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Theoretical study of early-time superradiance for atom clouds and arrays

F. Robicheaux *

Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA

(Received 1 October 2021; accepted 22 November 2021; published 13 December 2021)

We explore conditions for Dicke superradiance in a cloud of atoms by examining the Taylor series expansion of
the photon emission rate at t = 0. By defining superradiance as an increasing photon emission rate for t ∼ 0, we
have calculated the conditions for superradiance for a variety of cases. We investigate superradiance as defined
for photon emission into all angles as well as directional superradiance where the photon emission is only
detected in a particular direction. Although all of the examples are for two-level atoms that are fully inverted
at t = 0, we also give equations for partially inverted two-level atoms and for fully inverted multilevel atoms.
We give an algorithm for efficiently evaluating these equations for atom arrays and determine superradiance
conditions for large atom number.
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I. INTRODUCTION

Superradiance [1–4] is a collective phenomenon where
multiple atoms radiate faster than N individual atoms due to
their interaction through the quantized electromagnetic field.
For atoms within a small region, the peak photon emission
rate can scale like N2 rather than N from uncorrelated atoms.
This leads to a burst of radiation on a time scale much smaller
than the radiative lifetime of a single atom. There has been
an extensive number of experimental studies of superradiance
in atoms [5–27], investigations of superradiance for a wide
variety of other platforms [28–35], and many theoretical in-
vestigations of different cases [36–65].

In this paper, we follow the philosophy of Ref. [65] to
use the early-time behavior of the photon emission rate to
determine whether or not a group of N atoms are superradiant.
They used the statistics of the first two photons emitted to
classify the system. For this they used the g(2)(0) with the
condition that superradiance occurs when the first photon
emission enhances the rate of the second photon emission, i.e.,
g(2)(0) > 0. With this insight, they did not need to solve for the
time dependence of the master equation to determine superra-
diance. They classified whether or not a system is superradiant
by using the variance of the eigenvalues of the decay matrix,
�nm in Eq. (6) below, because the g(2)(0) can be found in terms
of these values. Also important, this formulation allows for
interpretation of results from large systems

Instead of using g(2)(0), in this paper, we use the early-time
behavior of the photon emission rate to determine whether
or not a system is superradiant. The idea is that the photon
emission rate γ (t ) is an increasing function of time at t = 0
when the system is superradiant. Using the criterion γ̇ (0) > 0,
we obtain the superradiance condition in terms of the trace of
the square of the decay matrix. Because the decay matrix is
real and symmetric, this criterion is exactly that of Ref. [65].
An advantage of the new definition is that it is computationally
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more efficient so that larger systems can be investigated. It
also leads to different insight into the conditions for superra-
diance. Another advantage is that this formulation allows for
generalization to multilevel systems, systems that are not fully
inverted, directional superradiance, and efficient evaluation
for arrays.

In many of the examples below, we emphasize the differ-
ence between superradiance as defined from the total emission
rate and superradiance as defined as the emission rate into a
particular direction. As an example, Ref. [27] experimentally
demonstrated cases with clear superradiance in a particular
direction (as evidenced by increasing photon emission rate
at early time) with no enhancement in other directions and
Ref. [64] theoretically investigated directional superradiance
for weakly illuminated atom arrays. While the theory can be
used for randomly placed atoms, all examples below are for
atom arrays. For two- and three-dimensional arrays, we give
examples of directional superradiance with atom separations
comparable to or larger than the wavelength of the light for
experimentally accessible atom numbers. We also take advan-
tage of the efficiency in evaluating γ̇ (0) to demonstrate its
scaling with number of atoms and show that superradiance oc-
curs in two- and three-dimensional atom arrays for sufficient
atom number.

In Sec. II, we give the basic theory when the atoms are
approximated as two-level systems. In Sec. III, we derive the
expressions for the early-time behavior of the photon emission
rate for two-level atoms, which can then be used to define
superradiance while Sec. IV is the early-time behavior for
a specific type of multilevel atom. In Sec. V, we explore
several examples. In Sec. VI is a summary of these results.
Appendix gives a brief derivation of the equivalence of our
superradiance condition with that in Ref. [65].

II. BASIC THEORY: TWO STATES

In this section, we are using an excitation scheme where
the atomic structure is approximated as a two-level system.
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The atoms will be considered as fixed in space, which means
we are ignoring the atom recoil and Doppler effects.

A. Master equation formalism

All of the equations will use a simplified notation to reduce
their size. For the nth atom, the ground and excited states are
|gn〉 and |en〉. The operators used below follow the definition

ên ≡ |en〉〈en| σ̂−
n ≡ |gn〉〈en| σ̂+

n ≡ |en〉〈gn|. (1)

The equation for the N-atom density matrix [66] can be
written in the form

d ρ̂

dt
=

∑
n

(
Ln(ρ̂) +

∑
m �=n

[
1

ih̄
[Hnm, ρ̂] + Lnm(ρ̂)

])
, (2)

where the one-atom Hamiltonian that arises from an external
laser interacting with each atom is zero for all of the examples
below and has not been included, Ln is from one atom de-
cays of Lindblad type, the Hnm is the two-atom Hamiltonian
from the dipole-dipole interactions, and Lnm are the two atom
decays from the dipole-dipole interactions. For the two-level
cases considered here, these operators are

