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We have calculated the cross sections for vibrational excitation and dissociative attachment in H,
below 5 eV scattering energy. This completely ab initio calculation uses the frame-transformation
method of Greene and Jungen [Adv. At. Mol. Phys. 21, 51 (1985)] for electron-vibronic coupling in
resonant scattering from a neutral molecule. We found it necessary to modify their method to ob-
tain good agreement with previous theory and experiment for v =0— v, with v, =1-3; for larger v,
and for dissociative attachment we obtained good agreement with previous theory and qualitative
agreement with experiment. The fixed-nuclei phase shifts were derived from a fully ab initio calcu-
lation in prolate spheroidal coordinates and then transformed to spherical / =1 phase shifts. The
vibrational structure of H,  becomes evident for excitation from higher vibrational states of H, as
well as for larger Av’s, confirming previous theory and experiment.

I. INTRODUCTION

This paper concentrates on the vibrationally inelastic
processes in electron-H, scattering below 5 eV, measured
from the H,(v =0,J =0) state, as a specific example of
electron-molecule scattering.'™> Under these restric-
tions, the 22: resonance at 3 eV is the only state which
contributes. The next resonance, °, at 10 eV above the
ground state, does not contribute to the cross section in
our energy range. Nonresonant processes contribute very
little due to the small electron-to-nuclear mass ratio. The
polarizability of the neutral molecule is very small due to
its completely filled electronic shell, and its lowest mul-
tipole moment is a small quadrupole term, so that the
electron “feels” only a very small long-range force.

At an internuclear distance of 3 a.u. the resonance be-
comes a true bound state, H™ +H. If the resonant elec-
tron has enough energy and remains attached long
enough, it can break the H, bond and stick to one of the
atoms, dissociative attachment.* This extreme case of
“vibronic excitation” will be considered on the same foot-
ing as the more usual vibrational excitation. Lastly, three
quarters of a volt above the dissociation attachment
threshold, the triple breakup (e +H-+H) channel opens.
However, this process is very unlikely below 9 eV, the en-
ergy needed to excite the repulsive 32: electronic state of
H, at its equilibrium distance.

The theoretical approach to inelastic processes in
electron-molecule scattering has been dominated by two
complementary, rather accurate, methods. The complex
potential method® (resonance theory) centers on the
motion of the negative ion during a resonance lifetime.
The nuclei move on a complex potential, its real part be-
ing the energy and its imaginary part being the width of
the resonance. The width decreases with increased inter-
nuclear distance R owing to the increased size of the re-
sulting potential well and to the evolution of closed
molecular shells toward open atomic shells. In the
H, 23 resonance, the width vanishes for R >3 a.u. in-
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dicating a true bound state. Alternatively, the frame-
transformation method® matches phase shifts of the elec-
tron at each internuclear distance onto phase shifts and
couplings of rovibrational states of the neutral molecule.
It assumes the Born-Oppenheimer approximation holds
while the electron is near the nuclei. A resonance mani-
fests itself as a rapid variation of the phase shift with
electronic energy at each R. Both methods can be used
for model problems or for fitted potentials (e.g.,
e +N,).”® However, the local complex potential method
does not seem to be as well suited to ab initio calcula-
tions,” especially if the resonance width is large (a nonlo-
cal complex potential method increases the accuracy but
with a decrease in clarity!®); it is inherently limited by its
initial approximation, while the frame-transformation
method is in principle exact and can be made more pre-
cise with increased effort. On the other hand, the energy
and lifetime concepts of the complex potential method
are more easily transferred to features of the cross sec-
tion.

This paper will use the theoretical formulation of
Greene and Jungen (similar to that of Schneider and co-
workers!!) as the basis for the transfer of body-frame,
fixed-nuclei information to laboratory-frame scattering
parameters. This framework has been successfully ap-
plied to photoionization and dissociation of molecules!?
and to fitted electron-molecule scattering,®® but has not
been applied previously to ab initio electron—neutral-
species processes. We found that a modified version of
the Greene-Jungen (GJ) program, as spelled out in their
“boomerang-type” calculation® of e +N,, worked well
for low Av (<3) but exhibited anomalies for the larger
Av’s (>3) or for dissociative attachment, both of which
have very small cross sections. The difficulties of the GJ
program and its slight modification are described in Secs.
IITI A and III B.

A main reason for focusing on e+ H, scattering is that
there are only three electrons so that a completely ab ini-
tio calculation of fixed-nuclei phase shifts is not impossi-
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ble but is still interesting. The frame-transformation
method requires the fixed-nuclei phase shift of the
scattering electron for each of the relevant channels and
the coupling between channels. None of the electronical-
ly excited states can be reached in the <5 eV energy
range at the equilibrium distance of H,. This leaves only
the different angular momentum states of the scattering
electron as possible channels. Of these, only the po wave
through the 23, resonance in the body frame contributes
to the inelastic cross section. The Greene-Jungen pro-
gram is, of course, able to handle more than one channel,
but the reduction to a single-channel problem facilitates
the assessment of its strengths when applied to
electron—neutral-species scattering.

