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Two independent types of ab initio calculations for three electrons in the field of a proton have
been carried out. Neither calculation shows any evidence for the existence of a resonant state of H*~
contributing to e+H ™ inelastic scattering, at energies above the three-electron escape threshold. One
of the methods used is based on an eigenchannel R-matrix calculation carried out within a reaction
volume of finite radius ro, followed by an averaging procedure over ro. A second method is based
on a configuration-interaction study of the dependence of the 2s?2p?P° resonance on the nuclear
charge Z. These calculations suggest that previous experimental and theoretical studies of this
system were in erroneous agreement that two 2P° resonances exist in H>~ above the three-electron
escape threshold. We also show that the earlier apparent agreement between experimental and
theoretical resonance properties would violate unitarity of the collision matrix.

PACS number(s): 32.80.Fb, 31.20.Di, 32.80.Dz

I. INTRODUCTION

One of the most remarkable experimental results
of the past 25 years was the observation by Walton,
Peart, and Dolder [1] of two resonances in the collision
e+H™ —H+e + e, at energies slightly above the thresh-
old (14.35 eV) for complete breakup of the system into
p+e+e+e. The two resonances were observed at incident
electron energies of 14.5 ¢V and 17.2 eV, with widths near
1 eV and 0.4 eV, respectively. The experiment was inter-
preted as an observation of resonance states of the four-
particle system H?~. Stabilization calculations by Taylor
and Thomas [2] determined two resonances of H2™, at
roughly the energies observed experimentally, and classi-
fied them as 2s%2p2P° and 2p% 2 P°.

In the face of this agreement between theory and ex-
periment, it might be tempting to conclude that this is a
solved atomic physics problem. There remain, however,
a number of important issues to understand about this
amazing result. It is first of all qualitatively surprising
that three electrons can remain bound to a proton for an
appreciable time, with so much Coulomb repulsion in the
system, especially at sufficiently high energies to permit
complete disintegration of the system.

Recalling that the outer electron in H™ is itself very
weakly bound by only 0.75 €V, it is not surprising that
H?~ has been proved by Lieb [3] to be unstable. Lieb’s
proof does not rule out short-lived resonances of H2~, but
Simon has published a “proof” [4] that resonances in any
many-particle system experiencing only Coulombic forces
cannot exist at energies above the threshold for complete
disintegration of the system. Specifically, Simon’s proof
excludes the occurrence of “poles of the resolvent” in this
energy range. This proof has been discussed in simpli-
fied form by Hunziker [5], and recapitulated by Ho [6].
Doolen [7] has suggested that Simon’s proof may not to-
tally exclude the possibility of some type of resonances
in this energy range, e.g., owing to poles of the resol-
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vent on different Riemann sheets of the complex energy
plane. In any case, the disagreement between Simon’s
theorem and the experimental results of Ref. [1] (and the
resonance calculation of Taylor and Thomas [2]) has not
been resolved.

In the two decades since the work of Taylor and
Thomas [2], theoretical capabilities for handling nonper-
turbative electron correlations have improved dramati-
cally. The goal of the present study is to use some of these
improved techniques in an attempt to predict whether or
not there are any H2~ resonance states lying in the energy
range above the triple electron escape threshold. Our
major conclusion is that we find no evidence for triply
excited resonance states of H?2~ that might contribute to
the scattering process e + H~ — H + e + e observed by
Walton et al. [1].

Specifically, the calculations reported in this paper do
not show resonances in the e+H™ —H+e+e cross section
for the low partial waves L = 0-3, at energies up to ~ 19
eV. These calculations are much more sophisticated than
any of the previous calculations for this system; however,
even the current calculations involve approximations that
seem very plausible to us but might not accurately de-
scribe the physics of H2~. The H?~ system is tremen-
dously complicated compared to other three electron sys-
tems (He™, Li, Be™,...), because the electron-electron
repulsion is much more dominant in H2~. The calcula-
tions presented in this paper do not absolutely rule out
the existence of resonances in the e+ H™ —H+e + e cross
section; no finite size calculation can do that. However,
we have considered the existence of these resonances from
three completely different angles: an argument from uni-
tarity of the S matrix, a direct calculation of the cross
section for low partial waves, and estimates of the posi-
tion of the 2522p state from elaborate stablization-type
calculations. These different approaches all indicate that
the resonances seen in the Walton, Peart, and Dolder
experiment are not due to e+H™ — H+e + e processes.
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II. ARGUMENTS FROM UNITARITY OF THE S
MATRIX

Prior to attempting any detailed theoretical calcula-
tions for this difficult system, it is possible to point
out one immediate discrepancy between the experimen-
tal cross section [1] and the calculation by Taylor and
Thomas (2] that indicated the two resonances are of
2P° character. If this theoretical classification is cor-
rect, the modulation of the experimental resonance vio-
lates unitarity of the scattering matrix, a point that ap-
pears to have gone unnoticed until now. Assuming that
the resonance occurs for one value of L only, the depth
of modulation of the cross section must be bounded by
oL, <m(2L +1)/k? ~ 8.2aZ for the (purported) L =1
resonance at 14.5 eV. However, the absolute measure-
ment of Peart and Dolder [1] (see Fig. 2 of this refer-
ence) gives a modulation depth for the cross section at
the 14.5 eV resonance which is an order of magnitude
larger, namely o,es ~ 80a2. If the experimental cross sec-
tion normalization is correct, this would require that the
orbital angular momentum of the resonant state should
be greater than L = 14, which seems rather implausi-
ble. The electrons in the H2~ system feel much stronger
repulsion than in any other atomic system. High or-
bital angular momentum adds centrifugal repulsion to
the system making it much less stable. The other res-
onance at 17.2 eV has a much smaller modulation of
~ 20a? which would give a minimum value of L = 4.
Again, we think it is unlikely that the resonance would
have such high orbital angular momentum; the most
promising configurations for L = 4 are [25(3d%)'G]2G
and [(2p?)!D3d)2G and (3d3) 2G (the initial state of the
system is [(1s%) 1Seg] 2G). None of these configurations
is promising because none couples strongly to the 1s2eg
initial state and therefore cannot give maximum variation
in the L = 4 cross section. Moreover, each is probably
much less stable than the (2p®) 2P° state which does not
appear to exist in our calculations.