Ln(ρ̂ ) = �

2
(2σ̂−

n ρ̂σ̂+
n − ênρ̂ − ρ̂ên) (3)

Hnm = h̄�nmσ̂+
n σ̂−

m (4)

Lnm = �nm

2
(2σ̂−

n ρ̂σ̂+
m − σ̂+

m σ̂−
n ρ̂ − ρ̂σ̂+

m σ̂−
n ), (5)

where � is the decay rate of a single atom. The two-atom
parameters are defined for m �= n as

�nm = g(Rnm) + g∗(Rnm) = 2Re[g(Rnm)] (6)

�nm = g(Rnm) − g∗(Rnm)

2i
= Im[g(Rnm)] (7)

g(R) = �

2

[
h(1)

0 (s) + 3R̂ · d̂∗R̂ · d̂ − 1

2
h(1)

2 (s)

]
(8)

g±
nm ≡ ±i�nm + 1

2�nm (9)

with Rnm = Rn − Rm with Rn the position of atom n, d̂ the
dipole unit vector, s = kR, R̂ = R/R, and the h(1)

� (s) the out-
going spherical Hankel function of angular momentum �:
h(1)

0 (s) = eis/[is] and h(1)
2 (s) = (−3i/s3 − 3/s2 + i/s)eis. The

g(R) is proportional to the propagator that gives the electric
field at R given a dipole at the origin [67]. For a �M = 0
transition, d̂ = ẑ and the coefficient of the h(1)

2 Bessel function
is P2[cos(θ )] = [3 cos2(θ ) − 1]/2 where cos(θ ) = Z/R. For a
�M = ±1 transition, the coefficient of the h(1)

2 Bessel func-
tion is −(1/2)P2[cos(θ )] = [1 − 3 cos2(θ )]/4. To simplify
some formulas below, we will define the diagonal component
of �mn as

�nn = 2�[g(R → 0)] = �. (10)

B. Photon emission rate

The rate that photons are emitted into all angles at time t is
given by

γ (t ) =
∑

n

[
�〈ên〉(t ) +

∑
m �=n

�mn〈σ̂+
m σ̂−

n 〉(t )

]
. (11)

The rate that photons are emitted into the k̂ f direction is
proportional to [4]

γ (t, k f ) = �
∑

n

[
〈ên〉(t ) +

∑
m �=n

eiϕmn〈σ̂+
m σ̂−

n 〉(t )

]
, (12)

where ϕmn = k f · (Rm − Rn) with k f = 2π/λ0 k̂ f . The nor-
malization of γ (t, k f ) was chosen so that a fully inverted
system has γ (0, k) = N� in analogy with γ (0). The definition
Eq. (12) only makes sense if the orientation of the dipoles
are not in the k̂ direction because the actual directional rate
involves the direction of the dipole and the k̂.

An interesting question arises from these two definitions.
As noted by Ref. [65], a natural definition of superradiance is
when the emission of the first photon enhances the rate that
the second photon is emitted. This implies the rate of photon
emission, Eq. (11), is an increasing function of time at t = 0
since an increasing γ (t ) means the many atoms radiate faster
as time develops. This can only occur when pair correlations
〈σ̂+

m σ̂−
n 〉(t ) �= 0 develop in the gas because the

∑
n〈ên〉 is a

decreasing function of time for undriven atoms. As we will see
below and was experimentally observed in Ref. [27], there are
cases where γ̇ (0, k) > 0 for some directions k̂ even though
γ̇ (0) < 0. However, for γ̇ (0, k) > 0, there must be nonzero
(and substantial) pair correlations developing in the atom
cloud even when γ̇ (0) < 0. We will call this case “directional
superradiance” to distinguish it from the case where γ̇ (0) > 0.

Both types of superradiance are interesting because the
gas has become correlated. This can be seen from the de-
velopment of an initially fully inverted system, which has
〈σ̂±

n 〉(t ) = 0. Therefore, superradiance demands 〈σ̂+
m σ̂−

n 〉(t ) −
〈σ̂+

m 〉(t )〈σ̂−
n 〉(t ) �= 0 implying non-negligible pair correla-

tions.

C. Uncorrelated initial state

In the following, we will examine how correlations develop
when starting from a completely uncorrelated but not neces-
sarily fully inverted initial state

|ψi〉 = �⊗n[cos(α/2) |gn〉 + eiki·Rn sin(α/2) |en〉], (13)

where sin2(α/2) is the probability for an atom to be excited
and k̂i gives a phase change across the atom cloud. This form
for the initial state would result when a cloud was subject to an
intense but short laser pulse in the limit that the pulse duration
gets very short. We will examine superradiance as a function
of both α and k̂i. Superradiance can occur when the cloud is
not fully inverted. The interplay between k̂i and the shape of
the cloud can lead to interesting effects, e.g., if the cloud is
elongated in the k̂i direction.
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III. EVALUATION OF EARLY-TIME PHOTON RATES:
TWO STATES

A. First derivative

We will use a somewhat different approach from Ref. [65]
to exactly evaluate the early-time behavior of the photon emis-
sion rates, γ ’s. The idea is based on performing a Taylor series
expansion

γ (t ) = γ (0) + γ̇ (0)t + 1
2 γ̈ (0)t2 + · · · , (14)

where γ̇ (0) means the first derivative of γ evaluated at t = 0,
etc. Superradiance occurs when γ̇ (0) > 0.

