586.7
Ow=01,7 - (32)

Above the n=3 thresholds, additional cascade effects must
be considered, but in the present study we will focus only on
the resonance structure below these thresholds.

We use the Breit-Pauli R-matrix method [21,22] to study
these excitations. As a check on the validity of using this
semirelativistic approximation, we also used the fully rela-
tivistic R-matrix package of Norrington [30,31] and found
excellent agreement between the two results when radiation
damping was omitted. We could not include radiation damp-
ing in the fully relativistic method since dipole matrices are
not presently calculated in that code. Also, fully relativistic
calculations required much more computational time.

A. R-matrix calculations with and without radiative damping

We show the R-matrix results from calculations with and
without damping in Fig. 1 for the Y transition. According to
Table I, the highest n=2 target level is 1s2p 'P, at 4755
eV. Resonances attached to this state are expected to domi-
nate all others since they are captured via a dipole-allowed
core excitation. We see, first of all, that the undamped cross
sections show large resonance enhancements below 4755 eV
due to the complete Rydberg series accumulating at the
1s2p P, threshold. This feature is completely absent, how-
ever, in the damped results, indicating that within the mani-
fold of n=2 target thresholds (KLn resonances), there is
tremendous damping of resonances. At about 5000 eV, there
are resonance features due to the 15343/’ configuration
(KMM resonances), and at 5250 eV there are KMN
(1s3/74/") resonances, neither of which show noticeable
damping. However, as the principal quantum number in-
creases, we see evidence of increased damping of the KMn
resonances up until the final »=3 threshold at 5560 eV. This
clearly shows that R-matrix calculations without radiative
damping produce erroneously large resonance features and
are therefore inaccurate.
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FIG. 1. Electron-impact excitation cross section for the
15%('Sg)—1s2p(3P,) (Y) transition in Ti?**. Results are from a
17-level R-matrix calculation, convoluted with a 50 eV FWHM
Gaussian. Solid line: radiative damping potential included; dotted
line: no radiative damping.

We focus on the region between the n =2 thresholds. The
resonances in this region are due to capture into the
152/n/" configurations. The range of n values can be esti-
mated by the following quantum-defect formula:

Erexonance:Ethreshold_Zzlzn2 P (33)

to be 10=sn<<w. The largest resonances are expected to be
those for which a valence electron is attached to a dipole-
allowed core state. These also are strongly damped since the
An=1 core transition has a large energy difference w. Re-
call that the autoionizing width for a resonance of the form
1s2p(1P)n/—1525(3Sy )€/ scales like 1/n*, whereas
the radiative width for the core transition
1s2p(\Pyn/—152(*S)n/ +hw is independent of n. We
therefore expect the radiative rate to dominate, and subse-
quently completely damp the resonance, as n— . For the
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FIG. 2. Same as Fig. 1, except with no convolution.
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present case, it is apparent that for n> 10, sufficient damping
exists, and the resonance contribution goes to zero as
n—oo. We highlight the energy region between the n=2
thresholds in Fig. 2 in an unconvoluted plot, and it is seen
that the resonances do become completely damped in this
region.

It should be pointed out that a study of the damping of
these resonances had been performed on He-like oxygen by
Seaton and co-workers [14,15] using quantum-defect meth-
ods [24] to incorporate radiation effects [4]. They noticed
similar damping of these resonances for higher n as well.
However, their implementation of the quantum-defect
method did not allow for perturbations of the outer-region
solutions, which, in general, is necessary in order to obtain
the correct resonance widths.

For the present calculations we found that the resonance
profile did not require outer-region perturbations except near
the Rydberg limit n—o0, at which point the resonances
themselves are completely damped. Thus, the methods used
by Pradhan and Seaton are completely valid for the treatment
of type I damping in the current system. That outer-region
perturbations are unnecessary can be understood in the fol-
lowing way. The capture rate from the ground-state con-
tinuum to the resonant state is proportional to a Slater inte-
gral involving the valence orbital 6,,(r) and a continuum
orbital €;(r). The continuum orbital has such a large chan-
nel energy (k>~360 Ry) that it oscillates rapidly outside the
R-matrix box, whereas the valence orbital oscillates slowly.
Thus, the outer-region contribution to this Slater integral is
negligible. The autoionization rate from the resonances to the
excited continua are not affected by long-range potentials,
either. This is because the resonances are mostly due to the
1s2p 'P,n/ configuration, whereas the excited states are
all triplet states (except for the W excitation, 1s2p 'p,,
which is above these resonances) so the only coupling is
through the short-range exchange potential.

In summary, we find that the KLn resonances are com-
pletely damped, the KMM and KMN resonances are not
damped at all, and the KMn resonances for n>4 begin to
show increasing damping up until the limit n—o, where
complete damping occurs. In these calculations using the op-
tical potential, all types of damping were included. However,
inner-region damping, which occurs only for the KM M reso-
nances, is negligible. Type II damping was found to be much
weaker than the type I damping for the KLn resonances, and
the KMn resonances do not decay by type II damping since
there are no KLn' bound states. Almost the same results for
Ti?** could have been obtained including only type I damp-
ing.