The above values reflect the minimum values of L for
the resonances based solely on unitarity of the S ma-
trix, or flux conservation. In fact the minimum plausi-
ble values of L that could cause the resonances of Peart
and Dolder [1] are presumably larger still. For instance,
the experimental resonances in the Peart and Dolder [1]
experiment have somewhat of a window-type line shape
which means the maximum variation in the cross section
depends on the background value. [For example, in the
calculations described in the next section, the total prob-
ability for e(¢ = 3)+H~ —H+e+e near the experimental
resonance energies is P ~ 50%; a window type resonance
in this partial wave could give a variation in the cross
section of w7P/k? ~ 11aZ compared to 2242 if the back-
ground probability were 100%.] Also, the variation de-
pends strongly on the coupling between the H™1s2 + &£
initial state and the resonance having no 1s electrons;
scattering from the initial state to the resonance state
involves three electrons changing orbitals which is a low
probability process since the 1/r;; coupling can directly
change only two electron orbitals. A conservative esti-

mate of the size of these effects raises the estimated L
value for each resonance by a factor of 2-5.

The arguments given above rest partially on the as-
sumed validity of the experimental cross section normal-
ization. Other considerations indicate that the normal-
ization must be substantially correct. The experiments of
Dance et al. [8] gave a maximum cross section in this en-
ergy range of (180 + 20)a2, while Tisone and Branscomb
[9] measured a maximum of (150+10)a3 at slightly higher
energy. Initial theoretical estimates were conducted us-
ing a straight Born approximation, which cannot be given
much credence in this energy range owing to the ne-
glect of the Coulomb repulsion at large distances. For
instance, the early Born approximation calculation by
Geltman [10] overestimated the cross section severely,
giving a maximum near (4 x 10%)a2, but this calcula-
tion was later seen to be in error because it neglected to
account for nonorthogonality of the zeroth-order initial
and final state wave functions. A Bethe-Born calculation
by McDowell and Williamson [11], incorporating a crude
semiclassical correction for this Coulomb repulsion, max-
imizes around 160a2 as do the experiments (see Fig. 14
of Ref. [9]). However this agreement may be somewhat
fortuitous, as a different approach by Rudge [12], that
attempted to account for the initial state Coulomb re-
pulsion approximately, found a cross section maximum
at much higher energies of only 3a2.

In the face of such theoretical disagreement, it is desir-
able to carry out an independent estimate of the nonres-
onant electron detachment cross section. We have calcu-
lated Coulomb-Born cross sections neglecting exchange
and only including the dipole term in the 1/r;; interac-
tion. The resulting cross section maximum of ~ 40a?
in this energy range presumably underestimates the full
Coulomb-Born cross section because we have not in-
cluded the higher multipole terms in the 1/7;; interaction
which can be important since the scattering electron at
1 a.u. of velocity readily penetrates inside the H™ wave
function. Since H™ is so weakly bound, virtually every
penetration of the scattering electron inside the H~ wave
function results in detachment. Based on the size of H™,
the geometric cross section for e+H™ —H+e + e is ex-
pected to be ~ (7/2Ep)a ~ 60a2 (Ep ~ 0.028 is the
binding energy of H™ in a.u.) since the relevant size for
H is 1/\/2Eb.

The cross section bounds discussed above also rest on
the assumption that each of the resonances arises in only
one partial wave, L. Although extremely unlikely, there
does not appear (at first) to be any reason why each ob-
served resonance cannot result from the superposition of
many resonances from different partial waves. However,
the physics of the H2~ system argues against this already
unlikely situation. An H2~ state would be extraordinar-
ily floppy from the large amount of repulsion. A floppy
system can be easily distorted when angular momentum
is added to the system, and accordingly its lowest energy
state should increase rapidly with increasing angular mo-
mentum. We doubt that H2~ has resonances for 5-10 dif-
ferent values of L within 1 eV of each other, which would
appear to be necessary for the experimental resonance
modulation at 14.5 eV to be correct.
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III. DIRECT CALCULATION OF THE CROSS
SECTION

A. Theoretical techniques

The H?~ system is hardly a trivial one to describe the-
oretically, even for methods that have successfully de-
scribed other highly correlated systems like helium, H™,
the alkaline earth atoms [13,14], and various open-shell
atoms [15]. A major reason for the complexity is the fact
that in the energy range under consideration, multiple
electron continua are present. A combination of eigen-
channel R matrix and quantum defect methodologies
has successfully treated autoionizing resonance states in
energy ranges where the decay is restricted to single-
electron escape only. Such energy ranges are now handled
routinely, and typically with great success. In the present
problem, however, the two-electron final state continuum
H(n = 1) + e + e becomes energetically allowed for in-
cident electron energies larger than the 0.75 eV binding
energy of the outer electron in H™. At higher energies
additional two-electron continua are also open, such as
H(n = 2) + e + e and so on. When the energy is in-
creased still further, i.e., above the triple escape thresh-
old at 14.35 eV incident electron energy, there are an
infinite number of double-escape continua that are en-
ergetically open, and a triple-escape continuum as well.
Currently, there is no theoretical method that correctly
describes double or triple continua when correlations are
important.