The evaluation of γ̇ (0) simply requires the derivatives of
〈ên〉 and 〈σ̂+

m σ̂−
n 〉

d〈ên〉
dt

= −�〈ên〉 −
∑
m �=n

(gnm〈σ̂−
m σ̂+

n 〉 + g∗
nm〈σ̂+

m σ̂−
n 〉) (15)

and

d〈σ̂+
m σ̂−

n 〉
dt

= −�〈σ̂+
m σ̂−

n 〉 + 2�mn〈êmên〉 − gmn〈êm〉

− g∗
mn〈ên〉 +

∑
l �=m,n

[gnl (2〈σ̂−
l σ̂+

m ên〉 − 〈σ̂−
l σ̂+

m 〉)

+ g∗
ml (2〈σ̂+

l êmσ̂−
n 〉 − 〈σ̂+

l σ̂−
n 〉)] (16)

from Ref. [68].
Using the initial wave function, Eq. (13), all of the expec-

tation values can be evaluated at t = 0:

〈ên〉 = 1 − cos α

2
〈σ̂−

n 〉 = 〈σ̂+
n 〉∗ = sin α

2
eiki·Rn (17)

with all of the other expectation values being products of
these, 〈ÂB̂〉 = 〈Â〉〈B̂〉, since the initial wave function is a
product state.

For clarity, we first give the result for a fully inverted gas,
α = π , for the total photon emission rate:

γ̇ (0) = −N�2 +
∑

n,m �=n

�mn�nm = −2N�2 + Tr[� �], (18)

where � means the matrix of �mn and Tr[. . .] means the trace.
This expression arises because 〈ên〉 = 1 and 〈σ̂±

n 〉 = 0. Be-
cause � is a real, symmetric matrix, our condition γ̇ (0) > 0 is
identical to Eq. (3) of Ref. [65], which gives the superradiance
condition in terms of the variance of the eigenvalues of �;
see Appendix below. While the form Eq. (3) of Ref. [65]
has advantages as discussed there, Eq. (18) has the advan-
tage of being computationally faster (number of operations
scaling like N2 instead of N3) and providing insight into
scaling with large atom numbers (discussed below). Also,
as discussed below, the number of operations scales as N1

for arrays. The Dicke model [1], �mn = 1, in Eq. (18) gives
γ̇ (0) = N (N − 2)�2, which is the result from Dicke’s original
derivation.

The fully inverted gas for directional emission has

γ̇ (0, k f ) = −2N�2 + �
∑
mn

�mn cos ϕnm

= −2N�2 + �Tr[� cos ϕ], (19)

where ϕmn = k f · (Rm − Rn). Because this expression only
has one power of �mn (which decreases like 1/|Rm − Rn|),
the condition γ̇ (0, k f ) > 0 can be satisfied more easily than
Eq. (18) if the k f is in the correct direction.

The equations for partially inverted samples are somewhat
more complicated due to the survival of terms with raising and
lowering operators. The total decay rate gives

γ̇ (0) = −N�2 1 − c

2
+

∑
n

∑
m �=n

[
c(c − 1)

2
�mn�nm − s2

2
�mn

×
{

� cos(ηmn) + c

2

∑
l �=n,m

(
gnle

iηlm + g∗
ml e

−iηln
)}]

,

(20)

where c ≡ cos α, s ≡ sin α, and ηmn = ki · (Rm − Rn). The
directional decay rate is

γ̇ (0, k f ) = −N�2 1 − c

2
+ �

∑
n

∑
m �=n

[
c(c − 1)

2
�mn cos ϕnm

− s2

4

{
�nm cos(ηmn) + � cos(ϕmn − ηmn)

+ ceiϕmn
∑

l �=n,m

eiηmn
(
gnl e

iηlm + g∗
ml e

−iηln
)}]

. (21)

An important point to note for the partial inversion is that the
number of operations scales as N3 so these are more difficult
calculations.

B. Second derivative: Fully inverted

The second derivative of the photon emission rates are
relatively straightforward to evaluate when the atoms are fully
inverted using [68]

d2〈ên〉
dt2

(0) = �2 −
∑
m �=n

�nm�mn (22)

and

d2〈σ̂+
m σ̂−

n 〉
dt2

(0) = −4��mn +
∑

l �=m,n

(gnl�lm + g∗
ml�ln). (23)

Using these expressions gives

γ̈ (0) = N�3 − 5�
∑
nm

(1 − δnm)�nm�mn

+
∑
nml

(1 − δnl )(1 − δml )(1 − δnm)�nm�ml�ln

= 8N�3 − 8�Tr[� �] + Tr[� � �] (24)

for the total decay rate. The Dicke model [1], gives γ̈ (0) =
N (N2 − 8N + 8)�3, which is the result from Dicke’s original
derivation. For the directional decay rate,

γ̈ (0, k f ) = 8N�3 − 2�Tr[� �] − 6�2Tr[� cos η]

+�Tr[� � cos η] + �Tr(sin η [�,�]). (25)
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In principle, this logic can be continued to higher-order
derivatives. With higher derivatives, it might be possible to
determine the peak fluorescence and the time at which it
occurs. The higher derivatives will require larger powers of
the �, which would be most efficiently evaluated using the
diagonalization described in Ref. [65].