By far the most time-consuming part of the calculation
lies in computing the fixed-nuclei phase shift of the elec-
tron as a function of electronic energy. This was accom-
plished by an R-matrix calculation in prolate spheroidal
coordinates which gave the phase of the wave function at
the surface of a spheroidal box. Remember that the R-
matrix calculation does not depend at all on the outside
boundary conditions of the wave function (e.g., for chan-
nels with negative kinetic energy at infinity, convergence
or divergence of the wave function has no effect on the
R-matrix calculation). Multichannel quantum-defect
technology (MQDT) treats the wave function outside of
the box.!?

The regular and irregular radial prolate spheroidal
waves'# are superposed to match the R matrix calculated
on the surface of the box. These phase-shifted spheroidal
waves were then transformed to phase-shifted spherical
waves to obtain the fixed-nuclei scattering parameters.
At this point a comparison of the phase of the p and f
waves showed the dominance of the / =1 channel. We
did not try to calculate in spherical coordinates directly
feeling unable to accurately produce H™ +H properties
at large internuclear distances, R >3 a.u. Evolution of
the doublet nature of the electronic state, which evolves
from a singlet H, plus electron at small R to a singlet H™
plus H atom at large R, is essential to this process.

The rotational coupling yields mainly a transformation
of Hund’s case b states (relevant at small ») to Hund’s
case d (large r), which will not be discussed in detail as it
is well understood.® The long-range polarization and
multipole fields also induce a rotational coupling which
could be handled in an MQDT formulation'? which is in-
dependent of the short-range dynamics.

II. FIXED-NUCLEI PHASE SHIFTS

A. R matrix in spheroidal coordinates

The electronic part of the calculation was performed in
prolate spheroidal coordinates. These are
ritr, ry—r,
=, NPT (1)
§57r "R
(where r; is the distance from the electron to nucleus i)
and the angle of rotation ¢ about the internuclear axis.
The internuclear distance R is fixed in this part. The
metric in this coordinate system is
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It is well known that the electronic motion in H,"
separates in this system.!> The accurate electronic states
of H, are also calculated in this coordinate system.!®

In the usual R-matrix formulation, the normal loga-
rithmic derivative of the wave function is assumed con-
stant over a closed surface specified by fixing one of the
coordinates of an orthogonal system,'’

1 ov

o, — +b¥=0, x,=const . (3)

In our case, the surface is defined by £=¢&_ =const. This
definition of b (the negative of the normal logarithmic
derivative) leads to complications in prolate spheroidal
coordinates not encountered in spherical coordinates
where h, =1 everywhere. One thus needs to examine the
variational principle for b.

The variational principle for b deals with the expres-
sion

1 a\I’,
'hg 85 ’

4)

bfdswi=2[ dv¥ (E—HY,— [ dsv

with the surface defined by {=¢&,.=const. If ¥, is a trial
wave function close to the real wave function ¥ at energy
E, e.g., ¥,=WV¥+3§, this equation gives b correctly to order
8%. Notice how the left-hand side of this equation con-
tains a weighting factor which has 7? under a square root
(£2—n*)1/2, while the last term on the right does not due

to the 4 in the denominator. This weighting factor can
be removed by redefining b through
v
— +b¥=0, . 5
3 £=¢. )

The left-hand side of Eq. (4) transforms to
2 1 g2
b deS ¥2_,b deSZ;\I/, . (6)

This trivial change in definition leads to a large practical
result. The first formulation does not ensure a symmetric
K matrix (reaction matrix) if more than one spheroidal
partial wave participates in the collision, while the second
formulation does, thus eliminating unnecessary work.
The two methods are equivalent in spherical coordinates
where the R-matrix method is mostly used. The asym-
metry of the K matrix is due to the lack of orthogonality
of the angular harmonics over the surface. As a general
rule of thumb, to obtain a symmetric K matrix the con-
stant b in Eq. (3) should be replaced by bw(Q) where w is
a weighting function dependent on the angular coordi-
nates 1=x,,x3,...,X, (n—1 is the dimensionality of
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the surface). The weighting function must satisfy 1.0
000000006,
deQ drwd, =5, , 0.8 - °o -
©
where ¢, are the angular harmonics. For a spherical sur- 0.6 °. -
face in three dimensions w =1; for our case - °
w=1/h§|§:§c. 0.4 oo -
Wave functions were constructed from a basis of 024 °°° i
single-particle functions of the form : °°o°°
—=(£2—1)lml2gn, —BE img 0.0 . .
1 e Psp e . (7
Yo =(§2= D" 2g7e PP, () ) T —

They were then fully antisymmetrized to Fermi statistics
and coupled to 23] symmetry. The number of resulting
basis functions grows very rapidly with the number of
single-particle functions so that the calculation would
quickly become unmanageable. The actual basis func-
tions were thus limited to the following three types: (1)
Ihx 1Eglsaz—i—pa,fa), i.e., the electronic ground
state of H, plus single-particle functions of p and fo
type. (2) *ZH(E,F'3}(1s02s0 +2po?)+po); ie., the
first 12; excited state plus single-particle functions of po
type. (3) 237 (H™ 1s2+H 1s); the Heitler-London
H™ +H wave function. A few other diffuse 22 wave
functions were added for insurance.