The theoretical techniques used in this study are
primarily adapted from the eigenchannel R-matrix ap-
proach, with some extensions. In particular, our ability
to approximately describe the effects of multiple elec-
tron escape continua improves substantially upon previ-
ous eigenchannel R-matrix calculations. The calculations
are conducted within a sphere in real space, which takes
the shape of a hypercube in the three-dimensional ra-
dial portion of configuration space, with 0 < r; < 7,
0<r2<7p,0<713<T0.

As in all previous eigenchannel R-matrix studies, we
assume that beyond the surface of this radial hyper-
cube, at most one electron can escape. In the next sec-
tion we show how to approximate the cross section for
e+H™ —H+e + e using wave functions for which only
one electron can escape to distances larger than 7o. The
eigenchannel R-matrix technique allows us to obtain a
numerical approximation to the logarithmic derivative
matrix (R matrix) for which the errors are of second or-
der in errors of the wave function. We obtain the linearly
independent wave functions by superposing orthonormal
basis functions in a small region of space called the R-
matrix volume. The relevant matrix equation for the
superposition coefficients, in ¥gg = 3, y;(r)Cjs(E), is

I'Cpg = bgACp (1)

where T'y; = 2(y;|E — Hly;) — (:|0/9nly;)) and Ay =
{vily;)). As usual, each y;(r) represents one antisym-
metrized, single configuration, three-electron basis func-
tion, coupled to a definite total L,S. The double bra-
ket notation indicates integration only over the surface

of the R-matrix volume, and the normal derivative of
Ygp at this surface is 0Ygg/0n = —bgypg. The matrix
equation (1) is solved using the streamlined eigenchan-
nel approach [16] to reduce the computer time needed to
obtain the R-matrix at many different energies.

The initial state of the system is an H™ ion in its 'S¢
ground state with a continuum electron of orbital angular
momentum /; the total orbital angular momentum of the
initial state is L = £ because the total orbital angular mo-
mentum of the two H™ electrons is zero. We can ignore
the spin-orbit interaction for this system which means we
only need to consider three electron wave functions whose
spins are coupled to total spin 1/2 and whose parity is
m = (=1)%. In a more compact notation, the symme-
try of the relevant three electron wave functions is 2L™
where m = (—1)%. To calculate the total cross section for
e+H~ —H+e+ e we would add the partial cross sections
for 28¢, 2P°, 2D¢°, 2F°, ..., total symmetries, increasing
L until convergence is achieved.

The basis functions for our variational R-matrix pro-
cedure are constructed from hydrogenic orbitals. The
two electron core states were constructed by diago-
nalizing the two electron Hamiltonian with the basis
(1s2)18, (25%)'S, (1sns)V3S (with n = 2-7), (253s)135,
(2p?) (1S, 3P, 'D), (2p3p) (*S, 3P, 'D) for the even
parity core states and (lsnp)?P° (with n = 2-7),
(252p)13P°, and (2s3p)*3P° for the odd parity core
states; all of the hydrogenic orbitals used for these basis
functions are zero at 9. The lowest core eigenstate gives
the ground state of H™ with a binding energy ~ 40%
smaller than the physical binding energy of H™. All of
the other eigenstates are at energies > —0.5 a.u. and
give a discretized representation of the H+e continuum
and resonant states. The three electron wave functions of
2™ symmetry were obtained by adding orbitals of angu-
lar momentum £ = L onto the even parity core states and
orbitals of angular momentum ¢ = L £ 1 onto the odd
parity core states. For example, some of the basis func-
tions for 2F° symmetry were (1525)3Snf, (1s2p)' P°nd,
and (252p)3P°ng. For the lowest partial waves, L = 0-3,
all of the relevant correlation type basis functions were
added; for example, for the 2P° symmetry, basis func-
tions of the type (2p%)'S2p, (2p?)%P2p, and (2p*)'D2p
are not allowed separately but the one linear combina-
tion of these giving the (2p®)2P° state is allowed and
was included in the calculation for 2P° symmetry.