IV. EVALUATION OF EARLY-TIME PHOTON RATES:
MANY FINAL STATES

This section gives the γ̇ (0) when the excited state can
decay to several final states. To simplify the notation and
derivation, we will do the calculation without spin-orbit and
hyperfine effects and further assume the initial state has � =
0. Extending beyond these restrictions does not seem to be
qualitatively different. We will denote the principle quantum
number of the excited state as αi and it can decay to many final
states with principle quantum number α f with � f = 1. Instead
of using m f , we will use Cartesian orbitals i = x, y, z.

The operators will be extended as

σ̂
α f i−
n ≡ |(α f i)n〉〈en| σ̂

α f i+
n ≡ |en〉〈(α f i)n| (26)

with the ên operator unchanged. Note the condition

σ̂
α′

f i′+
n σ̂

α f i−
n = ênδii′δα f α

′
f
. (27)

The Lindblad term, with n = m allowed, is

L(ρ̂ ) = 1

3

∑
nmα f ii′

�
α f ii′
nm

2

(
2σ̂

α f i−
n ρ̂σ̂

α f i′+
m

− σ̂
α f i′+
m σ̂

α f i−
n ρ̂ − ρ̂σ̂

α f i′+
m σ̂

α f i−
n

)
, (28)

where

�
α f ii′
nm = �α f

[
j0(kα f R) + 3R̂iR̂i′ − 1

2
j2(kα f R)

]
(29)

with �α f the total decay rate into state α f , kα f the wave
number of the photon that transitions from the initial state
to the p state α f , j�(z) the usual spherical Bessel functions,
R = |Rn − Rm|, and R̂ = (Rn − Rm)/R.

Repeating the derivation of the previous section the slope
of the photon emission rate can be found. The rate that pho-
tons of wave number magnitude kα f are emitted for a fully
inverted system is

γα f (0) = N�α f . (30)

The slope of the photon emission for a fully inverted
system is

γ̇α f (0) = −N�α f � +
∑

n

∑
m �=n

1

9

∑
ii′

(
�

α f ii′
nm

)2
, (31)

where the total decay rate � = ∑
α f

�α f . Note that the initial
slope needs more atoms to have γ̇α f (0) > 0 because the neg-
ative term is relatively larger: the second term is proportional
to �2

α f
while the first term is proportional to �α f �. The second

term is proportional to N2 so adding more atoms in a compact
region will lead to superradiance even when � � �α f , e.g.,
Rydberg states.

FIG. 1. Both plots are for an atom array in a line on the y axis
with the atoms separated by d . The polarization is in the z direction.
White shows the region where γ̇ (0, k f ) > 0 and gray is where <0
with k f = k(x̂ cos φ + ŷ sin φ). The left plot has φ = 0.4π . The right
plot is for 100 atoms. For the directional decay, there is more than one
region of superradiance unlike the case for γ̇ (0). For the left plot, the
top region only exists for N � 9.

V. EXAMPLES

In this section, we discuss the results of calculations for
several examples in one, two, and three dimensions.

A. One-dimensional array

In this section, we describe results for examples where the
atoms are in one or two lines with equal spacing between the
atoms. Our results for the total decay rate in a one-dimensional
atom array match those of Ref. [65] and will not be discussed
in detail here. We will mainly focus on the directional photon
emission. We will restrict the dipole moment to be in the z
direction and the atoms to be on one or two lines parallel to
the y axis.

As with Ref. [65], there are regions where the slope of
the photon emission rate is larger than 0, indicating super-
radiance in different directions. After fixing the polarization
direction and the line of atoms, there are three parameters
of interest: the number of atoms N , the separation of atoms
d , and the angle of photon emission. In Fig. 1, we show
the region of superradiance as defined by γ̇ (0, k f ) > 0 for
k f = k(x̂ cos φ + ŷ sin φ). The superradiant region is white.
In this case, there is a single line of atoms. One plot shows the
superradiant region as a function of N, d for φ = 0.4π and
the other shows this region versus φ, d for N = 100. The plot
versus φ, d repeats for φ → φ + π and is symmetric about
φ = π/2 due to the symmetry for a line of atoms in the y
direction.

As with the results for the total emission rate in Ref. [65],
there is a region of relatively rapid change with N for N
less than about 20 followed by slower change with N , which
apparently converges to particular values for large N . The
region of slow increase is discussed in Sec. V D. Unlike the
total emission rate, the directional emission has two regions
of superradiance for larger N depending on the angle of emis-
sion. For φ between ∼π/4 and ∼3π/4, there is a region of
larger separation, d/λ roughly between 0.5 and 0.6, where
the photoemission rate increases with time at early times.
This is due to constructive interference in these directions
and is not present for the total emission rate, which is only
superradiant for d less than 
 λ/4 for N = 100. This region
of directional superradiance for d ∼ λ/2 is only present for
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FIG. 2. Same situation as Fig. 1, except there are two lines of
atoms, each with N/2 atoms. The lines of atoms are displaced from
each other by d in the x direction. For the left plot, φ = 0.5π . The
middle region of superradiance only exists for N � 9 and the top
region only exists for N � 30. Note the top region is superradiant for
d larger than λ.

