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We have measured the angular distributions of electrons ejected from doubly excited autoionizing
Rydberg 3pnd J =1 and 3 states of magnesium, where n =10-18. To excite the aligned 3snd 'D, states
of Mg, we used two dye lasers crossed with an atomic beam. A third laser, linearly polarized in the same
direction as the other two, excited the atoms in the 3snd states to the 3pnd states. The angular distribu-
tions of ejected electrons are given by do/dQ=73 ,a,P,(cosf), where k =0,2,4,6. We measured the
angular distribution parameters @, as a function of the energy of the third laser photon using an electron
detector and a Mg* ion detector. We compare our results with the predictions of an R-matrix mul-
tichannel quantum-defect theory. We find good agreement between experiment and theory.

PACS number(s): 34.50.Lf, 32.80.Rm, 32.80.Dz, 82.50.Fv

I. INTRODUCTION

The R-matrix method, when combined with mul-
tichannel quantum-defect theory (MQDT) [1], has been
used with extraordinary success in predicting the photo-
absorption cross sections of alkaline-earth atoms in the
energy range up to about 5 eV above the lowest ioniza-
tion limit; an energy range that includes autoionizing
states converging to low-lying excited states of the ion.
The calculated photoabsorption spectra agree with both
the vacuum-ultraviolet spectra from the ground-state and
isolated-core-excitation spectra from bound Rydberg
states [2—17]. A more stringent test of the calculations is
to measure the angular distributions of the ejected elec-
trons from autoionizing states, and several comparisons
of this sort have been made [3-5,7,8,10-19], all between
measured and calculated angular distributions of elec-
trons resulting from the excitation of bound Rydberg
msns 'S, states to autoionizing mpns J =1 states. The
agreement for angular distributions is reasonably good,
but not as good as in the case of the photoabsorption
spectra. A review of experimental and theoretical work
done up to 1988 may be found in Ref. [20].

Here we report the measurements of the angular distri-
butions of electrons ejected from Mg 3pnd autoionizing
states. Using two lasers linearly polarized in the same
direction, an aligned sample of Mg 3snd 'D, atoms is
produced. These atoms are further excited by a laser
linearly polarized in the same direction to the 3pnd J =1
and 3 autoionizing states. In this case the Mg™ ion is left
in the 3s,,, state and the departing electron can be in ei-
ther the €p; or €f; continuum. This paper reports mea-
surements and theoretical predictions in Mg of the
higher-order angular distributions achieved by exciting
an aligned, nonspherically symmetric Rydberg state to
autoionizing states. The measured angular distributions
are compared to those calculated using the J =1 and 3 K
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matrices, which give an excellent representation of the
photoabsorption spectrum. As we shall see, the agree-
ment between theory and experiment is good, but not
quite as good as in the case of the photoabsorption line
shape. These measurements provide useful insight into
the validity of important MQDT calculations of other
properties of Mg, such as its dielectronic recombination
rate in a plasma [21].

In the following sections of the paper we present our
experimental method, the theory, the experimental and
theoretical results, and a discussion of the results. The
Appendix contains an independently derived, alternative
formulation of the theory.

II. EXPERIMENTAL METHOD

Our excitation scheme is shown in Fig. 1. The first
laser photon excited one electron from the Mg ground
state to the lowest excited state: 3s3s!S,—3s3p !P,.
The second photon excited the same electron to a bound
3snd 'D, Rydberg state just below the ionization poten-
tial. Both photons were linearly polarized in the same
direction, producing m =0 levels, where m is the azimu-
thal orbital angular momentum quantum number. The
wavelength of the second laser was tuned over a range
375-400 nm to produce various n levels n =10-18 of the
Rydberg d state. The energies of the 3snd D, states are
given in Ref. [22]. The first two lasers were used solely to
produce the aligned 3snd 'D, state. These lasers were
fixed in frequency while measuring spectra of the au-
toionizing 3pnd states. The third and last linearly polar-
ized photon excited the inner electron transition
3snd —3pnd, producing the autoionizing state [23]. To
conform to conventional descriptions we shall call the
3snd state |J,); its total angular momentum is J,=2.
The autoionizing 3pnd state has J =1 or 3. The 3pnd lev-
els converge to the two 3p Mg™ ion levels that have a
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fine-structure splitting of 92 cm™!. Due to the finite

widths of the 3pnd levels and the small Mg™* 3p fine-
structure interval, transitions to 3pnd levels converging
to both 3p, ,, and 3p;,, limits overlap and the third pho-
ton excites both of them. The transitions to J =1 and 3
levels overlap also. We tuned the third laser over a range
of ~300 cm™! centered on the ionic 3s,,,—3p;,, and
3p;,, transitions, and measured the angular distributions
of the ejected electrons as described below.

Each photon came from a dye-laser oscillator and
amplifier, the output of which was doubled in an angle-
tuned potassium dihydrogen phosphate crystal. A track-
ing device maintained the phase-matching angle of the
third laser’s doubling crystal as the third laser was tuned.
The dye lasers were pumped by a pulsed neodymium-
doped yttrium aluminum garnet (Nd:YAG) laser operat-
ing at a 20-Hz repetition rate. Each laser pulse had a
pulse length of about 5 ns and a frequency width of about
1 cm™!. The collinear laser beams crossed a thermal
atomic beam of Mg at right angles. A diagram of our op-
tical apparatus and detectors can be found in Fig. 2.

The first and second lasers entered the vacuum
chamber from the left side of Fig. 2. Both passed
through a uv-grade double Fresnel rhomb and linear po-

Mg" 3P 2,3/2

100

90

80

70

_1)

60

50 F5nd
2
Laser 375-400nm

40 -

Term Energy (103cm

3s3p 'P,
30

20 -
285nm

oL 3s3s's,
Mg

FIG. 1. Energy-level diagram for the three laser excitation of
the 3pnd states of Mg. The first laser is fixed in frequency and
excites the “outer” electron. The second laser excites the outer
electron to a Rydberg state, with a particular n value in the
range 10-18. The third laser excites the “inner” electron, and
is tuned over a several-hundred-cm ~!-wide region centered on
the autoionizing 3pnd resonances. All of the lasers are linearly
polarized in the same direction. The angular distribution and
line shape of the third transition are measured as a function of
the tuning of the third laser. The 3pnd states are split by the 92
cm ™! fine-structure splitting of the excited ion core.
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larizer to ensure that they were highly linearly polarized
in the same direction. The double Fresnel rhomb func-
tioned as an achromatic half-wave plate, allowing the ini-
tial polarization of the lasers to be rotated to any angle
without loss of intensity. The linear polarizer after the
rhomb was rotated to pass the rhomb’s output and to en-
sure that the purity of the linear polarization was at least
100:1.

The third laser beam entered the vacuum chamber
from the right side of Fig. 2, collinear to the first two. It
passed through a similar polarization controller. The po-
larizations of all of the laser beams were always set to
point in the same direction as the angle was varied. We
found that the vacuum chamber windows had no effect
on the laser polarization direction or purity.

A portion of the undoubled third laser beam was split
off and sent into an Ar optogalvanic cell, which provided
absolute frequency reference markers [24]. Another por-
tion was sent through an étalon, providing fringes 4 cm ~ !
apart. These two signals were recorded simultaneously
with all of our Mg spectra, giving us an absolute frequen-
cy calibration and a means of linearizing the scan of the
third laser.

Our detectors, shown schematically in perspective in
Fig. 2, consisted of an ion detector and an electron detec-
tor, each directly above or below the laser—atomic-beam
interaction point. The line through this point and the
detectors was perpendicular to the plane of the laser
beams and atomic beam to within two degrees. Each
detector was made of a stacked pair of microchannel
plates (MCP’s) biased with 2000 V of the appropriate po-
larity to detect positive ions or electrons. The MCP’s
were mounted at the back of a 10-cm-long tube to pro-
vide energy analysis and angular resolution for the elec-
tron detector. The negative high voltage at the face of
the ion detector was completely shielded from the
laser—atomic-beam interaction point by two grounded
grids. A pair of grids parallel to the laser and atomic
beams surrounded the laser—atomic-beam interaction
point. These grids were kept grounded during the laser
pulses. After about 1 us, a brief high-voltage pulse was
applied to force the entire slow-moving cloud of Mg™
ions resulting from autoionization of the Mg 3pnd atoms
to the ion detector. By the time the ion extraction pulse
was applied, the electrons had already hit their detector.
Time-of-flight energy analysis of the electron signal was
necessary since the Mg atoms could be photoionized by
absorbing two 285-nm photons from the first laser alone.
This produced relatively low-energy photoelectrons,
which arrived at the detector about 20 ns after the high-
energy electrons emitted from the autoionizing 3pnd Mg
states appeared at the detector. The electron pulses were
only 2 or 3 ns long, so we could easily temporally resolve
the two signals. The second electron pulse, having noth-
ing to do with the 3pnd states, was eliminated entirely by
using a gated integrator, which closed well before the
second pulse arrived.