The number of three electron basis functions increases
dramatically as the number of two electron basis func-
tions increases which is why the number of core ba-
sis functions is so small. We have made several tests
of the convergence of the cross section with the size
of the H™ basis functions. One crucial test was how
well the (1sns)3S and (1snp)'3P° states discretized
the continua. For 2P° symmetry, we found that de-
creasing the maximum value of n in the calculation
from 7 to 6 changed the cross section by less than 5%.
Since any resonance of H2~ will certainly have no 1s
electrons, the small number of doubly excited H™ ba-
sis functions is a more serious concern. However, the
cross section for the 2P° symmetry changed by less than
2% when we added the core basis functions (3s%)'S,
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(3p%) (*S, 3P, D), (2s4s)'3S, (2p4p) (*S, 3P, D),
(2s4p)*3P°, and (3s3p)}3P°. Another concern was the
small number of LS core symmetries included in the cal-
culation. For example, there are no basis functions which
discretize the (1sed)3D continua in H~. The inclusion
of basis functions of H™ that discretize this continuum
would broaden any resonance in the calculation because
it would give the resonance another decay channel and it
would change the background value of the cross section
due to (for example) the direct quadrupole interaction of
this continuum with the ground state. Unfortunately, the
direct inclusion of core basis functions of this symmetry
increases the size of the three electron basis set by 50—
70 %, and would stretch the capability of the workstation
we used to calculate the cross section. [A large part of
the effect of the (1sed) continua is included in the 2P°,
’De, and 2F° symmetries; for the odd parity symme-
tries there are basis functions of the type (1snp)*3P°n'd
and for the 2D°® symmetry there are basis functions of
the type (1sns)3Sn'd in the R-matrix calculation which
gives some representation of the (1sed)3D continua.]
The final convergence problem concerns the 1s? ground
state of H~. We obtain ~ 60% of the binding energy of
H™ with the small basis set that we used. This means
that our 1s? wave function extends to distances farther
from the nucleus and is easier to ionize than the physical
1s? state of H™; a larger 1s® wave function also increases
the probability for scattering from 1s2e into highly cor-
related triply excited states like the 2522p state.

Once we have obtained the ¥ from the variational R-
matrix procedure, we can construct linear combinations
of the 93 to obtain new linearly independent solutions
that have the form

Vg, = AZ ¢; ()[fi(r)oji — g;(r)Kj]  r>ro, (2)

where A is the antisymmetrization operator, ¢,(Q2) con-
tains all of the degrees of freedom except the radial
motion of the outer electron, f; and g; are energy-
normalized regular and irregular radial solutions for the
repulsive Coulomb potential with charge —1, and K is
the reaction or reactance matrix that contains the scat-
tering information needed to obtain cross sections. The
core eigenstates were obtained (as discussed above) by di-
agonalizing the H~ Hamiltonian in basis functions that
are zero at 9. The f and g were obtained by integrating
Milne’s equation for a repulsive Coulomb potential from
large r into 7¢ (see, e.g., Ref. [17]). In Eq. (2) the sum is
only over channels such that the outer electron in channel
7 has positive kinetic energy at r — oo.

B. Total inelastic cross section

The calculation of the e+H~ —H+e + e cross section
is not simple using the information contained in the wave
function of Eq. (2). Remember, the outer electron moves
beyond the hypercubic reaction volume in the field of
a two-electron Hamiltonian eigenstate; this eigenstate is
subject to the boundary conditions that its wavefunction
vanishes on the reaction box surface. All but one of the

two-electron “target” eigenstates included in this man-
ner lie at energies in the one-electron continuum; H™ has
only one bound state and we have not added any basis
functions that represent the two electron continuum of
H~. The wave functions of Eq. (2) contain many terms
where the core part of ¢;(Q) is a discretized continuum
state of H™; these channels are like a discretized dou-
ble continuum of H?~ since the f and g are themselves
continuum functions. Such a finite-volume representa-
tion has severe limitations because the “continuum ener-
gies” of the two-electron target system become quantized
when calculated in a finite volume. It should be possible
to similarly describe the three-electron escape continuum
in this manner, but we have not included functions ca-
pable of representing such channels beyond the reaction
volume.

In all that follows, channel j = 1 will be the channel
representing the initial state of the system, namely e(¢) +
H~(1s%). With the unphysical boundary conditions we
have imposed on the wave function, we can calculate the
total probability for inelastic scattering for any L using

Pi(ro) = Y ISEP, 3)

j>1

where ST = (1 +iK%)/(1 — iK") is the § matrix for
symmetry 2L™. In Eq. (3), we have indicated explicitly
that this probability depends on the unphysical bound-
ary conditions we have applied at ro. The PZ(rg) (for a
fixed ro) contains much of the information on the total
probability, PL, for e(¢)+H~ —H+e + e because all of
the excited channels, j > 1, represent discretized dou-
ble electron continua. Note that the contribution of the
Lth partial wave to the inelastic scattering cross section
in a.u. can be obtained from P% by using the formula
Oinel = m(2L + 1)PL/k2, where k is the wave number of
the incident electron.

The introduction of a box with hard boundary con-
ditions causes a type of “ringing” in our spectrum. In
Fig. 1 we show (dashed line) the total probability for
inelastic scattering for the 2P° symmetry (the solid line

PRI
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0.0 L . .
-0.6 -0.4 -0.2 0.0 0.2
E(a.u.)

FIG. 1. The ?P° inelastic scattering probability (dashed
line) for 7 = 25 a.u. The vertical lines mark the energy
positions of the two-electron > P° target states. The solid line
is the ro averaged 2P° inelastic scattering probability.
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is discussed below) for a fixed 7o. At the top of the figure
are vertical lines marking the positions of the 3P° target
energies for this 7o. The most striking features of this
curve are the large amplitude resonances in the double
electron continuum of H2~. These resonances are real
for the boundary conditions that we have imposed on
the system, but the boundary conditions are unphysical.
The resonances occur when the incoming electron excites
the H™ to a box state and loses most or all of its kinetic
energy. This slow electron can enter a resonant state on
the potential created by the excited H™ box state. This
characteristic but unphysical ringing is immediately ap-
parent in the calculation, but it can be eliminated to a
very large extent by averaging the final spectra over the
size 7o of the reaction volume. Any physically observ-
able resonance feature should stand out clearly by being
insensitive to the value of rqy, provided the reaction vol-
ume is large enough to contain the bound portion of the
resonance wave function.