Previous workers!® found that limiting the wave func-
tion to type (1) led to inelastic cross sections too small by
~30%. The other two types are necessary to account for
the relaxation and polarization of the core by the third
electron while close to the core. Specifically, type (2)
basis functions help account for relaxation of the core at
small internuclear distances; including higher excited
states of the core did not improve convergence. At large
internuclear distances type (3) basis functions accounted
for polarization effects. We were not able to bind the
third electron at R >3 a.u. without the type (3) basis
functions; our three electron bound-state energies were
50-100 meV higher than previous results.!” The R-
matrix “box” was large enough to be able to ignore polar-
ization and multipole effects outside of it for the vibra-
tionally inelastic scattering. The polarization potential
outside of the box greatly affects the elastic channel, espe-
cially modifying the threshold behavior of the elastic
cross section.

Figure 1 shows the fraction f of the wave function of
type (1) at the “resonance energy” compared to type (3).
This is necessarily a qualitative parameter as the type (1)
and (3) wave functions are not orthogonal, and also the
resonance energy is not well defined. This figure also de-
scribes the evolution of the wave function from the sing-
let coupling to H, to the singlet coupling of H™. Note,
especially the rapid drop of f between 2 and 3 a.u.

B. Fixed-nuclei scattering parameters

Outside of the R-matrix box at each fixed nuclear dis-
tance, the wave function is a superposition of a small
number of spheroidal waves. These functions are solu-
tions to Schrddinger’s equation in prolate spheroidal
coordinates with a constant potential, standard functions
described in the usual references.’* We transform the
phases of the wave-function at the surface of the box into

R(a.u.)

FIG. 1. Fraction f of the 23, wave function coupled to sing-
let H, plus po as a function of internuclear distance R.

phase-shifted standard functions outside, following the
usual MQDT procedures.'?

MQDT is designed to take advantage of the fact that
once the electron is outside of the core it experiences a
simple long-range field. At any energy there are two in-
dependent solutions of the radial Schrodinger equation,
one of which converges at the origin while the other
diverges (both of which we choose to be real). Outside
the reaction surface at £=¢,, the wave function for an
N-channel problem is

N
Vi=A 3 PUQRIF (680 —8a(E)K ], E§>6,
=1

(8)

[Eq. (10) of Ref. 6(a)] where A is the antisymmetrization
operator and ®,(Q;R) is the electronic ground state of
H, times the angular function of the third electron
[QLZ¢H2¢Am(n,¢7)]- In all that follows, A and ¢H2 are
implied but have no effect because Yu, vanishes outside of

the R-matrix box; they will not be written explicitly
again. The functions f,; and g, are the regular and ir-
regular spheroidal waves of energy € and ¢,,,(n,¢) is the
prolate spheroidal harmonic, a standard function whose
properties are well understood. !4

The R-matrix specifies the wave function at the surface
£=¢, in the form

vi=—7 M g )
A < 8§ AL >

where R is a real, symmetric matrix. Simple substitution
connects the K matrix to the R matrix

R ¢

K= Y (10)

-1
og
Raé_-i-gy

[Eq. (3.20) of Ref. 6(c)] where for example f is a diagonal
matrix whose Ath element is f;,(£.). The reaction ma-
trix K is itself real and symmetric. Notice how the su-
perposition, Eq. (8), holds whether or not the Ath channel
is open. Any divergences in closed channels are eliminat-
ed in a later step by superposing the W, as necessary to
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obtain convergence at infinity. By waiting to apply the
boundary conditions at £— o we keep K free of unneces-
sary energy dependences. The arctangents of the eigen-
values of K are the phase shifts.

The fixed-nuclei phase shifts were calculated on a mesh
in R of size 0.1 a.u., with an energy mesh of 1073 a.u. at
each R. The size of the R-matrix box varied with inter-
nuclear separation R to reflect the scaling of £. The size
of the box should be large enough to include all of the
complicated dynamics near the core without wasting
effort recalculating standard functions. Instead of chang-
ing £, continuously as R increases, I kept it fixed over
each of four different ranges: £,=9; 0.7 <R <1.0;
£.,=8; 11<R <18 §&.=7; 19<R <2.6; £,=6;
2.7<R <3.5. Notice how one of the ranges covers the
ground vibrational state to minimize the effects of any
possible “kinks” between the different ranges. Over 99%
of the total calculation time was spent on the procedures
described in this section.