The electronics used to process the signals were the
same as those described in detail in Ref. [19]. In brief,
the MCP’s amplified the electrons or ions by about 108.
A separate fast amplifier brought the signals up to the



46 ANGULAR DISTRIBUTIONS OF EJECTED ELECTRONS FROM . .. 3791
Dye Lasers Vacuum
Chamber
1 yA— .
Filter Polarizer Electron Rhomb
:  Detector —
A\ — 3 Il 74 | v
Rhomb Polarizer
2 [—7 ; :
4" lon *
Doubling Detector
Crystals
Optogalvanic Etalon Lens <
Ar Cell
Doubling Filter
T T Crystal E
3 i N -

FIG. 2. Schematic diagram of the optical apparatus and detectors. The pump laser is not shown. Each dye laser is a combination
of oscillator and amplifier. The doubling crystals are angle tuned; the crystal for the third laser is mounted in a servofeedback loop so
that it tracks the tuning of the third laser. The filters block visible and ir light and only pass uv light. The optogalvanic Ar cell pro-
vides absolute frequency reference markers for the third laser. The étalon provides regularly spaced fringes for linearizing the scan of
the third laser. Both the Ar cell and the étalon use undoubled light. The double Fresnel rhombs function as nearly achromatic half-
wave plates to rotate the linear polarization of the lasers, allowing the detectors to measure different points in the angular distribu-
tions. The axis of rotation of the rhombs are the collinear laser beams themselves. The linear polarizers ensure that the laser beams
are, in fact, linearly polarized. Each is rotated to match the setting of its rhomb. Each combination of rhomb and linear polarizer
was always set to pass the direction of polarization as the other combination. The detectors are shown in perspective and are perpen-

dicular to the plane of the drawing.

1 V level as soon as they exited the vacuum chamber.
Gated integrators triggered by the laser pulses converted
the signals to slowly varying dc levels. The gate width
and delay were much greater for the ion pulses than for
the electron pulses, since the ions traveled more slowly to
their detector. An analog-to-digital converter and com-
puter measured and recorded the electron and ion dc sig-
nals along with the Ar optogalvanic lines and étalon
fringes for further analysis. To minimize distortions of
the angular distributions, the entire region surrounding
the path of the autoionized electrons was sprayed with
graphite powder to reduce stray electric fields and was
enclosed with two layers of u metal to reduce stray mag-
netic fields.

The specific autoionizing Rydberg states we measured
are 3pnd, excited by one photon from 3snd states. Sym-
metry considerations and angular momentum selection
rules constrain the angular distribution to be of the form

Iy
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dﬂ(9)=

[1+BP,(cosB)+yP,(cosf)+e€Pg(cosh)] ,

(1a)

where I, is the total integrated cross section, P, (cos8) is
the kth Legendre polynomial, and @ is the polar angle be-
tween the laser polarization and the direction of the emit-
ted electron. The parameters I, B, ¥, and € are any real
numbers. I, as a function of energy gives the total photo-
absorption cross section, or line shape, of the transition.
The three angular parameters 3, v, and € vary as a func-
tion of energy; together they constitute the three parame-
ter “spectra,” which we measure and calculate in this pa-
per.

To ensure that we were obtaining the expected angular
distribution, we fixed the energy of all lasers and rotated

the laser polarization under the electron detector 360° in
increments of 10°. Since the ion signal does not depend
on 0, we used any changes in it to correct the electron
signal for changes in laser intensity and alignment during
the measurement. To correct the electron signal, we sim-
ply divided it by the ion signal. Figure 3 shows the graph
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FIG. 3. Angular distribution of the corrected electron signal
for the 3510d —3p10d transition, with the third laser set to
35660 cm ™. This is the graph of the corrected signal from the
electron detector as the laser polarization was rotated under it.
All laser frequencies were fixed for these data. The solid line
shows a fit of the theoretically predicted form of do/dQ [Eq.
(1a)] to the data points. The data agree quite well with the ex-
pected angular distribution. The fit gives results for the angular
distribution parameters B, v, and €, as shown under method B
in Table 1.
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of the corrected electron signal versus 6 for the 3p10d
state with the doubled third laser set at 35660 cm .
The error bars show the 1o error of the quotient, Gauss-
ian propagated from the electron and ion signal Poisson
errors. The solid line in Fig. 3 is the fit of Eq. (1) to these
data points. The fit is quite good, and clearly the angular
distribution is as expected. This fit gives precise numeri-
cal values for 3, ¥, and €; these will be discussed later in
this section. All of Fig. 3 corresponds to only one energy
point in the spectra of 3, ¥, and €. In principle, the pro-
cedure used to produce Fig. 3 could be repeated
thousands of times with a slightly different third laser en-
ergy each time to produce parameter spectra as a func-
tion of photon energy.

We chose instead to use one electron detector at a par-
ticular angle, tuned the laser over the energy range, then
changed the detector to another angle and tuned the laser
again over the same range. For one particular 3pnd state,
we typically took electron spectra at ten different angles
6, ranging from 6=0" to 8=90°. Since the expected an-
gular distribution is even about =0 and periodic with
period 180°, measuring on the interval [0°,90°] was all
that was needed. At each energy point, we fit Eq. (1a) to
the ten different electron signal values corresponding to
each of the ten angles. At each energy point this pro-
duced fitted values for 3, v, and ¢, thus providing angular
distribution parameter spectra over the same energy
range.

The problem with this procedure was that over the ap-
proximately five hours it took to collect ten electron spec-
tra, the signal strengths would change due to unavoidable
shifts in the lasers’ power and alignment. These changes
would mean that a comparison of electron signals taken
at the beginning and end of the data-taking run would be
meaningless, and a fit to them would give wrong results.

The ion signal, which does not depend on 6, was used
to correct for these electron signal shifts. In principle,
each ion signal, taken simultaneously with each electron
signal, should be the same, regardless of 6. In practice,
the ion signals varied according to the laser power and
alignment. We divided each electron signal value at each
energy point by the ion signal value taken simultaneous-
ly. Any fluctuation in the laser power or alignment
would affect the electron and ion signal values in the
same way. Taking the quotient cancels the fluctuations.
This method of dividing the electron signal by its simul-
taneous ion signal also has the advantage of eliminating
any effect due to varying optical saturation of the transi-
tion. Optical saturation, whether strong or weak at a
particular energy, affects the electron and ion signal by
the same factor, and so the effect cancels in the quotient.

The quotient can be written as
da /o

70 E=a0+asz(COSO)+a4P4(c059)+a6P6(cosﬁ) ,

(1b)

since the ion signal is proportional to the total cross sec-
tion I,,. Both sides of Eq. (1b) still contain an a priori un-
known overall experimental normalization factor, due to
the arbitrary experimental units of do /d and I,. Thus

in general the fitted value of a, is not 1.0. The fitted
value of a, determines the overall normalization. This
normalization can be removed by taking the quotients
B=a,/a,y, y=a,/a,, and €=aq/a, since the same nor-
malization factor is contained in a, a,, a4, and ag.

The above procedure for normalizing the electron sig-
nals assumes that the relative efficiency of the electron
and ion detector systems remained constant over the ap-
proximately five hours of a data-taking run. We
thoroughly warmed up the apparatus and left the gate
positions and widths, MCP voltages, and amplifier gains
unchanged. The one uncontrollable efficiency factor was
the intrinsic gain of the MCP’s themselves, which did
change over the space of some weeks. To confirm that
this did not vary significantly during a data-taking run,
we measured the 6=0 electron signal at the beginning
and end of each data-taking run, and several times in be-
tween the scans at other 8’s. We saw that the ratio of the
electron signal at =0 to the ion signal did not change
over the entire data-taking run.

For the fitting algorithm to work properly, the zero
offset of the dc output of the gated integrators had to be
adjusted so that the output was zero when a true zero sig-
nal occurred. Otherwise, in the case of a small signal
plus a large zero offset, the fitting algorithm would inter-
pret it as a large signal, and give erroneous results. For
each scan, we carefully adjusted the zero offset to be less
than 0.005 V out of a 5-V full scale signal. When the true
signals fell to about 0.05 V, this uncertainty in the zero
offset rendered our results meaningless. This effect limit-
ed us to scanning within about +200 cm ™! of the signal
peak; in this energy range the signals were always at least
0.05V.

For fitting purposes we used Eq. (1b), which is linear in
the four fitted parameters a,, a,, a4, ag. We used the
singular value decomposition method, as described in
Ref. [25], to fit Eq. (1b) to the ten quotients of electron
signal to simultaneous ion signal. The ten data points
were taken at the ten different values of 8 corresponding
to one energy value. A separate fit was performed for
each doubled third laser photon energy value in the
range, producing fitted spectra of the a,, a,, a,, and a,
parameters. As expected, we found that the fitted values
for a, were nearly constant as a function of energy. The
actual fitted angular distribution parameters 3, ¥, and €
were obtained from f=a, /a,, ¥y =a,/ay, and €=ay/a,.