We can approximate the physical total scattering prob-
ability, PL, for e()+H~ —H+e + e as an average over
the fixed-r¢ (unphysical) total inelastic scattering proba-
bility, PZ(rp). This idea of representing effects of double
continua by a summation over discrete channels followed
by some type of average has been used in diverse contexts
[19], and it appears to give reasonable results in general.
In this approximation, PL(ry) is averaged over several
values of 7o to estimate the physical probability,

PL ~ PL(r). (4)

In Fig. 1, the solid line is the result obtained by averag-
ing the PL(rg) for ro = 25, 26, 27, 28, and 29 a.u. with
equal weights. It is clear from this figure that all of the
unphysical ringing discussed above is reduced greatly in
amplitude for the averaged probability. This reduction
occurs because these resonances are intimately associ-
ated with the box state thresholds of H™; the energies
of the box states of H™ that represent the different H™
continua decrease as ry increases which causes the reso-
nances associated with them to decrease in energy. (The
lowest energy unphysical resonance is still visible in the
ro averaged probability because the lowest energy box
state energy does not vary as much with 7o as the higher
energy box states.)

We have performed one test of this averaging proce-
dure to verify that it can represent double continuum
effects reasonably well. The test is a calculation of the
e—H elastic scattering cross section and the e(E,{ =
0)+H(1s) -H(2s)+e(E’, £ = 0) inelastic scattering cross
section at energies above the double-escape threshold.
We have adopted the model Hamiltonian used by Temkin
[21] and by Poet [20], which replaces 1/r;2 by its scalar
term only, 1/r~. When our calculation is performed in a
fixed-ro R-matrix box, followed by averaging over rq, the
results agree well with the accurate results of Poet [20].

From Fig. 1 there do not appear to be any resonances
in the e({ = 1)+H~ —H+e + e probability in the en-
ergy range of the experimental or theoretical resonances
of previous workers. It is important to ask whether the
averaging procedure discussed above might somehow re-

duce the effect of any physical resonances of H2~. The
answer to this question depends on the spatial extent
of the resonance wave function. If a substantial portion
of the resonant state extends to distances larger than
To, then averaging over rq would cause the resonance to
appear at too high an energy, possibly reducing its ef-
fect on the cross section as well. This is because the
box boundary conditions constrain the resonant motion
of the electrons. If the resonant state does not extend
to distances larger than ro, then the averaging procedure
should not reduce the effect of the physical resonance be-
cause the box boundary conditions would only affect the
continuum part of the wave function; the physical reso-
nance energy would not shift by amounts more than its
physical width and, in fact, this small shifting correctly
contributes to the physical width since the width for a
fixed ro is usually too small. It does not seem plausible
that any physical resonance above the triple continuum
threshold of H2~ would extend to distances larger than
25 a.u. because any resonance of this system should rep-
resent highly correlated motion with all electrons near
the same distance from the proton. When the electrons
reach this distance they can simply continue outward to
infinity; there are no barriers in the potential at these dis-
tances that can give reflection and contribute to resonant
motion.

C. Results

The total 2P° scattering probability (solid line) for
e({ = 1)+H~ —H+e + e shown in Fig. 1 contradicts
the earlier interpretation that the H2~ experimental res-
onances have 2P° symmetry. In this figure, there is no
evidence for any physical resonance near zero total en-
ergy. The results presented in Fig. 1 are from a cal-
culation many times larger than the original theoretical
work [2] on the H2~ resonances. We have therefore per-
formed test calculations using drastically reduced basis
sets to explore the connection between the current elab-
orate calculations and the previous theoretical work.

In Fig. 2, we present the total inelastic scattering prob-
ability (solid line) and the trace of Smith’s [18] time de-
lay matrix (dashed line) for a small, unconverged calcu-
lation with a box of 25 a.u. The channels included in
the calculation were (1s%)!Sep, (252)!Sep, (1s2s)'3Sep,
(1s2p)2P°€es, and (1s2p)V3P°ed; the states (2p°®)?P°
and (2p?)!S3p were also included. The time delay is flat
except near the 2s%2p resonance at ~ —0.05 a.u. and
near the 2p® resonance at ~ 0.1 a.u. (Note that already
in this small basis set the 2s%2p resonance is below the
p + e + e + e threshold.) The 2p3 resonance produces
a distinct Fano profile in the total inelastic scattering
probability whereas the 2s22p resonance has very little ef-
fect. The 2p° resonance completely disappears when the
(2p?) (1S, 3P, 'D)ep channels are added to the calcula-
tion. The full calculation does not show either of these
resonances in the inelastic scattering probability which
means they cannot be seen in the previous electron scat-
tering experiments. Laying aside the question of exciting
these resonances, it is difficult to ascertain from the time



49 SIMPLEST DOUBLY CHARGED NEGATIVEION: ... 1871

1.0 T T T

0.8} P

0.6; 4
0.4°1 .

0.21 b

0.0 . . .

-0.6 -0.4 -0.2 0.0 0.2
E(a.u.)