C. Transformation to spherical coordinates

Up to this point, the wave function outside of the box
involves a superposition of spheroidal waves. The prolate
spheroidal coordinates depend explicitly on the internu-
clear distance R, a feature incompatible with treatment of
the different vibrational states. This necessitates a trans-
formation from spheroidal to spherical waves. The
fixed-nuclei calculation included only p and f spheroidal
waves. The reaction matrix (K matrix) is symmetric in
prolate spheroidal coordinates, but the corresponding K
matrix in spherical coordinates is not necessarily sym-
metric due to the truncation to two partial waves. The
amount of asymmetry places a lower limit on the conver-
gence of the calculation.

The wave function outside of the box is

V=2 601, @& R fer (&R IS —8a(&RIK ;0 ]
Fy
= Y0 fe (P =8 (W] (11)
.

where ¢,, is the (A,m =0) spheroidal harmonic, f
(g1 ) is the regular (irregular) spheroidal wave of energy
€, fe (8¢) is the regular (irregular) spherical Bessel func-
tion, with / and A are restricted to the values 1 and 3.
These two superpositions hold everywhere outside of the
R-matrix box so we can choose any convenient radius for
the transformation. Remember that the K,,. were found
at an earlier step of the calculation, Eq. (10).

Of course, the most convenient place for the matching
is at r — oo, where

§—>%, n—cost, @—@ . (12)

The asymptotic form of f,; (g.,) becomes the same
(within a sign) as f; (g.;). We can now read off I and J

Ip=<( YIO|¢A’0> ’

. 8a(2r/R;R)
Jp=3 | lim —————— [ Yjlds0) K1 -
~ |r—e ge(r)

(13)
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The K matrix in spherical coordinates is simply K=JI" !,

The largest coupling to the f wave and the largest
asymmetries of the K matrix occur at the largest internu-
clear distance (in this case 3.5 a.u.). The maximum asym-
metry is 1% of the off-diagonal elements, and the f-wave
phase shift is less than 0.02 at this R; we need only retain
K, =tanmu for accurate cross sections. The phase shift
7 depends on the electronic energy and on the internu-
clear distance; it contains all of the information about the
interaction of the electron with the core.

Some of the energy dependence of the p-wave phase
shift is due to threshold effects of short-range potentials.
We remove this trivial dependence by defining!®

tanmuo(e; R)=|k| % ~'tanmu(e;R) , (14)

where the angular momentum / is unity for our case. The
o has a much smaller energy dependence, even for reso-
nances near threshold. Figure 2 shows u as a function of
energy above the H, potential curve at R =1, 2, and 3
a.u. An important feature to note is that none of the
values of u, (g;1 a.u.) plotted in Fig. 1 equals any of the
values of uy(e’;3 a.u.) [i.e., it is impossible to draw a hor-
izontal line on Fig. 1 which intersects the two curves
ole; 1 a.u.) and po(g;3 a.u.)]; the transcendental equation
tol V7(R); R )= does not have a solution for all values of
R. The phenomenological model employed by Greene
and Jungen® did not have this property.

At an internuclear spacing of 1.4 a.u., our value of
was practically constant with energy: pq(e,1.4)=0.44.
The p, obtained from the phase shift of Ref. 15(b) de-
creased nearly linearly from 0.43 at ¢=0 to 0.40 at
£=0.18 a.u. above the ground electronic state of H,. For
comparison we define an equilibrium cross section to be
aeq=(4'n'/k2) sin’ru. The 0 ¢q derived from our data is
nearly twice as large as the o, found using the data of
Ref. 15(b). This is not altogether surprising since their
calculation utilized a frozen electronic core. Our o4 was
also not in very good agreement with that of Gibson and
Morrison.?’ Their 0eq~0.3 a.u. at threshold and peaked
at ~20 a.u. near 4.5 eV, whereas our o.,=0 at threshold
and peaked at ~20 a.u. near 5.5 eV. The discrepancy
near threshold is due to our ignoring multipole fields and

0.60

0.50 1

Mo

0.40

0.30

-2 0 2 4 6
e(eV)

FIG. 2. “Energy independent” quantum defect y, as a func-
tion of electron energy € for the internuclear distances: R =1
a.u. (0), 2 a.u. (+), and 3 a.u. (O).
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polarizability outside of the R-matrix box. We do not ex-
pect our approximations to work very well for elastic
scattering.

III. FRAME TRANSFORMATION

A. Greene-Jungen method and its difficulties

The basic idea behind the frame transformation rests
on the division of space into a reaction zone and an out-
side region. Inside of the reaction zone, the good quan-
tum numbers for the electron are the internuclear dis-
tance R and the electronic energy €. Outside of the reac-
tion zone, the good quantum numbers are the electron’s
kinetic energy and the vibrational state v of the molecule.
The two regions are connected by a simple projection on
the boundary.