B. Distorted-wave results with and without CI
between resonances

We also performed distorted-wave calculations for this
excitation cross section. First, we repeated the method of
calculation used in the EBIT study [18], but used a Breit-
Pauli, rather than Dirac, Hamiltonian. This method allowed
for CI between all KMM (1s3/3/') resonances, but
treated all higher-lying (15s3/n/"') resonances as isolated,
and so permitted no CI between these. We found that our
results were quite similar to the previous calculations [18]. In



3858

a second distorted-wave calculation, we also allowed CI be-
tween all 15373/ and 15374/ resonances. Both of these
results are shown in Fig. 3 along with the radiation-damped
R-matrix calculations. We see that the KM M feature has
been reduced somewhat by including the additional CI.
However, there is a marked enhancement of the KMN fea-
ture due to the additional CI, which brings this feature into
good agreement with the R-matrix results. We also see that
the higher 1s3/n/"’, n>4, resonance features, which are
treated as isolated, are less pronounced than the R-matrix
results. This difference persists up to the Rydberg limit. Thus
we conclude that CI is important along the whole sequence
and is the principal, shortcoming of the distorted-wave
method. Again, both R-matrix and distorted-wave methods
include radiation damping.

We finally point out that there is a certain amount of in-
terference between resonances and the background, as evi-
denced by the asymmetric profiles. While this type of inter-
ference can also be included within the distorted-wave
method in principle, no general scheme for doing so has been
implemented. This is a minor shortcoming, since this asym-
metric component thermally averages to zero, but for de-
tailed comparison with experiments at high resolution, this
type of interference may be needed.

C. Theory vs experiment

We now compare the final R-matrix results for all four
excitations to the EBIT experiment in Fig. 4. In these final
calculations, all radiation damping is included as well as the
outer-region perturbations due to the long-range dipole and
quadrupole potentials. We first point out that the enhanced
KM N features, which we have attributed to CI between reso-
nances, bring theory into better agreement with experiment
than previous distorted-wave results [18]. The higher-lying
resonances also seem to be brought into better agreement
with experiment. One discrepancy that still exists is that the
lower-energy features, especially the KM M resonances, are
narrower but higher than experiment. This might be due to
our convoluting with a 50 eV full width at half maximum

Cross section (1072 cm?)

Energy (eV)

FIG. 3. Electron-impact excitation cross section for the
152(18g)—1s2p(3P,) (Y) transition in Ti***. Solid line: R-matrix
results; dotted line: IPIRDW results with CI between all KM M and
KMN resonances; dash-dotted line: IPIRDW results with CI be-
tween all KM M resonances only.
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FIG. 4. R-matrix results for the electron-impact excitation cross
section in Ti?®*: (a) 1s%(!Sq)—1s2p(3S;) (Z) transition; (b)
152(180)—1s2p(PP ) (Y) transition; (c) 152('Sy)—1s2p(?P,)
(X) transition; (d) 152('S¢)— 1s2p('P,) (W) transition. Experi-
mental results from the EBIT experiment [13] are shown as solid
circles.

(FWHM) Gaussian, which was the estimation of the experi-
mental beam width [17]. A broader actual beam width would
explain this difference. The W and Y cross sections also have
some extra features in the near-threshold region that are not
found theoretically, but this has been attributed to satellite
lines, originating from dielectronically recombined states,
which are indistinguishable from the dipole-allowed lines
[17]. In the n=3 threshold region, we have omitted cascade
effects from these states, and also we have not accounted for
resonances of the form 1s4/n/", so that there is a notice-
able difference between theory and experiment here as well.
We finally point out that asymmetric resonance features are
noticeable in the theoretical cross sections. As the experi-
mental resolution improves, inclusion of this type of interfer-
ence will be necessary for a detailed comparison of theory
and experiment.

IV. SUMMARY

We have demonstrated that the study of electron-impact
excitation in highly charged Ti?** requires the simultaneous
inclusion of radiative-damping and interfering resonance ef-
fects. Thus, R-matrix codes for these calculations should in-
clude the radiative optical potential in the Hamiltonian.
Distorted-wave methods, on the other hand, would need to
be modified to include CI interference of entire Rydberg se-
ries of resonances, and perhaps to include interference with
the background as well. As the experimental resolution be-
comes finer, these effects will become increasingly important
for determining detailed resonance stucture in electron-ion
excitation cross sections. Rate coefficients, which are ob-
tained by thermally averaging these cross sections and are
used to model laboratory and astrophysical plasmas, are thus



ultimately dependent on accurate resonance contributions as
well.
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