FIG. 2. This figure presents the results of a very limited
calculation that has been deliberately truncated short of con-
vergence. The dashed line is proportional to the trace of the
delay-time matrix (shifted by 0.7) showing the 2s%2p and 2p®
2 P° resonances at ~ —0.05 and ~ 0.1 a.u., respectively. The
solid line is the inelastic scattering probability which shows
practically no structure near the 2s%2p resonance.

delay whether the resonances exist at all because the un-
physical ringing obscures their existence; if they exist
they are extremely broad. There is slight evidence in the
larger calculation for a weak 2s5%2p resonance at negative
total energy, i.e., below the triple escape threshold.

Further evidence supporting our conclusion that a
2522p resonance (if it exists at all) should not show up
strongly in the e+H™ —H+e + e scattering cross section
can be found in the observed strength of a He™ triply ex-
cited resonance with the same label. In a measurement
by Quémeéner et al. [22], this resonance was observed at
57.2 eV incident electron energy in the analogous reac-
tion e+He—Het + e + e, but it causes only a 0.8% mod-
ulation of the cross section. For comparison, the mod-
ulation caused by the purported 2s22p resonance in the
e—H™ experiment of Walton et al. [1] was approximately
50%, a huge qualitative difference from the He™ reso-
nance that would be difficult to interpret. If anything,
we would expect that a 2s22p resonance in H?~ would
be less prominent in the e+H™ cross section because the
resonance must be so much more diffuse if it exists in
H2?~.

The 2522p and 2p> resonances appear clearly in the
small calculation because the artificially small number of
angular couplings included in the basis set constrains the
motion of the electrons unphysically. The number of de-
cay paths is drastically reduced in the small calculation
which can create resonant motion or greatly increase the
lifetime of physical resonances. As the number of de-
cay paths included in the calculation increases, the res-
onances broaden to the point where it is questionable if
they exist. We speculate that the earlier calculation of
Taylor and Thomas [2] was nearer to our “small” calcu-
lation, and may have obtained unconverged resonances
similar to those in Fig. 2.

In Fig. 3, we show the total probability for inelastic
scattering for the 25¢, 2P° 2D¢° and 2F° symmetries.
None of these curves show resonant structures near the
energies seen experimentally. These symmetries are those
most likely for resonant structure in the e+ H™ —H+e+e
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FIG. 3. The averaged inelastic scattering probability for
25 (solid line), 2P° (dotted line), 2D*® (dashed line), and
2F° (dot-dashed line) symmetries.

cross section. An important property of these probabili-
ties is that only the s-wave probability is ~ 1 and they are
decreasing as L increases. This supports the arguments
of the preceding section that the estimated bounds on L
needed to explain the experiment, based on the unitarity
argument, should be increased by a factor > 2.

We have not calculated the scattering cross sections for
higher L because we do not believe there can be any sub-
stantial resonances in that region of phase space when
there are none for lower L. There are two reasons for
this belief. The first is that the greater centrifugal re-
pulsion for any proposed higher L resonance would tear
apart this already unstable system. The second is that
the 1/r;; interaction that couples the 1s?¢f initial state
to the resonance state can only change the orbitals of
two electrons at one time; however, the 1snén’f’ states of
H2~ are completely unstable. The only possible high L
resonances have character nén'¢'n"¢"” (where none of the
orbitals are 1s) but these states are not strongly coupled
to the 1s?¢/ initial state and therefore cannot appear
as strong resonances in the cross section. The size of
an inelastic scattering resonance is proportional to the
square of the coupling between the resonance and the
initial channel, and is inversely proportional to the to-
tal width. High L resonances would have a very small
branching ratio to the 1s2¢£ continuum because they are
not coupled directly through the 1/, interaction; there-
fore we do not expect them to appear in high partial wave
ionization cross sections.

IV. Z-DEPENDENT CALCULATION

In this section we examine the dependence of the
2522p 2P° resonance on nuclear charge Z, to show that
the resonance given this label by Taylor and Thomas can-
not correlate sensibly with the well-established analogous
resonances for Li and He™. The nuclear charge is treated
as a continuous parameter in the range from Z = 3 (Li)
to Z =1 (H?7), and we have calculated the position of
the 2522p 2P° triply excited resonance state, for a given
nuclear charge, by treating it like a bound state. The
eigenenergies for the three electron system are calculated
at a fixed Z by diagonalizing the three electron Hamil-
tonian matrix within a radial hypercube of side ro. The
basis functions used in calculating the matrix elements
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of the Hamiltonian are similar to those used in the R-
matrix calculation of Sec. III A; however, here we have
included many more radial and angular configurations.
The three electron basis functions are constructed from
hydrogenic orbitals of charge Z that vanish at ro. We
have chosen 7o = 60/Z a.u., to take into account the fact
that the mean radius for hydrogenic orbitals scales like
1/Z. The two electron core states included in the cal-
culation are (ns?)!S (with n = 2-4), (nsn's)13S (with
n = 2-3,n' = 2-4), (nsn'p)13P° (with n = 24,0’ = 2-
4), (np?)*!S 3P 'D (with n = 2-4), (npn/p)1:3S L3P 13D
(with n = 2-3,n' = 2-4), (npn'd)V3P 13D 13F (with
n = 2-4,n = 2-4). We have omitted all 1s orbitals
from the calculation. Three electron basis functions of
symmetry 2P° were constructed from these two electron
core states by adding orbitals of angular momentum I,
consistent with the total angular momentum L = 1 and
parity m = —1. The total number of three electron basis
functions was approximately 650.