The Greene-Jungen program as expressed in their N,
paper takes the following form.® After calculating the
fixed-nuclei phase shifts, you remove the main energy
dependence by factoring out the trivial threshold effects.
For example, you select the nearly energy independent
quantum defect for pure-I-wave scattering given by Eq.
(14). In the next step, you define a potential curve V(R)
by solving the transcendental equation puy(V"(R);R)=r
and add it to the original H, potential curve, VHZ(R).
V7(R) is the additional potential “felt” by the nuclei due
to the third electron. Although this is one of the more
trivial steps and is very easy to implement for their model
problem, a quick glance at Fig. 2 shows this step to be
impossible in practice as noted above. For example, the
horizontal line 7=0.3 would intersect p, for R =3 a.u. at
an unrealistic energy (similarly the line 7=0.5 does not
intersect yo for R =1 a.u. in our energy range). This re-
sult was unexpected by us even though implied by previ-
ously published phase shifts for e +H,,?! and is due to
the nonresonant behavior at small R. We would not ex-
pect the same problem for e +N, scattering which has a
much sharper resonance.

We adapted the GJ program by changing its focus
from i, to the phase £ of the wave function defined by®®

tanwé‘(e;R):—%ln\I/E(r;R) . (15)

Figure 3 shows &(g;R) for R =1, 2, and 3 a.u. Notice
how the resonance sharpens and drops in energy as R in-
creases. Also, { is monotonic with energy and covers
roughly the same range for different values of R. For
these reasons, we can define the added potential curve
V(R) by setting &(V'(R);R)=7. Figure 4 shows
V" =%3(R), which is repulsive over the whole range
shown. We next calculate the vibrational eigenstates
X,(R) and energies €] for the combined potential
V"AR)+V7(R), where ¥ %(R) is the vibrational poten-
tial of the H, molecule. Finally, 7 is varied until one of
the € matches the total energy, E. When the €] coin-
cides with E, we know that the wave function at the sur-
face r =r, has the form
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FIG. 3. Phase § of the electronic part of the wave function vs
€ at r =9 a.u. for the internuclear distances: R =1 a.u. ({), 2
a.u. (+),and 3 a.u. (O).

Vi, =NT(R)x;(R)cosmT ,

v, . (16)
3 —N7(R)x,(R)sinmT .
Here
-1,2
NT(R)= —85% (17

normalizes W, at each R through keeping the volume in-
tegral of the electronic part of the wave function indepen-
dent of R.%® These Wy, match the asymptotic solution
of the full Schrodinger equation by projection onto the vi-
brational states of the H, molecule, y,(R),

W (r,R)=3 x,(R)C,, ,
“

18
MR (R)S "
ar - ?Xv’ v’y
where
Cyp= [ dRXURINTR)X[(R)cosr (19)

and S, is given by a similar equation.®® The R matrix is
simply —CS ™! and should be real and symmetric.
The reaction matrix K contains all of the scattering in-

3.5
Ooo
Oooo
2.5 %, -
00
—~~ 3
> %
o 1.5 . .
> °°
OO
0.5 o, r
00
3
-0.5 , : —Ze
0 1 2 3 4

R(a.u.)

FIG. 4. Additional potential ¥"(R) for 7=0.5 at »r =9 a.u.
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formation and is given by Eq. 10 where f and g (and their
derivatives) are diagonal matrices whose vth elements are
SE—e,1(r ) and gE_EU,I(rc) (and their derivatives). In our

case, the f and g are spherical Bessel functions with / =1,
usually denoted j and y. We are ignoring the polarization
and quadrupole potential outside of the R-matrix box;
they only contribute to the rotational excitation and elas-
tic cross sections.

Varying 7 until one of the €] matches the total energy
E and recalculating ¥ (R) each time would be impracti-
cally slow. In practice, the €], C, and S are calculated at
several different 7. The smallest mesh size we tried was
87=0.02. We then interpolate the parameters at each E.
The symmetry of the R matrix tests the accuracy of the
interpolation and of the whole calculation because we
have done nothing which guarantees its symmetry. This
procedure yielded asymmetries at the percent level. To
complete the calculation, we artifically symmetrized the
R matrix by setting R;;=3(R;;+R};) (artificially sym-
metrizing the K matrix produced essentially the same re-
sults). The cross sections for low Av (<3) were fine.
However, the high Av (> 3) cross sections were complete-
ly unrealistic; several normal points were followed by a
discontinuous shift in the cross section by up to 30%.
The dissociative attachment cross section also suffered
from these anomalies. These anomalies, confined to
v—v’ cross sections smaller than the v—v+1 by 2-3
orders of magnitude (the level of asymmetry in the R ma-
trix), required further adaptation of the GJ method.

The anomalies might result from the rapid energy
dependence of the phase, especially at large R, which de-
creases the accuracy of the interpolation; the Greene-
Jungen program was devised with nearly energy-
independent parameters in mind. The immediate source
of the problem seems to lie in the small off-diagonal R-
matrix elements. Artificially symmetrizing the R matrix
essentially replaces the far off-diagonal elements with
small random numbers. A scheme that guarantees the
symmetry of the R matrix appears necessary.