To show that the above procedure (method A) for
fitting the ten electron signal spectra at the ten different
angles 0 to produce parameter spectra is valid, we mea-
sured the electron signal as a function of 6 by manually
rotating the laser polarizers, with the energies of all of
the lasers fixed (method B). We then fit the resulting an-
gular distribution to Eq. (1), as shown in Fig. 3. This fit
gave values for the parameters f3, v, and €, shown in the
row for method B in Table I. Selecting the values of 3, v,
and € at that same single energy point from the 3p 10d pa-
rameter spectra gives the values for 3, ¥, and € shown in
the row for method A in Table I. Method B is the more
traditional way to obtain angular distributions, but as our
errors in the method A parameter values are about 0.5 (as
we shall discuss later), the two methods are equally valid.
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TABLE I. Comparison of measured values of angular distri-
bution parameters of the 3p 10d state at 35660 cm™~!. Method A
is used for the parameter spectra shown in this paper. It in-
volves scanning the third laser energy to get electron signal
spectra at ten different angles O, then fitting those ten data
points to Eq. (1) to obtain the 3, ¥, and €. The row for method
A shows just one energy point out of many from the 3p10d pa-
rameter spectra obtained in this manner. Method B involves
fixing the energies of all of the lasers, then manually rotating the
polarization of all of them to vary 6. We obtain the graph
shown in Fig. 3, then fit it to Eq. (1) and obtain 3, 7, and € at a
single energy. The good agreement between the two methods
shows that both are equally valid. For comparison the theory
values derived in Sec. III for the parameters of this state at this
energy are also shown.

B Y €
Method A 2.5(5) 2.6(5) 1.2(5)
Method B 2.6(2) 2.702) 1.5(2)
Theory 2.51 2.81 2.00

Only method A allows the convenient generation of an-
gular distribution parameter spectra as a function of en-
ergy.

For the rest of this paper we use signals obtained with
6 in the range [0°,90°]. As seen in Fig. 3 the measured
angular distribution is not perfectly periodic with period

do 2
—=N
dQ 1,12

cs’

M, |LmJ.M,

This equation introduces most of the notation used in the
rest of this paper. N? is a normalization constant. J, is
the total residual ion core angular momentum.
J,,=J_+s, where s is the spin of the outer photoelectron;
M, is the projection of J on the axis defined by the laser
polarization. 1 and m are the orbital angular momentum
of the outer electron and its projection. J and M, are the
total angular momentum of the system, and its projection
on the axis of quantization; J=J+1. k is the vector in
the direction of the ejected electron’s travel. The minus
sign in the second matrix element indicates that the wave

do
== =N? 2
d Q Jc,JcS m,m’,Mm

LI'\JJ M; M,

180°. This means that the angular distribution and pa-
rameters obtained with 6 in the range, e.g., [90°,180°],
will not be exactly the same. However, the fitted parame-
ters derived from two different angle ranges differ by no
more than 0.3, well within our ultimate error bar of 0.5.

Only four nonzero Legendre polynomial coefficients
are allowed in Eq. (1b), as will be shown in Sec. IIL
However, due to noise and error in the experimental
data, our measured do(8)/dQ may have nonzero values
for a,, as, as, a;, ag, etc. We found that when we fit our
data to Y¥,a,P,(cosf), where n=0,2,4,6,7,8 and
n=0,2,4,6,8,10, we obtained essentially the same values
for aq,a,,a,,a¢ as fitting the data to Eq. (1b). At the
same time the values for a,,ay, or ag, a oy, were consistent
with zero. Including a,, a3, or a5 in the fit caused a total
loss of significance for all of the a, values. Thus
coefficients of order 7 or more were zero when included
in the fit, and coefficients of order 1, 3, 5 are not defined
when they are fit to our data, as expected.

III. THEORY

In order to derive specific formulas for the 3, 7, and €
parameters in Eq. (1a), we must start from the most gen-
eral formula for do /dQ of an atom absorbing a linearly
polarized photon and then emitting an electron:

A 2
S Y, (KT M Im [IM) ) (T DIM; —[€11,0) | . )

-

functions are normalized according to incoming-wave
boundary conditions. € is the unit polarization vector of
the last laser photon. The light is linearly polarized. r is
the position of the Rydberg electron relative to the ion
core. J, and O are the initial total angular momentum of
the Rydberg Mg atom before absorption of the third laser
photon, and its projection on the axis of quantization.
Due to the parallel linear polarization of our lasers, the
3snd states we use have J,=2, and the 3pnd states have
J=1lor3.
Equation (2) can be expanded as

S Y (K Y, (RN M T M I'm ) (T Mo Im | T YT o0l €* x| [(T s )1 1IM; =)

XA ' WMy —|€x|T,0) . (3)

Equation (3) can be written with reduced matrix elements as

do _ ., A o , (J,0[10J0) (J'0[10J,0)
o=V sz m%ﬁY,,m(k)Y,,,,(k)(JOIJmMCSIm)(JcsMcslmlJO) A ]
LrJsJ
X(Tollr VNI s W LW = I [T s W "1 = [Ir V)T ) @)

where r'" is a first-rank tensor, and [x] is defined as (2x +1)!/2. The portion of Eq. (4) in the large brackets, called 4,

can be written as
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Jo 1 J)[7 1 g, -
4=10 00fl0o 0 02! TR 7 (10101Kk0)
M, k

> es

X Y,o(k)(kO[I'—

mim Y{J'OlJ M I'm ){J M Im|JO) , (5

using the formulas for the product of Y;,, functions [26]. The Y, function can be written in terms of P, (cos@), giving

—1 Jo 1 J||J" 1 Jy ' Ik
— ’ ’ 2
A e AP 0 0o0llo o o %[k] Pilcosh) | o o
" A A A N S
m,EM ( b m’ —m 0 MCS m’ 0 Mcs m 0
(6)
The portion of Eq. (6) in large brackets, called B, is
B R LA AR A
B _( - 1) 0 0 0 JCS l l, . (7)
By using the identity 6.2.8 of Ref. [27] the m dependences of the angular distribution are removed.
Combining Egs. (3)-(7) we obtain
Z; —g akPk COSG) (8a)
where
e U LR S ) A /N N VG B 3 T A
UT g 2 (CDTUIIATIRE 1o 0 0flo 0 offo 0 oflo 0 o
L
" J (1) AR (1) )
X J,o1r (Tollr VNI s W oI W =T s =g (8b)
[
For the rest of this paper the reduced matrix elements in a,=2(2|Dg, =Dy 1)+ L (4| D3 |*+3|D 5%
Eq. (8b) are abbreviated as Df ; and D; ,, respectively. .
< e —£[V6Re(D§Do;)+2Re(D} D3], (9b
Only four terms in the summation of Eq. (8a) are nonzero g e(D5Do3) e(DiD1s)] )
due to the triangle rule for the 3j symbols. The nonzero a,=5(6|Dg; |+ D 51%)
terms have k =0,2,4,6, confirming the form of Egs. (l1a)
and (1b). Thus Eq. (8a) matches Eq. (1a), with I, =4ma,, — 2[4V 6Re(D§Dy3)—6Re(D}Dy3)],  (9¢)
Bfaz/ao, Y =a4/a,y, and e=.a6/.a0. l\zlote that in calcu- ag=2( 4|Dg;12—3|D ;1) (9d)
lating B, v, and €, the normalization N “ cancels out. For
our particular final states, we can have J =0 or 1, since B=a,/ay,, y=a,/ay,, €=ag/ag . (9e)

J.=4,s=1,1=J,and I'=J’'. When [ =J =1 the ejected
electron is an outgoing p wave. When [/ =J =3 the elec-
tron is an outgoing f wave. There are in general eight
terms in the summation of Eq. (8b). Some of these terms
are zero, depending on k.

Evaluating Eq. (8a) with the aid of 3j and 6j tables, we
calculate the angular distribution parameters in terms of
the reduced matrix elements

ag=3%Dy > +1D |, [))+ (D3 |+ (D 51*) (9a)

D, , is written out in Eq. (8b). Up to this point, our

derivation is completely general, and we have not used
MQDT.