N � 9, which is not a large number of atoms. It seems possi-
ble to experimentally observe this directional superradiance at
larger d .

A more complex situation occurs if there are two, parallel
lines of atoms. Figure 2 shows results when the second line of
atoms is displaced in the x direction by d . Each line contains
N/2 atoms. For this case, one plot shows the superradiant
region as a function of N, d for φ = π/2 and the other shows
this region versus φ, d for N = 100. There are two interesting
differences from the example with one line of atoms. The first
is that there are more regions of directional superradiance.
For φ = π/2, there are three regions with the middle region
starting at N = 9 and the top region starting at N = 30. For
larger N , there is a rich structure of superradiance on the φ, d
plane due to the interference between the different lines of
atoms. The second is that there is directional superradiance
for d > λ for φ 
 0, π/2, π . This region of superradiance for
d > λ requires more atoms, but N is not so large that it is out
of reach for experimental investigation.

1. Nonideal cases

For the cases in Figs. 1 and 2, we calculated the effect
of not fully inverting the atoms for N = 100 for d < 1.1λ.
For this case, we assumed the laser propagation is in the z
direction giving ηmn = 0. As α decreases from π , the region of
superradiance shrinks. When the excited population decreases
too much, the superradiance regions for larger d , i.e., d ∼ λ/2
for Fig. 1 and d ∼ λ/2 and ∼λ for Fig. 2, disappear. For the
single line case, the upper region disappears when the initial
excitation population decreases below 75%. For the double
line case, the region near d ∼ λ disappears for less than
approximately 80% excited while the region near d ∼ λ/2
survives down to approximately 55% excited.

Another possible nonideal case has the atoms fully inverted
but some of the atoms are randomly removed, which was
treated in Ref. [65]. We simulated this by randomly removing
each atom with a probability, P. For each P, we repeated
the simulations 100 times and checked the superradiance
condition. As with the non-fully-inverted case, the region of
superradiance shrinks with increasing probability for atom re-
moval and at some point the superradiance regions for larger d
disappear. For the single line case, the upper region disappears
on average when the number of atoms is less than 80% while

FIG. 3. Same situation as Fig. 1, except there is a square array
of atoms in the xy plane of size N1 × N1. The dipole moment is
perpendicular to the plane and k f = k(x̂ cos φ + ŷ sin φ). For the left
plot, φ = 0 and the right plot has N1 = 40.

for the double line case the region near d ∼ λ disappears for
less than 70% atoms while the region near d ∼ λ/2 survives
down to approximately 40% atoms. Similar behavior is seen
for higher-dimensional arrays.

B. Two-dimensional array

In this section, we describe results for an example where
the atoms are in a two-dimensional array with equal spacing
between the atoms. Our results for the total decay rate in
a two-dimensional atom array match those of Ref. [65]; we
discuss these results below with those from a cubic array. We
restrict the dipole moment to be in the z direction and the
atoms to be on a square array in the xy plane of size N1 × N1.

In Fig. 3, we show the superradiant region versus N1, d
for φ = 0 and versus φ, d for N1 = 40 corresponding to N =
1600 atoms. As with the results for the total emission rate in
Ref. [65], there is a region of relatively rapid change with N1

for N1 less than about 20 followed by slower change with
N1. The change was even slower in the plots of Ref. [65]
because the plots were versus the total number of atoms
N = N2

1 , which greatly stretches the abscissa. Unlike the
one-dimensional case, it is not clear whether the superradi-
ant regions converge with increasing N1. It appears that the
separation of atoms leading to superradiance increases as the
number of atoms increases. This is discussed in Sec. V D
where it is shown the results do not converge with increasing
N .

The directional superradiance for a plane is much richer
than that for one or two lines of atoms. In the plot versus
φ, d at N1 = 40, the results repeat for φ → φ + π/2 and are
symmetric about φ = π/4 and 3π/4 because of the symmetry
for a square array. In addition, there are many more regions of
superradiance due to the different possible directions for con-
structive interference. Some of these regions start at relatively
small N1. For example, the superradiant region for d ∼ λ

for φ = 0 starts at N1 = 6 corresponding to 36 atoms. The
superradiant region for d ∼ 5λ/4 starts for N1 = 11 corre-
sponding to 121 atoms. Both of these cases are within current
experimental capabilities [69]. Perhaps even more interest-
ing are the regions where different constructive interference
conditions overlap, for example, the regions for d ∼ 1.6λ for
φ ∼ π/8, 3π/8, 5π/8, 7π/8. Also of interest are the superra-
diant regions where d ∼ 2λ; however, these regions are small
and may not be robust to lattice imperfections.
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FIG. 4. Same situation as Fig. 1, except there is a cubic array of
atoms of size N1 × N1 × N1. The dipole moment is in the z direction
and k f = k(x̂ cos φ + ŷ sin φ). For the left plot, φ = 0 and the right
plot has N1 = 10.