B. Fine tuning the Greene-Jungen method

The solution to this problem lies in using a physically
more relevant interpolation, namely, on the eigenchannel
R matrix.!"7 Instead of calculating the x7 and €7 for the

J

A

Tv,7V’

and
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~50 different values of 7 necessary to make a meaningful
interpolation, we did so for only three different values of
7=§(V™(R);R): 0,1,1 (the electronic wave function with
7=1 has one more node than the wave function with
7=0). These wave functions served then as input for a
variational calculation of the R matrix of the type de-
scribed in the Appendix. In other words, we used exact
eigenstates of the total Born-Oppenheimer Hamiltonian
at the energies €] as the basis functions of an eigenchan-
nel R-matrix calculation. The eigenchannel R matrix in-
terpolates nearly as accurately as the more laborious ver-
sion described in Sec. IIT A, while ensuring its symmetry.
This radical reduction of interpolation points yields accu-
rate cross sections only for energies less than 5 eV above
the H, ground state. We could increase this range by in-
cluding higher values of 7.

The R-matrix box is defined as r <7, and R <R_. The
final results were insensitive to the box size. The cross
section varied at the percent level for 7 a.u. <r, <10 a.u.
We chose 7. =9 a.u. and R, =3.5 a.u. for the final calcu-
lations. The boundary condition for the total wave func-
tion on the surface of this box is (0¥ /3dr)+b¥=0 at
r =9 a.u. and (8¥/9R)+bM¥ =0 at R, =3.5 a.u. where
M is the nuclear reduced mass and m, the reduced mass
of the electron, was taken to be 1 a.u.

The total wave functions used in this final R-matrix
calculation are of a particularly simple type. One class
sets 7=0 for the electronic wave function. We then solve
for the nuclear motion on the resulting potential curve
such that the nuclear function equals zero at R =R..
The total wave function for this class is then
WT =yT(R)WL(R;r) and has the total energy €]. The
second class sets 7=1 for the electronic wave function.
Again we set the nuclear function equal to zero at the
boundary. Notice that the W7, are orthonormal inside
the R-matrix box and satisfy

<\IIZ;)|H|\P7T"U') :EZST.,:S,W' ’ (20)

where the integration is over the space inside the box.
The third class sets 7=0.5 for the electronic function.
Again we set the nuclear function equal to zero at the
boundary; however, to this class we also add two nuclear
functions whose derivatives are zero at R =R, =3.5 a.u.
Now the total basis set, including all three classes, is not
orthogonal. In this basis

RC ’ rc
=cosmTcosTT’ fo dR N (R)XTN™(R)XT.+ X5 (R )XTAR,) fo dr Y3(R ;PR ;7) @1

R, Rc , X
T,y =2(E —sg’.)fo dR X;(R)X;;(R)fo"dr YR ;YR ;r)+cos7r'rsin1r7"fo dR N(R)X;(R)N"(R)XI(R)

, o
Xv 3R

1

M

w oy @ A RGIVERST) -

(22)
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Note, the integrals f (r)cdr YI(R ;P)YL(R ;7) can be solved
without resorting to actual integration by using the trick

*f *f
fo dx(¢iH¢j—¢jH¢i)=(8j—8i)f0 dx g9, . (23)

This equation holds if the i are eigenstates of the Hamil-
tonian, H. On the left-hand side of (23), the potential
term cancels leaving only the kinetic energy. Thus the
left-hand side of (23) can be reduced to

*r .9 Y; aY;
—1f g i ey

The only necessary integrations in Egs. (21) and (22) are
over the internuclear coordinate R. In the actual calcula-
tion we assumed the Born-Oppenheimer approximation
was exact. Because it is not exact, the resulting real ma-
trix I is slightly asymmetric, which has been removed by
symmetrizing the I' calculated at this stage, i.e.,
Ty =3( py+ Ty ). We then follow the pro-
cedure described in Appendix to get a variational esti-
mate for the R matrix and convert it into the K matrix.
The closed channels (i.e., channels with negative kinetic
energy) are eliminated to obtain the final K matrix.

The dissociative attachment channel still evolves for
R >3.5 a.u. We assume this evolution is well described
by an accurate adiabatic potential which we obtained
from the literature.! We numerically integrated the
Schrodinger equation inward from infinity. We then
matched the resulting f and g to the R-matrix results at
R =3.5 a.u., Eq. (10). Note, for the dissociative attach-
ment channel in Eq. (10)

of
3R

98
3R

is replaced with

195
M 3R

1 og

M OR

b

where

af
ar

dg
or

is equivalent to

1 9f
m or

1 3¢
m or

For energies less than 3.7 eV, the dissociative attachment
channel is closed, which is the source of the resonance
structure in Figs. 5 and 6.