In Fig. 4, we show the present calculation of the eigen-
values of the three electron Hamiltonian (dots) as a func-
tion of the nuclear charge Z. The energy scale gives the
2Pe eigenenergies relative to the (2s2)1S energy for each
Z, divided by Z2. This energy scale gives the “binding”
energy of the outer 2p electron relative to the (25?)1S two
electron threshold (E = —0.148 a.u. for H™). The as-
terisks are the energies calculated by Ahmed and Lipsky
[23] for integer nuclear charge.

For Z = 2,3 the lowest calculated box energy agrees
well with the 25%2p energy values calculated by Ahmed
and Lipsky [23], Chung [24], Nicolaides [25], and others.
However, for Z < 2 the position of the “resonance” is un-

Scaled Energies (a.u.)

LA A e e

Nuclear Charge

FIG. 4. Calculated eigenvalues of the three-electron Hamil-
tonian (dots) as a function of the nuclear charge Z. The scaled
energies are shown relative to the 2s° 1S resonance energy at
each Z, divided by Z2. For Z > 2 the circled eigenvalues cor-
respond uniquely to the energy of the 2s?2p state. For Z < 2
the circled eigenvalues were determined by taking the overlap
of the eigenvectors at each Z with the Z = 2 25?2p eigen-
vector, and finding the maximum of the overlap distribution.
The solid lines indicate the approximate width of the overlap
distribution. The asterisks are the scaled 2s22p 2P° energies
calculated by Ahmed and Lipsky [22]. The lower of the two
experimental H™~ resonances [1] lies at a scaled energy of
0.15 a.u. for Z = 1.

known. Our calculation is no longer as straightforward
to interpret in this range because no single eigenstate ob-
tained in the diagonalization can be unambiguously iden-
tified as “2s22p.” The basic problem for Z < 2 is that
the 2s522p resonance character is now distributed among
numerous energy eigenvalues, many of which amount
to a discretized representation of the continua such as
H™(2s?%) + e(ep). We have attempted to estimate the Z-
dependent “resonance energy” for Z < 2 by examining
the eigenvectors of the three electron Hamiltonian. In
Fig. 4 we display the estimated position and width of
this “resonance” as a function of Z, for Z < 2. These
were determined by taking the overlap of the eigenvec-
tors of the Hamiltonian at a given Z with the Z = 2
2522p 2P° eigenvector. For Z = 1 we estimate a posi-
tion of £ = —0.088 a.u. and a width of T' = 0.04 a.u.
This energy is not in agreement with the calculation of
Ref. [2], where an energy position of E = 0.017 a.u. was
predicted for the 2s%2p 2P° resonance. We suspect our
energy value is closer to being converged than that of
Ref. [2], because our configuration-interaction basis set
is about one order of magnitude larger, and also because
our resonance energy correlates more naturally with the
resonances classified as 2522p for Z in the range of 2-3.

It should be stressed that the 25%22p 2P° resonance en-
ergy predicted in this section is below the total breakup
energy for the system, and therefore does not contradict
the “proof” of Ref. [4]. In fact this Z-dependent analysis
cannot conclusively predict whether this resonance will
really be observable in any experiment relating to e—H™
scattering. For one thing, our R-matrix calculations sug-
gest that excitation of any triply excited H2~ resonance
from an electron collision with the H™ ground state is
relatively improbable (even if the resonance exists), and
so it would have comparatively little influence on the
scattering cross section as in the e—He experiments of
Ref. [22]. We do not regard this bound-state-type calcu-
lation as being able to definitively ascertain whether the
25%2p state that we obtain for Z = 1 will be sufficiently
long lived to be called a true “resonance.” Nevertheless,
the main conclusion to be drawn from the calculations of
this section is clear: continuity in Z of the resonance po-
sition makes it improbable that any H?~ resonance above
the triple detachment threshold £ = 0 can be meaning-
fully identified as 2s%2p.

V. CONCLUSIONS

We find ourselves in the admittedly awkward position
of claiming that there are no H2~ resonances above the
triple-escape threshold, a result that contradicts squarely
with earlier experimental [1] and theoretical [2] efforts.
While our initial goal was to calculate and better char-
acterize the properties of these resonances, we have been
unable to find them. We have confidence in the methods
and approximations used in the present calculations, as
they are natural extensions of techniques that have had
widespread success in other contexts.

We find no alternative but to conclude that the exper-
imental resonances observed at 14.5 eV and 17.2 eV by
Walton, Peart, and Dolder [1] must not correspond to the
H?~ system. It is hard to understand why the Ref. [1]
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experiments would have seen artificial resonances cor-
responding to some other physical process, particularly
considering the fact that the experiments were carried
out by the same group using two different beam configu-
rations. It seems relevant to note, however, that the same
apparatus used to perform the e+H™ scattering experi-
ments was also used by Peart et al. [26] to measure p+H™
neutralization cross sections. It is relevant because the
neutralization measurements of Ref. [26] were eventually
found to be erroneous; among other discrepancies this
neutralization experiment found a resonance-type feature
that eventually “disappeared” when further experiments
were conducted by the same group and by other groups.
A thorough and frank discussion of this whole matter has
been presented by Dolder and Peart [27]. They conclude
that the origin of this spurious resonance in p+H™ neu-
tralization collisions remains unknown to this day. With-
out knowing what caused this erroneous resonance to ap-
pear, we have no grounds to speculate whether or not
the same mechanism might have caused the appearance
of the two resonances in e—H™ collisions. But clearly it
will be highly desirable to see an independent experimen-
tal measurement. Apparently none has been conducted
since the work of Ref. [1].