Next we calculate the reduced matrix elements. This is
where MQDT is essential. We have two manifolds of
states, J =1 and J =3. For each manifold the derivations
proceed in parallel; they are brought together only in Eq.
(9). We use seven J =1 channels and eight J =3 chan-
nels. They can be described in J_J,; or LS coupling. In
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LS coupling the states are 3sep 'P,, 3pns 'P,, 3pnd 'P,,
3sep *Py, 3pns 3Py, 3pnd 3P|, 3pnd °D,, and 3pnd ’D;,
3sef 'Fy, 3pnd 'Fy, 3png'F,, 3sef’F,, 3pnd’F,,
3png ’F,, 3png 3G,. In J.J. coupling the states ¢ are,
for  J=1, 3s5,,{0)ep, 3s\,{l}ep, 3pi,{l}ns,
3p3{1ins, 3p,,{1}nd, 3p;,(1ind, and 3p;,(2}nd.
For J=3 the states are 3s,,,{0}ef, 3s,,{1}€f,
3pi1p{lind,  3ps,{lind,  3ps,(2ind,  3p,,{1}ng,
3p3,,{1}ng, and 3p;,,{2}ng. The number in braces is
Js- Near the nucleus, LS coupling is the most physical
due to the large electrostatic and exchange forces. At
large distances the rate of phase accumulation depends
on the energy of the core state, which in turn depends on

]

Vi —1s={[(LS sV Y I[(LL(S,5)SW)

3795

L., S, and J.. L, and S, are the total orbital angular
momentum and spin of the core; J.=L_ +S,. At large
distances J_J  coupling is appropriate (actually jj and jK
coupling [28] are as applicable as J.J,, but the matrix
elements needed to describe the current angular distribu-
tion experiment are easier to evaluate in J.J,, coupling).
The K (reaction-reactance) matrix in J,J,. coupling can
be obtained from the K matrix in LS coupling through a
simple transformation that represents the recoupling of
the angular momenta and spins

= (UL S M5 1 L (Se5)S W Y [(LSW 1V | [(LDLSI )

2, L +S, +s+S+I+L

=(—1) (IS L]

The treatment derived here is similar in spirit to the more
usual LS to jj recoupling [4], but is more appropriate for
the current experiment. The values of K 75! and K 753
are given in Tables II and III. These were calculated us-
ing a box of radius 20 a.u., larger than the 12 a.u. box
used for calculation of previous K matrices [2,3]. The
new K 75 matrix also includes the 3png 'F 3, 3png ’F 1
and 3png *G; channels. In all that follows, the K, values
used are from the J_.J,, coupled K matrix. The larger R-
matrix box for r,=20 a.u. should in principle incorpo-
rate some longer-range multipole effects that were
neglected beyond 12 a.u. in the previous K matrices [2,3].
These multipole effects appear to be negligible, based on
the good agreement between calculations conducted us-
ing the different K matrices. The inclusion of 3png chan-
nels in the newer K matrices allows us to describe addi-

KJJCJCS=VJJCJ“—LSKI{SVZ§—JCJCS ’ (10)
where
L. S, J. ||S L, Jg
s I, s\t g |- (I

tional weak and narrow g-wave resonances. Overall these
have only minor importance, but a few experimental and
theoretical features derive from g-wave resonances, as we
shall discuss later.

In a standard formulation of MQDT the jth indepen-
dent wave function (prior to imposing boundary condi-
tions at r — o0 ) can be written as

W= AS U8, —8KS) 12

when the outer electron is at distances larger than r,. All
wave functions ¢ are functions of the energy. i and j run
over the states (channels) listed above. f;(g;) is the regu-
lar (irregular) Coulomb function of energy g, =FE —E;
and angular momentum /;. E; is the ionic core energy as-
sociated with the core of the ith channel, shown in Table

TABLE II. K ’7~! matrix. The 7X 7 matrix is evaluated at three different energies (relative to the Mg
ground state). All matrix elements not included in the three block-diagonal submatrices shown here are

zero.
LS coupled states

Energy 'p ’p D
(em™)) 3sep 3pns 3pnd 3sep 3pns 3pnd 3pnd
95149 —1.29 2.71 0.860 0.158 0.235 0.112

2.71 —5.38 —1.77 0.235 —2.20 —0.0758

0.860 —1.77 —0.823 0.112 —0.0758 0.590 0.616
97 344 —1.36 2.89 0.900 0.145 0.248 0.0999

2.89 —5.87 —1.90 0.248 —2.28 —0.0823

0.900 —1.90 —0.824 0.0999 —0.0823 0.600 0.637
99538 —1.38 3.00 0.910 0.133 0.264 0.0894

3.00 —6.25 —1.98 0.264 —2.35 —0.0924

0.910 —1.98 —0.807 0.0894 —0.0924 0.607 0.666
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TABLE III. K773 matrix. The 8 X8 matrix is evaluated at three different energies (relative to the
Mg ground state). All matrix elements not included in the four block-diagonal submatrices shown here

are zero.
LS coupled states
Energy ’D 'F ’F G
(cm™Y 3pnd 3sef 3pnd 3png 3sef 3pnd 3png 3png
95 149 0.317 0.524 —0.0452 0.333 0.731 —0.0557
0.616 0.524 —0.269 0.0116 0.731 2.00 —0.100
—0.0452 0.0116 —0.0608 —0.0557 —0.100 —0.0552 0.0881
97344 0.306 0.552 —0.0400 0.310 0.674 —0.0473
0.637 0.552 —0.256 0.0203 0.674 1.86 —0.101
—0.0400 0.0203 —0.0643 —0.0473 —0.101 —0.0574  0.0992
99538 0.295 0.577 —0.0422 0.293 0.629 —0.0461
0.666 0.577 —0.236 0.0260 0.629 1.76 —0.110
—0.0422 0.0260 —0.0640 —0.0461 —0.110 —0.0548  0.105

IV. E is the total energy of the excited state (above the
Mg ground state). K,§ is the K matrix in J,J, coupling.
A is the antisymmetrization operator (which has no
effect since the electrons are in different regions of space).
¢!=x; I{[(LIS s JILLYT ) are the J.J,, states. y; is
the radial core function associated with the ionic core
state. All of the 7 states we consider have one of three
possible core states: 3s; 5, 3p; 2, O 3p; ;.

The wave function of the 3snd “‘initial state” being
photoionized can be written in a similar manner when the
outer electron is at distances larger than r:

|J0)=¢g° =‘>4¢é°(cosw,uofo—sin7'r,uog0)/v(3)/2 , (13)

where Xo=Xx;,, L2=0, S/=1, J0=1, J%=0, [,=2,
Jo=2, and p, is the quantum defect of the initial state.
v, is the effective quantum number of the 3snd state given
by vo=[R /(E;;,—E)]'/%. R is the Rydberg constant for
Mg: 109734.86 cm~!. We have taken advantage of the
fact that the initial-state LS coupling, 3snd 'D is identical
to the J,J,, coupling given here. In the isolated-core ap-
proximation the dipole operator only acts on the core
electron due to the fact that the outer electron spends so
little time near the nucleus that it cannot absorb a pho-
ton. Using this approximation the reduced dipole opera-
tor connecting MQDT wave functions (12) and (13) is

_

2

f “(cosmugf o — SinTpgo )(f:8;; — & Kidr /vy/*=viv;
o

J
dif= ey’
=3 (¢!Ir V6
Xfw (cosmugf o —Sinmiego)
o
X(f;8;; —g,K} ydr /vy'? . (14)

Here again i and j run over the possible channels listed at
the beginning of this section.

We derive an expression for {¢7||r"! )||¢é°) based on the
repeated application of the formula for a tensor operator
that only acts on a part of a coupled system (Eq. 7.1.7 of
Ref. [27]). Due to the appearance of a zero in each of the
resulting 6j coefficients, this expression reduces to a very
simple formula

($Ir V0 =8,

3/2-Ji+0o+1

81 8, II=D)

X fox)(,»r)(odr/S\/i . (15)

In deriving Eq. (15) we used the fact that L2=0, J2 =0.
Equation (15) applies to all isolated core experiments
where the initial state is msnl,'L. We do not need to
know the value of the dipole matrix element between X,
and Y; to obtain relative cross sections and angular distri-
butions, since it is common to all of the nonzero terms.
Finally we obtain a value for the overlap of the outer
electron’s Coulomb functions by using Green’s theorem:

W( focosmg—8osinmig, f;8;; —g,—K,f ) /[ve 2 (vE—v3)]

=202V vy(sinmped,; — cosmuoK ) /[m(vi—v§)] (16)

where W (F,G)=FG'—F'G is the radial Wronskian eval-
uated at r =rg, and v;=[R/(E;—E)]"/? is the effective
quantum number in channel i. The last approximate step
in Eq. (16) results from ignoring the energy dependence
of the f and g at the small radius r,, while using

I

W(f,g)=2/m and W(f,f)=WI(g,g)=0. Equation (16)
contains the usual isolated-core approximations but is
cast in a form more amenable to MQDT manipulations.
We now combine the two pieces (15) and (16) into the full
dipole matrix element to obtain
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TABLE IV. Core energies of the Mg atom. Each energy
given amounts to the energy necessary to remove one electron
from the neutral atom and leave the Mg* core in the given
state. E;; is simply the ionization energy of Mg. Energies are
in cm ™! above the ground state, with the neutral atom ground
state defined to have zero energy.