C. Three-dimensional array

In this section, we describe results for an example where
the atoms are in a three-dimensional array with equal spacing
between the atoms. We restrict the dipole moment to be in
the z direction and the atoms to be on a cubic array of size
N1 × N1 × N1.

We will first examine the case for directional superra-
diance. In Fig. 4, we show the superradiant region versus
N1, d for φ = 0 and versus φ, d for N1 = 10 corresponding to
N = 1000 atoms. As with the planar array, there is a richness
to the regions that arise due to directions giving constructive
interference. As with the planar array, in the plot versus φ, d
at N1 = 10, the results repeat for φ → φ + π/2 and are sym-
metric about φ = π/4 and 3π/4 because of the symmetry for
a cubic array. There are also several regions that are superradi-
ant for d greater than ∼λ for relatively small number of atoms.
Another interesting similarity to the two-dimensional case is
the increasing separation of atoms leading to superradiance
as the number atoms increases. This is discussed in Sec. V D
where it is shown the results do not converge with N .

We also show the superradiant region for total photon
emission, γ̇ (0), versus N1, d for the square and cubic ar-
rays in Fig. 5. For the square array, the region for N1 � 40
matches that shown in Ref. [65], Fig. 4, for the polarization
perpendicular to the plane. Interestingly, the maximum d for
superradiance appears to be an increasing function of N1 up to
the largest values shown in Fig. 5. From Eq. (37), the maxi-
mum d/λ for superradiance is proportional to

√
ln N1, which

does continue to increase with N1, albeit slowly. For the cubic
array, there are more regions of large separation superradiance
and they appear at smaller N1. This is not surprising because

FIG. 5. For the same case as Figs. 3 (for 2D) and 4 (for 3D), plots
of the superradiant region defined by γ̇ (0) > 0.

there are many more atoms close to each other, which leads
to faster radiation. More interesting, from Eq. (38), the maxi-
mum d/λ for superradiance is proportional to

√
N1. Unlike the

one-dimensional case, the two- and three-dimensional arrays
do not converge to superradiance properties as N1 increases.

D. Efficient summation and asymptotic trends

The summation in Eqs. (18) and (19) require O(N2) op-
erations for a general positioning of atoms. While this is
more efficient than O(N3) operations, there are more efficient
algorithms in some cases. For example, for an array, most of
the terms are repeated. This fact can be used to reduce the
number of operations to O(N ).

For a single line, there are N terms where n − m = 0;
there are N − 1 terms where n − m = 1 or n − m = −1, etc.
This allows the calculation in terms of the difference in
positions and a weight for a given difference. As another
example, for a three-dimensional array with N1 points in
each direction with lattice vectors a1, a2, a3 the atom posi-
tions can be written as Rn = ν1,na1 + ν2,na2 + ν3,na3 where
the 1 � ν1, ν2, ν3 � N1 are integers. There are

∏
i(N1 − |νi|)

terms that have ν1,n − ν1,m = ν1, ν2,n − ν2,m = ν2, and ν3,n −
ν3,m = ν3. Defining the scaled initial slope of the photoemis-
sion rate as γ̇ (0)/(N�2), this allows the reduction to

γ̇ (0)

N�2
= −2 +

∑
ν1ν2ν3

Wν1ν2ν3

�2
ν1ν2ν3

�2
(32)

γ̇ (0, k f )

N�2
= −2 +

∑
ν1ν2ν3

Wν1ν2ν3

�ν1ν2ν3

�
cos

(
φν1ν2ν3

)
(33)

Wν1ν2ν3 =
(

1 − |ν1|
N1

)(
1 − |ν2|

N1

)(
1 − |ν3|

N1

)
, (34)

where both summations are for −N1 < ν1, ν2, ν3 < N1,
the number of atoms N = N3

1 , φν1ν2ν3 = k f · (ν1a1 + ν2a2 +
ν3a3), and �ν1ν2ν3 = 2Re[g(ν1a1 + ν2a2 + ν3a3)]. The func-
tion Wν1ν2ν3 is the weighting from the number of terms
with differences ν1, ν2, ν3. The extension to one- and two-
dimensional arrays is straightforward: restrict ν2 = ν3 = 0 in
one dimension and restrict ν3 = 0 in two dimensions.

This formulation, Eqs. (32) and (33), shows why the one-
dimensional case converges to a finite value in the limit N →
∞. The scaled initial slope of the photoemission rate goes to
an asymptotic limit as N → ∞:

lim
N→∞

γ̇ (0)

N�2
= −2 +

∞∑
ν=−∞

�2
ν

�2
(35)

lim
N→∞

γ̇ (0, k f )

N�2
= −2 +

∞∑
ν=−∞

�ν

�
cos(φν ). (36)

The first summation is absolutely convergent because �2
ν is

proportional to 1/ν2 for large |ν|. The second summation is
conditionally convergent because �ν cos(φν ) is proportional
to 1/|ν| times an oscillating function of ν for large |ν|.