Of the cross sections shown in this paper, the
refinement of the GJ method presented in this section
only affects the dissociative attachment cross section to a
visible extent. However, the computation of cross sec-
tions using the method described in Sec. III A was an or-
der of magnitude slower than the computation described
in this section. This is due to the change in the number
of potential curves for which we needed to calculate vi-
brational functions. Both of these times were

F. ROBICHEAUX 43

insignificant compared to the time needed to calculate the
fixed-nuclei phase shifts. All of the calculations were per-
formed on a Silicon Graphics 4D/240 which is ~3.7
megaflops per processor (~2 times faster than the
DECstation 3100). The fixed-nuclei phase shifts required
~2 CPU h, while the calculations described in Sec. III A
(III B) took ~2 CPU min (~ 15 CPU sec).

IV. RESULTS

We have calculated integral cross sections for vibra-
tional excitation and for dissociative attachment from
molecules in the v =0-2 vibrational states. We examined
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FIG. 5. Vibrational excitation cross sections from experi-
ment (Ref. 1) (Q) and present calculation from the *=; symme-
try (+): (a) v=0—v=1; (b) v =0—v =2; and (c) v=0—v=3.
The experimental data ( X ) of Ref. 22(c) is also plotted on Fig.
S(a).
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FIG. 6. Present calculation of vibrational excitation cross
sections: v =0—v =1 (0), v =1—v=2(+), v =2—p =3 (0O),
and v =3—v =4(X).

the cross sections for vibrational excitation from v =0 to
v’=1-3 and for Av=1 from v; =0-3. We did not calcu-
late vibrationally elastic cross sections since much
simpler methods do a good job (our results for the elastic
channels would be suspect in any case since we ignore the
contribution from other partial waves as well as polariza-
tion and multipole effects outside of the R-matrix box).
Our method does not separate a resonance contribution
from a background term!© rendering this distinction un-
necessary, as well as inappropriate, for our purposes.

Figure 5 shows the calculated cross sections (crosses)
for the first three vibrational excitation channels in com-
parison with the experimental data of Ehrhardt et al.!
(diamonds) in the 0—5 eV energy range. The agreement
between calculation and experiment is good for all chan-
nels. We are also in satisfactory agreement with theory,
except on two points. The first point concerns the
v =0-—v =3 cross section. Previous calculations ob-
tained results a factor of 2 larger than experiment; the
present results are much closer to experiment. The
second point concerns the v =0—v =1 cross section. On
Fig. 5(a) we also graph the experimental results of Ref.
22(c). In this range, there is a large difference between
experiments carried out by two different methods?? (beam
and swarm??). All previous theories matched the beam
experiments of Ehrhardt et al. usually to a much higher
accuracy than claimed in the original experiment. The
present results are in better agreement with the beam
data (although definitely below previous theories) for en-
ergies above ~ 1.5 eV. Below ~ 1.5 eV our results are in
better agreement with the swarm data, in contrast to the
results of Ref. 23. However, we ignore the S-wave and
quadrupole contributions to the cross section, which may
be substantial near threshold.

From the initial v =0 state, the H,™ vibrational struc-
ture becomes more apparent with increasing Av, from
slight wiggles for v =0—v =2 to pronounced structure
for v =0—v =3 and higher. This trend was also ob-
served in experiment?* and previous theory,'® being ex-
plained by the longer resonance lifetime at larger R.
These peaks are traced to the elimination of closed chan-
nels in our MQDT formulation. The same effect occurs
in Fig. 6 which shows the Av=1 cross section for initial
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FIG. 7. Present calculation of the dissociative attachment
cross sections from the initial vibrational state v;=0 (), v;=1
(+), and v;=2 (O). The experimental data of Ref. 4 for v;=0
are also plotted ( X).

vibrational states v;=0-3; the increasing magnitude of
the cross section with u; was also expected but cannot be
compared with previous theory or experiment.

Figure 7 shows the calculated cross sections for disso-
ciative attachment from v; =0-2. Also shown are the ex-
perimental results of Ref. 4. The well-known increase by
an order of magnitude from v;=0 to v;=1 and from
v; =1 tov; =2 is reproduced. The agreement with experi-
ment of the magnitude and energy dependence of the
cross section at threshold is poor. For v; =0, the thresh-
old experimental value* usually quoted is 1.6 X 10~2! cm?
compared to our value of 2.6X1072' cm? Previous
theories!®?! yielded results >3.0X 102! cm?. Phenome-
nological theories?® yielded dissociative attachment cross
sections of ~2.6X1072! cm? The poor agreement with
experiment is not difficult to rationalize; the cross section
is very small and we expect it to depend sensitively on
subtle aspects of the R dependence of fixed-nuclei scatter-
ing parameters. It is also possible that the energy width
of the electron beam could lower the experimental
threshold value.