E;, 61671.02
Espp 97340.33
Es 97431.90

d/=C(—1)°[J]

XEGH J'ILI[J ](—1)

32-Ji+1,

X vi(sinmod;; —cosmuoK ) /(vi—v3) , (17)

where C is a factor common to all of the d;"

C=V"2 [ “Xsprxsdr /37 . (18)
We approximate C to be the same whether it includes
X3P1/2 or X3P3/2'

We construct the physical wave functions and dipole
matrix elements by superposing the independent wave
functions in Eq. (12) to eliminate exponentially diverging
terms in the closed channels and satisfy normalization
per unit energy in the open channels. The equations
these coefficients must satisfy are the following. When j
is a closed channel, ¢;=E —E; <0, and

3 (tanB;8; +K;i) 4;, =0, (19a)

e

where B;=m(v;—1I;). When j is an open channel (i.e.,
g;>0),

2 8; A, =Tj,cosmr), (19b)
and

3 Kji Ajp =T sinm7, . (19¢)

The T’ matrix in Egs. (19) is unitary. Since we have two
open channels, p runs from 1 to 2. Equations (19) can be
combined in the usual way to obtain a generalized eigen-
system where tanm*; are the eigenvalues and 4 ,{, are the

eigenvectors. The physical dipole matrix elements are
obtained by superposition,
J— J
d, Zd H i (20a)

or in a more conventional form, assuming only closed
channels contribute,

J i 3/2-Jl+1
d,’,=C(—l)°[J]281i, Ji1 LI[J I(=1) 0
sinmr(v; —v;)
R W (20b)

(v}—v3)cosmv;

The d ; are real reduced dipole matrix elements that
govern the transition from the ground state to the real

wave function 1[1,’,. This standing wave does not satisfy
boundary conditions corresponding to the experiment
(with an electron escaping in a specific direction). This
necessitates one further transformation to the solutions
obeying the “incoming-wave boundary conditions,” with
outgoing waves only in channel i. The incoming-wave
boundary condition is needed to represent a solution cor-
responding to photoelectron flux that escapes as a plane
wave toward the detector only in channel i at times
t— . A clear discussion is given by Starace [29]. The
final wave function is
1,1/ 21/)JTJ expli(l;m/2— 777*’ a;)], (21)
where o; is the Coulomb phase shift in channel j,
aj=argF[lj+l—i/(2€j)‘/2], and g; is in atomic units.
This final transformation achieves the goal of construct-
ing a wave function that matches the experiment. We
can now obtain the matrix elements needed for Egs. (8b):

=2 d;Thexplil—lim/2+wr)+0;)] . (22)

The values of the T}, and A, contained in d} are ob-
tained by solving Egs. (19). Equations (8) can now be
used to generate cross sections and angular distributions.

To summarize, the sequence of transformations begin-
ning with Eq. (10) is able to convert the dynamical infor-
mation contained in nonrelativistic reaction matrices into
photoionization cross sections and angular distributions
obtained in isolated-core experiments. The necessary K
matrices are obtained from nonrelativistic R-matrix cal-
culations. Since all of the other dynamical information is
exact, the comparison of the current theory with experi-
ment, described in Sec. IV, directly reflects on the pre-
cision of the R-matrix calculations.

IV. RESULTS AND DISCUSSION

A. Results

For each 3snd —3pnd transition, we have measured
the ion signal yielding the total photoionization cross sec-
tion. These line shapes have been measured and com-
pared with theory in Ref. [3]. Our measured line shapes
agree with those in Ref. [3], and they agree quite well
with theory, as shown in Ref. [3].

Our measurements of the angular distribution parame-
ters B, v, and € are shown in Figs. 4, 5, and 6. The super-
imposed smooth solid lines are the MQDT predictions
for the parameters. Figure 4 shows the parameters for
the 3510d —3p 10d transition, over a range of 400 cm™
centered on the peaks of the transition. Figure 5 shows
the 3512d —3p 12d transition over the same energy range
as Fig. 4. Figure 6 shows the 3s18d —3p18d transition
over a narrower energy range to better exhibit the nar-
rower features of the higher n spectra. In each graph, the
parameters have the same vertical scale but are offset
vertically for the sake of clarity. In each case the theoret-
ical prediction was convolved with the 1 cm™! instru-
mental linewidth of our measurements, reducing the
sharpness of some of the narrow features, especially in
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FIG. 4. Angular distribution parameters f3, ¥, and € for the 3510d —3p 10d transition. The experimental results are shown with
the jagged solid line. The error of our derived values for 3, ¥, and € vary across the graph, however, a typical 1o error for the param-
eters is 0.5. The predictions of the K matrix-MQDT theory as described in the main text are shown with a smooth solid line. The re-
sults of the alternate MQDT theory formulation using earlier K matrices of Refs. [2,3], described in the Appendix, are shown as a
dotted line. Each horizontal line indicates the zero for the corresponding parameter that overlaps it. o is the relative photoioniza-
tion cross section (in arbitrary units) contributed by the J =1 (solid curve) and J =3 (dash-dotted curve) final states. The narrowest
peak heights have been artificially chopped off. Unlike the parameters f3, ¥, and ¢, the cross section has not been convoluted with the
experimental resolution (1 cm™!). The top of the figure shows the effective quantum number scales going to the two 3p, ,, and 3p;,,
fine-structure thresholds in unit steps.
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FIG. 5. Angular distribution parameters 3, v, and € for the 3512d —3p12d transition. The comments of Fig. 4 apply to this
graph.
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FIG. 6. Angular distribution parameters 3, v, and € for the 3s18d —3p18d transition. The comments of Fig. 4 apply to this

graph.

the n =18 parameters. The positions of the unperturbed
Mg™ ion transitions 3s,,—3p,,, and 3p;,, are at posi-
tions 35669 cm~! and 35761 cm™!, respectively. Al-
though we measured the angular distribution parameters
for all of the 3pnd states with n =10-18, we show only
three sets of parameters. All differ in detail, but exhibit
similar qualitative features and shapes. For n =19, the
features of the spectra became quite narrow, and our
laser linewidth was a limiting factor.

The errors in our values for 3, ¥, and € come from
several sources, listed below in order from largest to
smallest. The two largest sources of error are random in
nature, and are due to the random fluctuations (noise) in
the signal levels, when all of the lasers are fixed in fre-
quency and the signal should remain constant. The larg-
est error comes from the self-consistency, or repeatabili-
ty, of our results for the angular distribution parameters.
We checked this by going through the data analysis pro-
cedure of Sec. II using different sets of electron signals at
certain angles, all corresponding to the same transition.
That is, instead of using all of the measured electron sig-
nals at, e.g., 6=0°21°31°34°,49°,55°,62°,70°,76°,90°, we
used just four electron spectra at 8=0°,31°,55°,90° and fit
Eq. (1b) to them. (The angles were chosen to be extremes
or roots of the various Legendre polynomials, and to be
distributed as evenly as possible over the range 0-90°.)
We did this for several different sets of four out of ten an-
gles. The angular distribution parameter spectra ob-
tained agreed with each other to within approximately
0.3 or less at the peaks of the line shapes. (The numbers
for the angular distribution parameters have no units.)

The other random error due to noise in the signals ap-
peared as the fitting error. In essence this error reveals

the consistency of our data with Eq. (1b). The standard
deviations of 3, ¥, and € due to the fitting error were ob-
tained via Gaussian error propagation from the fitting er-
rors for the parameters a,a,,a,,a4. The a, fitting errors
were the square roots of the diagonal elements of the co-
variance matrix returned by the fitting algorithm [25].
These fitting errors represent the minimum error possi-
ble. These errors depend on the estimate of error of our
electron signal to ion signal quotients; the quotient error
was obtained via Gaussian error propagation from the
Poisson errors of the electron and ion signals. The quo-
tient errors were in the range [0.01, 0.15]. The fitted
values of 3, ¥, and € were insensitive to these input error
values. The fitting errors of B3, ¥, and € were very small
at energies corresponding to peaks of the line shapes, but
grew to about 1.0 at energies where the electron and ion
signal values were very small. This indicated that at
small electron signal values, where do /dQ and I, were
nearly zero, the parameters B, ¥, and € were not well
defined, due to the form of Eq. (1a).

The rest of the errors, smaller in magnitude than the
two previously described, were systematic in nature. It is
possible that the angle 6 at which we set the laser polar-
ization was in fact 6+8. 8 would have been the same for
all 8. This systematic offset of 6 could be caused, for ex-
ample, by a tilt of the linear polarizers relative to the vac-
uum chamber and detectors. The fitting algorithm, using
the misrepresented values of 6 for the electron signals,
would then return incorrect values for B, ¥, and €. We
estimate § for our apparatus is less than 2°. We simulated
this effect of nonzero 8§ by generating on a computer elec-
tron signals at various 6 from a given angular distribution
described by 3, v, and €. The angles 6 were altered to be
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6+, and the electron signals labeled by their altered an-
gles were then treated as real data and fit to Eq. (1), gen-
erating new ', y’, and €. For |8| <2° the original and
transformed angular distribution parameters agreed to
within approximately 0.2 or less. For [8/>5° the
transformed parameters ', y’, and € were drastically
changed from their original values, so accurate angular
alignment was critical.