From the formulation, Eqs. (32) and (33), we can show
the two-dimensional case always leads to superradiance in
the limit N → ∞. For example, in Eq. (32), the sum diverges
proportional to ln N1 because the �ν1ν2 ∝ 1/|a1ν1 + a2ν2|. As
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FIG. 6. For the same case as Figs. 3 and 4, a plot of the scaled
initial slope of total radiation at a separation d = λ and 2λ ver-
sus the number of atoms in each direction. The red solid line is
the calculation using Eq. (32) and the blue dashed line is a plot
of −1.2762 + 0.1740 ln N1 and −1.0608 + 0.0429 ln N1 for two-
dimensional and −1.1913 + 0.0856N1 and −1.0608 + 0.0213N1 for
three-dimensional. The plane of atoms with polarization perpendic-
ular to the plane is superradiant for N1 > 1530 for d = λ while the
cubic array is superradiant for N1 � 14.

a specific example, a square array with separation d and po-
larization out of the plane gives

γ̇ (0)

N�2
∼ C + 9λ2

32π2d2

∑ Wν1ν2

ν2
1 + ν2

2

∼ C + D
λ2

d2
ln N1 (37)

in the limit of large N1 with C and D constants. The asymptotic
form was found by converting the sum to an integral using
ν2 = ν2

1 + ν2
2 with

∑ → ∫
2πνdν. This can be seen in Fig. 6

where we plot the scaled photon emission slope versus N1.
There is a fit function, which agrees well with the calcula-
tion with the fit being −1.2762 + 0.1740 ln N1 for d = λ and
−1.0608 + 0.0429 ln N1 for d = 2λ. This agrees better with
Eq. (37) than might be expected given the contribution from
the weight function, 9/(16π ) = 0.1790.

Unlike the one-dimensional case where the scaled slope
converges to a finite value as N → ∞, the two-dimensional
scaled slope diverges for both Eqs. (32) and (33) implying
there is always a minimum number of atoms, which will give
superradiance. For Fig. 6, superradiance occurs for N1 
 1530
corresponding to 2.3 × 106 atoms for d = λ and N1 ∼ 5.5 ×
1010 corresponding to N ∼ 3 × 1021 atoms for d = 2λ. These
are very large numbers, not likely to be accessible experimen-
tally in the near future. The smallest N1 for superradiance is
a rapidly increasing function of d: roughly N1 is squared for
every increase of d by a factor of ∼√

2. Also, the approxi-
mations in the basic equations, Eq. (2), no longer hold when
the array size is too large so this asymptotic behavior only
represents reality for a finite range of N1.

From the formulation, Eqs. (32) and (33), we can show that
the three-dimensional case always leads to superradiance in
the limit N → ∞. Following the logic of the two-dimensional
case, the cubic array in x, y, z with separation d and polariza-
tion in the z direction gives

γ̇ (0)

N�2
∼ C + D

λ2

d2
N1 (38)

in the limit of large N1 with C and D constants. The asymptotic
form was found by converting the sum to an integral using
ν2 = ν2

1 + ν2
2 + ν2

3 with
∑ → ∫

4πν2dν. This form can be
seen in Fig. 6 where we plot the scaled photon emission
slope versus N1. For N1 greater than about 4, the scaled

photoemission slope is proportional to N1. There is a fit func-
tion, which agrees well with the scaling with the fit being
−1.1913 + 0.0856N1 for d = λ and −1.0608 + 0.0213N1 for
d = 2λ. Note that the coefficient multiplying the N1 decreases
by a factor of 4 in going from d = λ to 2λ as expected from
Eq. (38).

Because the γ̇ (0)/N increases more quickly with N1 than
the two-dimensional case, the region of superradiance is
reached more quickly. For d = λ, there is superradiance for
N1 � 14 (corresponding to N = 2744) and, for d = 2λ, it is
N1 � 51 (corresponding to N = 130 000). Compared to the
two-dimensional case, these are much smaller cutoff numbers
although they are probably still experimentally challenging in
the near future. The form of Eq. (38) suggests that the cutoff
for superradiance is N1 = N1/3 ∝ (d/λ)2.

VI. SUMMARY

We have presented an alternative method to Ref. [65] for
determining whether a collection of atoms will exhibit super-
radiance in the total emission rate. Our condition is equivalent
to that in Ref. [65] but uses the trace of the square of a matrix
instead of the variance of the eigenvalues. We also presented
a method for determining whether the collection of atoms will
exhibit superradiance only in particular directions. In addition
to expressions for fully inverted systems, we also found ex-
pressions for when the gas is partially inverted in a product
state. For the case of fully inverted atoms, we determined
the condition for superradiance for photoemission into more
than one final state. Finally, we showed how to efficiently
evaluate these expressions for arrays of atoms and determined
the superradiance condition for very large atom number.

For two-level atoms, we performed calculations for di-
rectional superradiance for one-, two-, and three-dimensional
arrays and found conditions of superradiance where the atom
separation was comparable to or larger than λ for not very
large numbers of atoms. We showed that one-dimensional
arrays have radiant properties that converge to finite values as
the number of atoms increase, but two- and three-dimensional
arrays have scaled radiant properties that increase with in-
creasing number of atoms. For fully inverted atoms, we
showed how the decay into many final states affects the su-
perradiance condition for the total emission rate.