V. CONCLUSIONS

We have calculated the cross section for vibrational ex-
citation and dissociative attachment in H, loosely follow-
ing the program set out by Greene and Jungen.® This ab
initio study of electron—neutral-species scattering using
their method encountered difficulties not addressed in the
original treatment based on phenomenological models.®
However, further refinements?® may resolve these prob-
lems which only affected the larger Av’s; however, we
were only able to overcome the anomalies by resorting to
a method essentially similar to Ref. 11. The fixed-nuclei
phase shifts were derived from a fully ab initio R-matrix
calculation in prolate spheroidal coordinates (e.g., we did
not use a model potential for the exchange interaction).
The scattering data were interpolated in E and R by rely-
ing on an R-matrix calculation using exact solutions of
the full Hamiltonian as basis functions. Without any ad-
justment of the fixed-nuclei data we obtained cross sec-
tions in good agreement with experiment!™® for
v=0—v =1 and v =0—v =2 and good agreement in
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magnitude with » =0—v =3. The dissociative attach-
ment cross section was larger than the usually accepted
experimental values* by 60% but close to previous ab ini-
tio calculations.'® A large discrepancy with experiment
may be caused by sensitivity of the calculation to details
of the fixed-nuclei scattering parameters or to experimen-
tal uncertainties. The H,™ vibrational structure becomes
evident for the larger initial vibrational states of H, as
well as for the larger Av’s confirming previous theory!®
and experiment.?*

ACKNOWLEDGMENTS

This work owes much to discussions with U. Fano.
His assistance with the manuscript and his support have
proven invaluable. I also thank Chris Greene for sharing
his expertise and suggesting the method discussed in Sec.
III B. This research was supported by National Science
Foundation Grant Nos. PHY86-10129 and PHY&89-
18304.

APPENDIX: CONVERTING THE VARIATIONAL
R MATRIX TO WIGNER-EISENBUD FORM

In this paper, we have used a further simplification of
the variational R-matrix calculation popularized by
Greene.'” This simplification recasts Greene’s more
powerful variational principle into Wigner-Eisenbud
form?’ without loss of flexibility and power, thus combin-
ing the best aspects of both methods. The improvement
in computing speed over the streamlined form!”® of the
R matrix is negligible, but from a pedagogical basis
seemed worthy of note. In this formulation,
(0Wp /0n)+mbz¥ ;=0 on a closed surface S. The wave
function is represented by a superposition of basis func-
tions with alternative logarithmic derivatives on S,
W= Vi(r)cyp inserted into the variational principle
for the bg, Eq. (4). The best results seem to be obtained
when all but two of the trial functions in each channel
have the same logarithmic derivative with the logarith-
mic derivative of the two extra being quite different from
the majority (e.g., n —2 of the basis functions have zero
derivative on the boundary with the other two equaling
zero on the boundary). The ¢;z’s are extremized to give a
generalized eigensystem

> Tuep=bg 3 Ancg s (A1)
7 ]
where
1 9
=2 dVy,(E—H)y das
f Vil f Yk'm on
=2(EOy—Hy) (A2)
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and

Ay= deSJ’kJ’I . (A3)

O is the overlap matrix and H is the Hamiltonian plus
Bloch operator. The cig's are normalized to
Sk 1A kiCrkpCia=08p, We now recast A expanding the
basis functions at the surface in a set of real, orthonormal
surface harmonics,'”® ¢,, y;, = deS b Vis

A= YaYi - (A4)
i
Division of Eq. (A1) by T" and b transforms it into

2 b~

Lk,j,m

1
2 Vucipy = Dy 1P jmCmp) - (AS)
! B
Notice that U;3=3 ;¢ is a unitary matrix and conse-
quently
% Uisy - "Dy =Ry - (A6)

UJB= Eyil(r
Lk

Although we have made a slight conceptual advance
from Eq. (Al), in practice Eq. (A6) would be just a
difficult to solve as (A1) if not more so, since T" needs to
be manipulated into a form that is easy to invert.

In the final step, the H matrix is diagonalized by solv-
ing
(A7)

2 Hkl WI(I: z Okl Wlaea
1 !

and normalizing the W,’s to 3 ;01 Wy W;3=8,5 The
R matrix is now in Wigner-Eisenbud form

Y;.Y;

i'~22 —— ’ (A8)

where

=2 VuWi - (A9)

1

The €, are the variational estimates of the energies of the
Hamiltonian with the wave function having zero deriva-
tive on the boundary, and the Y,, are variational esti-
mates of the amplitudes of the @ wave functions in the ith
channel. This derivation provides the connection be-
tween two R-matrix methods, showing that the Wigner-
Eisenbud form of the R matrix is not limited to using
basis functions all of which have zero derivative on the
surface. This fact has been recognized by some authors
(e.g., Ref. 11), but rarely utilized in practical calculations.

*Present address: Joint Institute for Laboratory Astrophysics,
Boulder, CO 80309-0440.
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