Another systematic error could be caused by a nonzero
offset to the dc signal level outputs of the gated integra-
tors. As described earlier, we carefully set the offset to be
no more than a tenth of the signal for each scan.
Artificially shifting the dc offset of some or all of the elec-
tron signals in a set by 1 part in 10 had no noticeable
effect on the parameters. The ion signals in general were
larger than the electron signals, and their zero offset was
always a small fraction of their signal value over the ener-
gy ranges examined.

A final possible systematic error is due to the nonzero
solid angle of our detector. The finite size of the detector
caused it to convolve or average the angular distribution
over its 0.2 radian width. We simulated this effect by cal-
culating the angular distribution at each energy from
theoretically generated parameter spectra and averaging
it over a 0.2 radian width. Then we treated that averaged
angular distribution as real data and fit Eq. (1) to it. Re-
peating this procedure at each energy generated new pa-
rameter spectra. At a detector width of 0.2 radians, the
and y spectra did not change at all. The € parameter,
since it multiplies P¢(cos6), which varies the most rapid-
ly with 6, would be expected to be the most sensitive to
this effect. At a width of 0.2 radians, the absolute value
of € decreased insignificantly in a few places, by no more
than 0.05 from the original € spectra.

Taking all of these error sources together, the total er-
ror (one standard deviation) in the 3, ¥, and € angular
distribution parameters is at most 0.5, including both
random and systematic errors. Thus the error bars on
our parameter values vary, but have a typical half width
of 0.5. Near the peaks of the line shapes the repeatability
of our fB, v, and € parameter values (excluding systematic
errors) was 0.2 or better. Due to the more complex data-
taking and analysis procedures, these errors are
significantly larger than the error on the 8 parameter of
the 3pns Mg states [19]. The energy resolution of our
spectlra, determined by our laser linewidth, was about 1.0
cm

B. Discussion

In the previous work on the 3pns Mg angular distribu-
tion parameter [19], the 8 parameter was found to be rel-
atively constant near B~2, except for a few sharp dips to
B~ —1. That sort of structure is not seen in these 3pnd
angular distribution spectra. Instead we measured pa-
rameter values, which vary irregularly. The fluctuations
of the B parameter of the 3pns states were clearly corre-
lated with the positions of interloping autoionizing states,
which were not excited directly, but were at the same en-
ergies as the B parameter fluctuations. Although there
are similar interloping resonances throughout the mea-

sured energy range of the 3pnd states, there is no obvious
correlation between them and the features in the 3pnd an-
gular distribution spectra. The 3pnd spectra are consid-
erably more complex than the 3pns spectra, which is to
be expected since the 3pnd states studied are more com-
plex and have two angular momentum J manifolds.

As shown by Figs. 4, 5, and 6 the predicted f3, 7, and €
spectra agree well with our measurements. Most of the
small disagreement between experiment and theory can
be explained by experimental error. The only significant
systematic discrepancy is that the measured € value is
never more than about 2, whereas the theoretical value of
€ reaches 3 at some energies. Since € multiplies P¢(cos6),
which varies most rapidly with 0, the € parameter is most
sensitive to systematic offsets in 6, and to the averaging
of the angular distribution over 6. It is possible that we
have underestimated the averaging of the angular distri-
butions caused by the finite angular aperture of our elec-
tron detector. This would cause us to measure a smaller
le| than the true |e|, but would have little effect on 3 and
Y.
The different sorts of angular distributions observed
are shown as polar plots in Fig. 7, along with the angular
distribution of the 3snd 'D level being photoionized. The
expected propensity is that the photoelectron will be
mainly ejected along the photon polarization axis. This is
because the 3snd level is already elongated in that direc-
tion, and also because the photoionizing laser is applying
an additional force on the electron cloud in that direc-
tion. If a low-lying 3snd level were being photoionized
rather than a Rydberg level, one would argue [30,31] that
the nd electron would be preferentially photoionized into
the €f continuum rather than into the ep continuum.
The classical argument is that in the course of absorbing
energy and increasing in speed, the photoelectron is more
likely to gain rather than lose angular momentum (a
quantum version of this argument is given in Ref. [30]).

This simple argument needs to be modified to under-
stand the present experiment, because it is really the 3s
electron that is initially excited by the photoionizing
laser, after which the 3pnd resonance levels decay by au-
toionization into the 3sep and 3s€f continua. But a simi-
lar argument still applies in that the nd electron gains
speed in the course of autoionizing and so has a propensi-
ty to gain angular momentum. For this reason the
3pnd —3sef channel should be the dominant photoion-
ization pathway. This propensity is verified by the rela-
tive J =1 and 3 contributions to the total photoionization
cross section, shown in Figs. 4—-6. The J =3 line shapes
are much broader on average than J =1 line shapes since
there is more of a propensity to autoionize to an f-wave
continuum (the autoionization rate to f waves is faster).
Therefore over most of the spectra, except near high and
narrow J =1 resonances, the J =3 contribution is larger
than the J =1 contribution.

Because a pure f-wave solution with m;=0 is highly
peaked along the quantization axis, this confirms that
ejection along the polarization axis should be greatly
favored (normally) over sideways photoejection near
0=m/2. This propensity is verified in the angular distri-
butions of the present experiment, with most energies
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(a) (b)

(c)

FIG. 7. (a) Angular distribution of the initial |J,) 3snd state. |W|? is proportional to [P,(cosf)]>. (b) A typical “propensity
favored” angular distribution. This is of the 3p18d state at 35646 cm ™! above the 35s18d state. The solid line is the MQDT predic-
tion for the angular distribution [of the form of Eq. (1a)]. The filled circles are the measurements of the normalized electron signal
(differential cross section). 8=0 is vertical on these polar plots. We measured do /d{) only in the plane of the paper, and only on the
interval [0°,90°]. The data have been copied onto the other three quadrants. The dashed line is a least-squares fit of the data to Eq.
(1a). The parameters S, ¥, and ¢ derived from the fit are the three data points of Fig. 6 at 35646 cm™'. The peak of do /dQ along
the quantization (laser polarization) axis is typical of photoionization. (c) A “propensity unfavored” angular distribution. This is of
the 3p18d state at 35687 cm ™' above the 35184 state. This graph shows that at a few particular energies the electron can be ejected

“sideways” due to the complex channel interactions.

displaying a photoelectron angular distribution peaked
along the polarization vector, qualitatively similar to that
shown in Fig. 7(b). Occasionally energies are probed, as
in Fig. 7(c), which shows the propensity-unfavored case
of predominantly sideways photoejection, but these tend
to be comparatively rare.

A further complication to bear in mind when compar-
ing the present theory and experiment is that the calcula-
tion has ignored all effects of hyperfine structure. For
90% of the Mg atoms, which have zero nuclear spin, this
is exact. But for the remaining 10% having nuclear spin
I=3, the hyperfine interaction causes J to precess about
F, which can mix in the magnetic substates other than
M;=0. The validity of ignoring this precession depends
on the relative time scales of hyperfine precession and of
the laser excitation time. The precession periods are es-
timated to fall in the range of 10 to 25 ns for the Mg
3s3p 1P° state, which is slow though not entirely negligi-
ble compared to the 5 ns delay between absorption of the
first and second laser photons. Since this affects only
10% of the atoms, however, this is likely to cause less
than a 1-2% correction to the anisotropy parameters
calculated in this study. The hyperfine precession ap-
pears to be negligible for singlet Rydberg states in the
range studied here.

Equations (9a)—(9e), which form the angular distribu-
tion parameters, can be rewritten in terms of probabilities
P; ;, where P y_,s represents the fraction of the total pho-

toionization cross section contributed by states with J,

and J. If PJCs s is written as the square of a complex prob-
ability amplitude | 4 I, s1?=P, s> then the 4, ; are pro-
portional to the D g of CEqs. 9). Fo: example,
A =(E)2Dg, /(ay)'"?, etc. Then Egs. (9b)—(9e) can be
rewritten as

B=2Py, —P;+4Py;+P 3 —6(3)?Re( A% Ay3)

—6(2)Re( A4} 413) , (23a)
y=8Py+ 3P ;—8(2)?Re( A48 403)

+6(2)?Re( A} 443) - (23b)
e=RPy;—BP; . (23¢)

The P’s must be in the range [0,1], and the A’s must have
a magnitude less than or equal to 1. Also the sum
Py +P,,+Py;+P;; must equal 1 for all cases. These
constraints allow one to determine the maximum and
minimum values of the parameters. € clearly lies in the
range [ —2.27,3.03]. A Monte Carlo calculation using all
possible values of the A’s shows that B is in the range
[—1.86,3.65], and v is in the range [—1.92,3.56]. These
limits agree very well with our measurements, and agree
perfectly with our theoretical results. The excursions of
our measured parameters past these limiting values are
due to noise in the data.