Another peculiarity about our conclusion that no triply
excited resonances exist in H2~ is the resulting disagree-
ment with the calculations of Taylor and Thomas [2].
We have only one possible reason for their (apparently
incorrect and fortuitous) observation of two H?~ reso-
nances in their stabilization calculation: we were able to
see similar resonance features in our e—H™ calculations
performed with a very small, unconverged basis set. The
calculations of Ref. [2] were very small compared to the
current state of the art in configuration-interaction cal-
culations. For instance, it included only s,p orbitals,
whereas we have included far more s,p orbitals as well
as d orbitals in our 2P° calculations. While our “small”
calculation shown in Fig. 2 showed signs of similar reso-
nances, these disappeared rapidly when the basis set size
was increased, as discussed in Sec. III. The Z-dependent
calculation of Sec. IV shows, at the very least, that if
a 2P° resonance does exist near 14.5 eV, it should not
be classified as 2s22p. Moreover, the experimental and
theoretical results of Refs. [1,2], that are apparently in
agreement, would violate flux conservation (or unitarity
of the collision matrix).

On the other hand, our interpretation that there are no
resonance states of H2~ above the triple-escape threshold
would remove the disagreement between Refs. [1,2] and
Simon’s theorem [4] stating that no H2~ resonances can
ever occur in this energy range. It might also be men-
tioned that some unpublished theoretical studies of H2~
2P° symmetry failed to observe resonances above thresh-
old. One of these was carried out by Chung [28], whose
calculations seem particularly solid since the same type of
calculations gave the He™ 2522p resonance position in ex-
cellent agreement with experiment. Another unpublished
study was a calculation of H2~ hyperspherical potential
curves by Greene and Clark [29]. These 2P° potential
curves were unconverged but they also failed to show any
signs of a shape-resonance-type feature that might be at-

tributable to a 2s22p or 2p® resonance. It might also
be mentioned that Beck and Nicolaides [30] performed a
computational search for a 2p® 45° state of H2~ in an
attempt to see whether such a state might be bound in
LS coupling, to possibly explain a reported observation
of H%~ in a mass spectrometer [31]. They found that this
state is not bound, and that it lies around -0.09 a.u. rel-
ative to the triple-escape threshold, but they could not
calculate the decay width to see whether it would survive
long enough to be a resonance. In any case this 4S° res-
onance is irrelevant to electron scattering from the H™
ground state, as *S° symmetry does not contribute to
this process. A last H?~ calculation worth mentioning
is a very small single channel close-coupling-type calcu-
lation for 2P° symmetry carried out by Temkin et al.
[32]. This calculation included only one H™ target state,
namely the 2p? 3P¢, which was represented by a single-
configuration product of Slater orbitals. The calculated
2P° p-wave scattering phase shift showed a broad (I’ ~ 2
eV) resonance whose center was barely above the triple-
escape threshold, which Ref. [32] apparently interpreted
as a 2p® 2P° resonance. This calculation is again so lim-
ited in terms of radial and orbital configurations that we
feel the calculated resonance is not likely to be real.

If our interpretation is correct that the experiments
of Ref. [1] did not observe H2~ resonances, then it ap-
pears that no resonances nor bound states have ever been
observed for any doubly charged atomic negative ion.
Compton [31] has reviewed several reported observations
of doubly charged atomic negative ions, but each such
observation has apparently been reinterpreted otherwise.
We speculate that some atoms may have doubly charged
negative ion resonances, the best candidates being atoms
with two holes in the valence shell such as oxygen and
sulfur. In fact it is a simple and straightforward exercise
to plot the binding energy of the outermost electron in
the np® 1Sy ground state along the neon isoelectronic se-
quence, i.e., for Si**, Al13*+, Mg**, Na*, Ne, F~. These
binding energies evolve in a smooth and simple way from
one atom to the next, and a polynomial fit to these en-
ergies can be used to extrapolate an estimated resonance
energy for 02~ in the 1522522p® 1§, state. Our estimate
for the resonance energy based on this extrapolation for
0%~ is 7.2 eV above the O~ ground state. A similar
extrapolation for S~ predicts a resonance in e—S™ scat-
tering at 4.7 eV incident energy. These will presumably
be very broad shape resonances, with widths greater than
1 eV. A different analysis by Herrick and Stillinger [33]
predicts that the scattering resonance energy for 0%~ will
be E = 5.38 eV with a width of ' = 1.3 eV, an energy
somewhat lower than our extrapolated value. Gadzuk
and Clark [34] estimate a higher energy E = 8.8 €V for
the O%~ resonance. Huzinaga and Hart-Davis [35], on the
other hand, predict values closer to ours, namely E=7.68
eV and E=4.62 eV for 02~ and S?~, respectively, using a
restricted Hartree-Fock-Roothaan approximation. Note
that these doubly charged resonance states are well below
the threshold energy for escape of all electrons to infinity,
and therefore they would not be in violation of Simon’s
theorem [4]. More detailed experimental and theoreti-
cal tests are desirable to ascertain whether these unusual
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doubly charged atomic negative ion resonances exist, and
whether they have observable consequences.
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