While it will be difficult experimentally to have large,
perfect arrays, experiments with randomly situated atoms can
be done. Effects that result from the interference due to the
perfect array will not be reproduced in a random gas. How-
ever, the dependence of the total photon emission rate with
d/λ, d the average separation, and atom number, N , should
be similar to that for a perfect array when N is large. For
example, an effectively two-dimensional cloud should have
the scaled initial slope, γ̇ (0)/(N�2), scale like Eq. (37) and
a three-dimensional cloud should scale like Eq. (38). They
should scale like the perfect arrays because the main contri-
bution comes from atoms with separations d � λ where �2

nm
does not vary strongly when averaged over a wavelength. This
suggests that two- and three-dimensional gases also should
show superradiance and directional superradiance for enough
atoms.

Data used in this publication is available at Ref. [70].
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Note added. Recently, we became aware of related work in
Ref. [71].
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APPENDIX: EQUIVALENCE OF SUPERRADIANCE
DEFINITION

This Appendix shows that the condition g(2)(0) > 1 of
Ref. [65] is the same as γ̇ (0) > 0 from Eq. (18). From
Eq. (12) in Appendix B of Ref. [65], the superradiance

condition is
N∑

ν=1

�2
ν − 2N�2 > 0 (A1)

with �ν the eigenvalues of �. Since � is a real, symmetric
matrix, the sum of the squares of the eigenvalues can be
related to the trace of the squared matrix:

N∑
ν=1

�2
ν = Tr[� �]. (A2)

Substituting this expression into Eq. (A1) immediately gives

Tr[� �] − 2N�2 = γ̇ (0) > 0. (A3)

[1] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[2] N. E. Rehler and J. H. Eberly, Superradiance, Phys. Rev. A 3,
1735 (1971).

[3] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93, 301
(1982).

[4] L. Allen and J. H. Eberly, Optical Resonance and Two-Level
Atoms (Courier Corporation, Mineola, 1987), Vol. 28.

[5] N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S.
Feld, Observation of Dicke Superradiance in Optically Pumped
HF Gas, Phys. Rev. Lett. 30, 309 (1973).

[6] M. Gross, C. Fabre, P. Pillet, and S. Haroche, Observation of
Near-Infrared Dicke Superradiance on Cascading Transitions in
Atomic Sodium, Phys. Rev. Lett. 36, 1035 (1976).

[7] H. M. Gibbs, Q. H. F. Vrehen, and H. M. J. Hikspoors, Single-
Pulse Superfluorescence in Cesium, Phys. Rev. Lett. 39, 547
(1977).

[8] J. Marek, Observation of superradiance in Rb vapour, J. Phys.
B 12, L229 (1979).

[9] M. Gross, P. Goy, C. Fabre, S. Haroche, and J. M.
Raimond, Maser Oscillation and Microwave Superradiance in
Small Systems of Rydberg Atoms, Phys. Rev. Lett. 43, 343
(1979).

[10] A Crubellier, S Liberman, P Pillet, and MG Schweighofer,
Experimental study of quantum fluctuations of polarisation in
superradiance, J. Phys. B 14, L177 (1981).

[11] L. Moi, P. Goy, M. Gross, J. M. Raimond, C. Fabre, and S.
Haroche, Rydberg-atom masers. I. a theoretical and experi-
mental study of super-radiant systems in the millimeter-wave
domain, Phys. Rev. A 27, 2043 (1983).

[12] T. Wang, S. F. Yelin, R. Côté, E. E. Eyler, S. M. Farooqi, P. L.
Gould, M. Koštrun, D. Tong, and D. Vrinceanu, Superradiance
in ultracold Rydberg gases, Phys. Rev. A 75, 033802 (2007).

[13] S. Slama, S. Bux, G. Krenz, C Zimmermann, and Ph. W.
Courteille, Superradiant Rayleigh Scattering and Collective
Atomic Recoil Lasing in a Ring Cavity, Phys. Rev. Lett. 98,
053603 (2007).

[14] J. O. Day, E. Brekke, and T. G. Walker, Dynamics of low-
density ultracold Rydberg gases, Phys. Rev. A 77, 052712
(2008).

[15] M. Chalony, R. Pierrat, D. Delande, and D. Wilkowski, Coher-
ent flash of light emitted by a cold atomic cloud, Phys. Rev. A
84, 011401(R) (2011).

[16] A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O.
Painter, and H. J. Kimble, Superradiance for Atoms Trapped
Along a Photonic Crystal Waveguide, Phys. Rev. Lett. 115,
063601 (2015).

[17] T. Zhou, B. G. Richards, and R. R. Jones, Absence of collective
decay in a cold Rydberg gas, Phys. Rev. A 93, 033407 (2016).

[18] W. Guerin, M. O. Araújo, and R. Kaiser, Subradiance in a Large
Cloud of Cold Atoms, Phys. Rev. Lett. 116, 083601 (2016).

[19] S. J. Roof, K. J. Kemp, M. D. Havey, and I. M. Sokolov, Ob-
servation of Single-Photon Superradiance and the Cooperative
Lamb Shift in an Extended Sample of Cold Atoms, Phys. Rev.
Lett. 117, 073003 (2016).
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