In order to understand the forms of the S, ¥, and € pa-
rameter spectra, we shall discuss the contributions to the
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theoretical parameter spectra. As shown by Eq. (9) the
terms that form S, ¥, and € can be divided into three
categories. The pure J =1 terms contain only matrix ele-
ments of the form IDJC$1|2. The pure J =3 terms contain

only elements of the form |D; ;|2 The “mixed J”’ terms

are of the form Re(Df D, ;).

tains pure J =1 and 3 terms but no mixed J terms. a,
contains all three types of terms. a, contains no pure
J =1 terms, and a4 contains only pure J =3 terms. Thus
[ and y contain mixed J terms, while € does not. This is
since in the calculation of a;, as k increases, more and
more of the terms in the summation of Eq. (8b) are zero,
due to the triangle rule for the 3; symbol (£3'7), with J
and J' never more than 3.

We can separate the contributions of the three
categories of matrix element products to the theoretical 8
spectrum of the 3p12d state, as shown in Fig. 8. The top
line of Fig. 8 shows the pure J =1 contributions to 8. In
other words, the top line is a graph of

22|Dy, P =D, |?

ap

The a, parameter con-

The line labeled J =3 shows the pure J =3 contribution

10 12
3/2 I T |

Yi/2

v

mixed J

B parameter terms

A kaM

2 total
1
0

2 \ . K ]
35500 35600 35700 35800 35900

PHOTON ENERGY (cm ')

FIG. 8. Various contributions to the 8 parameter spectrum
of the 3p12d state of Mg. In order from top to bottom, the
graphs are of the B=a, /a, parameter with a, consisting only of
pure J =1 terms, only of pure J =3 terms, and only of mixed J
terms. In all cases the a, used is the full a, of Eq. (9a). The bot-
tom line is the complete 3 parameter, which is the sum of the
top three graphs. This figure is purely theoretical. As in Figs.
46 the solid horizontal lines indicate the zeros of the parame-
ters. As discussed in the text the mixed J terms provide the ma-
jor contribution to the total 3 parameter shape.
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to B; it is a graph of
2(4|Dg;|*+3|D ;%)

)
The line labeled mixed J is a graph of
— 3‘25'[‘/6 Re(Dg Do) +2Re(D},Dy3)]

ap

the mixed J contribution to 8. In each case the full a, of
Eq. (9a) is used, so that the sum of the three partial B pa-
rameters is the total 8. This means the J =3 line, for ex-
ample, still has some J =1 contribution coming from q,
in the denominator.

Figure 9 shows the same arrangement for the theoreti-
cal y parameter of the 3p 124 state. Since a, has no pure
J =1 terms, the top line of Fig. 8 is missing from Fig. 9 (e
has only pure J =3 terms, so it cannot be divided up in
the same way as 3 and y).

Figures 8 and 9 show clearly that the structure of the B8
and y parameters is overwhelmingly due to the mixed J
terms of the a, and a, parameters. The shapes of the to-
tal B and total ¥ graphs are quite similar to the mixed J
term graphs. The pure J =1 and J =3 term graphs tend
to fluctuate as a function of energy much less than do the

2\ mixed J

| MMMM

s 4
2\\1/01{
0 V ¥

-1t 4

v parameter terms

- 2 1 1 1
35500 35600 35700 35800

35900

PHOTON ENERGY (cm ')

FIG. 9. Similar to Fig. 8, this figure shows the various contri-
butions to the y parameter spectrum of the 3p12d state of Mg.
In order from top to bottom, the graphs are of the ¥y =a, /a, pa-
rameter with a, consisting only of pure J =3 terms, then only of
mixed J terms, and on the bottom the sum of the top two, which
is the full y parameter. The a, used is the full a, of Eq. (9a).
The y parameter has no pure J =1 terms. As with the 3 param-
eter, the mixed J terms provide the major contribution to the to-
tal y parameter shape.
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mixed J term graphs and so they contribute less to the
shape of the total 8 and ¥ parameters. The pure J =1
and 3 terms do contribute significantly to the numerical
values of the 8 and y parameters.

In Figs. 4-6 there appears to be a pattern of sharp
shifts, peaks, or dips near the peaks of the line shape.
The peaks of the transition line shapes are mostly due to
very narrow J =1 features in the spectra. As shown in
the total-cross-section traces in Figs. 4—6 and in Ref. [3],
the line-shape signal due to J =1 3pnd states has only
very narrow and high peaks, with almost no signal be-
tween the peaks. The J =3 3pnd line shape is more slow-
ly varying with energy and has broad peaks that overlap
each other. An angular distribution can be derived from
the J =1 states only and from the J =3 states only; each
is different. Over most of the energy range the J =3 line
shape predominates; so the total angular distribution pa-
rameters mostly reflect the J =3 distribution. Only at
the narrow peaks of the line shape would the separate
J =1 distribution predominate; there, the total angular
distribution would reflect the J =1 distribution. The €
parameter shows the clearest distinction between J =1
and J =3 contributions. The € parameter has a J =1
contribution only via the a, denominator. A pureJ =3¢
parameter can be written by eliminating the J =1 portion
of ay. This altered € is given as

%(4|D03|2—3|D13|2)
2(IDg3 12 +1D151%)

J=3_

€

€’ =3 has a graph similar to the unaltered €, as shown in
Fig. 10, however €’ ~* has no sharp dips interspersed
among the broad fluctuations. These sharp dips, and the
other features of the parameters that vary rapidly with
energy, are due to the J =1 contributions. Examples of
these J =1 features are the parameters of 3p12d at 35 690
and 35860 cm !, and of 3p10d at 35635 cm ™.
Relatively weak and narrow features due to g states

€ parameter values

-3 L L L
35500 35600 35700 35800

PHOTON ENERGY (cm”')

35900

FIG. 10. Solid line is the € parameter with all of the J =1
terms removed from it, both from the numerator and from the
a, denominator. This is called €/ =3 in the text. Also shown is
the unaltered true € parameter as a dotted line. The lack of
sharp dips in the altered €’ =2 parameter shows that the dips and
very rapid variation in the actual parameters are due to the
J =1 contribution.

can be seen in the measured and theoretical spectra, e.g.,
in the 3p12d angular distribution of Fig. 5 at 35668
cm~!. These must be due to J =3 3png states since the
features do not appear in the theoretical calculations
which exclude g states, shown as dotted lines in Figs.
4-6.

V. CONCLUSION

We have measured the angular distributions of au-
toionized electrons ejected from 3pnd J=1 and J =3
states of Mg and have obtained their angular distribution
parameter spectra over the range of n from 10 to 18. The
measured spectra are complex and irregular. They ap-
pear drastically different from the 3pns J =1 angular dis-
tribution parameter spectra measured previously [19].
We have also calculated the angular distribution parame-
ter spectra using K matrices and an MQDT formalism.
The calculated 3pnd spectra agree well with the measured
3pnd spectra, to within experimental error.

We find that the different J states can produce interfer-
ence in the emitted electron spectra, but only in some (3
and y) angular distribution parameter spectra. In the €
parameter spectra and in the total cross section o, the
different J states do not interfere.

The line-shape measurements of Mg autoionizing states
reported in Refs. [2] and [3], the angular distribution
measurements in Ref. [19] of the Mg 3pns J =1 states,
and the angular distribution measurements of the Mg
3pnd J =1 and 3 states described in this paper form a
progression of measurements that involve successively
more and more complex sets of channels and wave func-
tions. The quantities measured represent successively
more and more stringent tests of the K matrices and of
the R-matrix approach itself. The less stringent test de-
scribed in Refs. [2] and [3] results in quite good agree-
ment between theory and experiment. The test of inter-
mediate stringency, involving the angular distribution of
the relatively simple 3pns J =1 states excited by one pho-
ton from a spherically symmetric J =0 state, shows good
agreement, but there are a few significant discrepancies
[19]. This paper measures the angular distributions of
the fairly complex 3pnd states with relatively high angu-
lar momentum, and for these states the K matrices also
match well with the measurements.
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APPENDIX

This appendix contains an alternate means of calculat-
ing the reduced matrix elements D J.J of Eq. (22). This

formulation can replace Egs. (10)-(22), and was derived
independently. As can be seen in Figs. 4-6, the results of
each formulation are essentially the same, serving as a
check on the validity of both.

The final dissociation states, in which the electrons are
far apart, are most naturally described by jj coupling, so
in this formulation we work in the jj coupled scheme,
converting the K matrix to jj coupling. (In all of the fol-
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lowing the trailing superscript of any quantity refers to
its corresponding J, i.e., ¢1 means ¢J:1.) We use seven
J =1 channels and five J =3 channels. They are listed in
Jjjand LS coupling as follows:
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The orthogonal matrices V! and V3 are given in Refs.
[19] and [2], respectively. For this alternate derivation of
the D J..J We use the older K matrices of Ref. [2] (J =1)

and Ref. [3] (J =3). These were calculated with a box
size of r; =12 a.u., and do not include 3png states. As de-

o h 3sep 'P scribed in detail in Ref. [19], those K matrices allow us to
! 3s1,2€P1,2
¢1 3 ¢1 3pns 1p calculate the channel amplitudes A, 0 where
2 51/2€P3/,2 2 1
¢3 3piansi s 3 3pnd 'P, S '
611 = |3psans, |=¥" |0l |=V" |3sep°P | (AD) Vo= Z A (A3)
¢s | |3P1nndsn vs 3pns P,
s 3p3nds ) g 3pnd °P, W, is the collision eigenstate of the system after ioniza-
) 3psypnds ), ! 3pnd D tion. For each J there are two open channels, and so two
’ 7 ! collision eigenstates that are labeled by p=1,2. The \I/;J,
d are linear combinations of the jj coupled channels. Via
an the procedures described in detail in Ref. [19] we also ob-
tain the phase shifts T’; of the open-channel continuum
3 3 3 wave functions from the K matrices.
1 3s12€f 51 ! 3pnd "D Since our reduced matrix element kets |[J.s)J/]J —)
3 351 2€f 1 3 3sef 'F, are in J.J,, coupling, which in this case is equivalent to
LS coupling, since for our final states J.,=S and / =L
3| = —13 3|l—yp3 1 ’ cs
& 3pipndsy | =7 193 | =Y | 3pnd °F, (A2) we must also convert them to jj coupling before using
H 3ps,onds . 3sef 3F, them. This can be done usi.ng submatrices of the ¥ s of
g 3ps onds 2 g 3pnd 3F3 Egs. (A1) and (A2). In particular, we will need
J
I[J,=0l=1 =1) 3sep 'P wi wl (¢! (D2 (D)2 | (35, h€p1 2 "
e =1U=1V=1) | [3sep’P, | W3y Wh]|6r] [} =DV |36
and
[[Js=01=3)J=3) 3sef 'Fy wh W (3) )12 (%)1/2 3s12€f s,
[Js=1=31J=3) 3sef °F, w3 sz (D2 — ()21 13512672 (AS)
The W’ matrices are simply subblocks of the ¥ 7 matrices corresponding to the open channels.
We may now write the reduced matrix elements D J,Jas
2
Do, ={[(JsW =01 =1—|r'"|Jo) =3 Wi (i —lirVIJo)
=1
: | - 1yl 1 (n
= 2 Wi 21 (¢, |\Pp)<‘l’p—||r 107
1= p:
& < 2 1 1 (n
:_21 ZIWI 2 ( ¢j>Ajp 2 A <¢k—”r ||J0)
i=1p= =
2 2 7
=3 3 W}iAilp > Al:p<¢}(_||r(“||‘]0>
i=1p=1 k=5
X -~ 1 41 41 arl
=3 3 X Wid, 4, M, , (A6a)

1 1k=5

I
©
|
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using JOI\I/J)(‘PJI and |J,)=|3snd 'D,). Here
Mk,,_ Hr“)“Jo) Similarly,
2 2 7
i=1p=1k=5
2 2 s
D=3 3 3 WAL Adi,Mi, , (A6c)
i=1p=1k=3
2L e < 343 43 ag3
1)13‘_‘_21 21 k23 Wii A, A M, (A6d)
1=1p= =

Reading from right to left, the factors in the last form of
Eq. (A6) can be understood as follows: M; » is the dipole
matrix element connecting the bound initial 3snd state to
the kth closed channel. A4} kp 18 the amplitude of the kth
channel in the pth elgenchannel Summing A4} Mkp over
k gives the amplitude for excitation of the pth eigenchan-
nel. 4; ip is the amplitude of the ith open channel in the
pth eigenchannel, and is thus the fractional amplitude for
decay into the ith open channel. Finally W9, gives the
fraction of the ith channel that is singlet, and W3, gives
the fraction that is triplet. When all the factors are put
together the D J.J matrix element is the amplitude for the

transition from the initial 3snd state to the J_, J continu-
um.

The states |¢;) listed in Eqs. (A1) and (A2), with
k =5,6,7, for J =1 and kK =3,4,5 for J =3 will be written
now as |3p v'd ), where v’ is the effective principal quan-

tum number of the outer electron’s state. v’ is not neces-
sarily an integer. v’ is determined by the ionization po-
tential E , with respect to the excited ion core. (J, is the

total angular momentum of the excited ion core.) v' of a
state with J| is given by

o R 12
E,—E , (A7a)
where R is the Rydberg constant for Mg: 109 734.86

cm . Ein Eq (A7a) is the total energy of the autoioniz-

ing state. {,1 is 97340.33 cm™! and E3p3/2 is
97431.90 cm~'. When rewriting the initial state |J, ),
12
R
_ R b
ol oy (A7b)

where E; is the normal ionization potential of Mg with
an unexcited core 61671.02 cm ™! and E in Eq. (A7b) is
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the energy of the |J,) state [22]. Note that |Jy) in jj
coupling is (2)!/2[3s, ,vds ) +(2)'/?[3s, ,vds ;). The
transformation coefficients here and in the }V and W ma-
trices come from Eq. 6.4.16 of Ref. [27].

We must now calculate the Mj, o They can be written
as a product of a radial integral, an angular integral, an
overlap integral, and a phase factor:

M, =1 |IrC Vo) (vilv)explimr))i ~lexplio) .
(A8)
(v} |v) is given in Ref. [32] as
2(vv )sinm(v, —v)
(Vilv)= . k (A9)

V2a(viE—v?)

v}, is the v’J, with the J, of the corresponding |¢7 ). In
the first exponentlal of Eq. (A8), the r’ comes from the
K 7 matrices, as described in Ref. [19]. i 'exp(io;) is the
Coulomb phase factor, in which / is the orbital angular
momentum of the outgoing electron. This is 1 or 3 in our
case. o,=argl'(I +1—i/k), where k2/2 is the kinetic
energy of the free electron; i.e., k2/2=E —E,_, in atomic
units. C' is the first-rank renormalized spherical har-
monic tensor operator [28], such that r'V=rC". We
have evaluated its matrix elements in jj coupling using
Eq. 7.1.7 of Ref. [27] twice, which leads to the formula

((I3s7)7 158350 [rCH V(15 (1y5),0 )

J+jl+12+]]+s]

=X(—1) I 10 10 0 00 ]
ok L iy I g h it s
0 0 O0J|J j, kK|lih I} ki|°

(A10)

where X, is the radial integral. Since X, is common to all
of the M, kp» We ignore it from now on. (Here we make the
good approximation that the radial mtegrals are equal for
3p,,; and 3p;,, states.) We find the Mkp as shown in
Table V.

To summarize this derivation, the M ,{ o which are com-
plex numbers, go into the summations of Eq. (A6), pro-
ducing the reduced matrix elements D y..J» Which are also

complex numbers. Equation (9) uses these matrix ele-
ments to calculate the real angular distribution parame-
ters B, v, and € as a function of energy. The K matrices

TABLE V. The reduced matrix elements M, ka used in calculation of the angular distribution parame-
ters of the 3pnd states of Mg. We have evaluated the argI'(/ +1—i/k) in the Coulomb phase using

Egs. 6.1.15 and 6.1.24 of Ref. [33].

In this table we have excluded a common factor of

exp(i{arg[(—i/k)T(—i/k)]+tan"(—1/k)}) (and the radial integral) from all of the M’s.

M%p +($)V2V plvdexplimr))(—i)
My, +(5)2V ol v dexplimr))(—i)
M, +(2)2(V) v explimr))(—i)
M3, (7 )12V plv)explimry)(+iexp{i[tan™'(—1/2k)+tan~'(—1/3k)]}
M;, +(3¢ is $)72v3 ol v dexplinr))(+idexp{i[tan~(—1/2k)+tan~'(—1/3k)]}

M3, +(2 2 )‘/2(v3/2|v>exp(z7r73)( +i)exp{i[tan”(—1/2k)+tan"(—1/3k)]}
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are slowly varying functions of energy; the energy depen-
dence of 3, v, and € comes primarily from the calculation
of v" and the rapidly varying phases 7.

The difference between theoretical parameters calculat-
ed in this appendix and the parameters calculated in Sec.
II1, is that here we use an earlier version of the K ma-

trices (the same as those used in Refs. [2,3,19], which are

less accurate and also neglect the 3png J =3 channels.
Although the MQDT analyses here and in Sec. III are
quite different, they produce the same parameter values if
the input K matrices are the same. The differences shown
in Figs. 4, 5, and 6 between the theoretical methods indi-
cates the errors in the less precise K matrices used in this
appendix and in Refs. [2,3,19].
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