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Recent investigations by Fuchs et al. [Matthias Fuchs, Mariano Trigo, Jian Chen, Shambhu Ghimire,
Sharon Shwartz, Michael Kozina, Mason Jiang, Thomas Henighan, Crystal Bray, Georges Ndabashimiye et al.,
Anomalous nonlinear X-ray Compton scattering, Nat. Phys. 11, 964 (2015)] revealed an anomalous frequency
shift in nonlinear Compton scattering of high-intensity x rays by electrons in solid beryllium. This frequency shift
was at least 800 eV to the red of the values predicted by analytical free-electron models for the same process. In
this paper, we describe a method for simulating nonlinear Compton scattering. The method is applied to the case
of bound electrons in a local, spherical potential to explore the role of binding energy in the frequency shift of
scattered x rays for different scattered angles. The results of the calculation do not exhibit an additional redshift
for the scattered x rays beyond the nonlinear Compton shift predicted by the free-electron model. However, they
do reveal a small blueshift relative to the free-electron prediction for nonlinear Compton scattering. The effect of
electron-electron correlation effects is calculated and determined to be unlikely to be the source of the redshift.
The case of linear Compton scattering from a photoionized electron followed by electron recapture is examined

as a possible source of the redshift and ruled out.
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I. INTRODUCTION

Since, the discovery of Compton scattering 90 years ago,
various measurements have been carried out to confirm the
results to a higher accuracy and to probe the finer details of the
Compton spectrum [1,2]. This has given rise to the study of
Compton profiles which provide extensive information about
the momentum distribution of the electrons involved in the
scattering [3,4]. Compton profiles have also proven useful
as an experimental check on the accuracy of the ground-
state wave function of electrons in momentum space obtained
through theoretical methods. A number of applications in
areas from material science to astrophysics have been born
out of these studies [5,6].

In this paper, nonlinear Compton scattering refers to the
process where two incoming photons interact with an electron,
leading to one outgoing photon. Nonlinear Compton scatter-
ing was first described by Brown and Kibble [7] in 1964,
where they developed an analytical QED framework to model
the nonlinear scattering [8] of photons by a free electron.
In their work, they showed that when nonlinear Compton
scattering occurs, for the nonrelativistic case, the frequency
of the scattered photon can be obtained by the usual Compton
expression, provided one replaces the incoming frequency by
twice that value. Including relativistic effects in the calcula-
tion gives rise to ponderomotive forces on the electron. At
extremely high intensities (electric field > 10000 a.u. for x
rays), the ponderomotive effects lead to the electron behaving
as if it had a smaller mass and thus producing a bigger redshift
for the scattered photons. It was more than two decades before
experiments could study nonlinear x-ray—matter interactions,
but the arrival of x-ray free-electron lasers [9,10] has made
considerable progress [11,12] possible.

More recently, Fuchs et al. [13] carried out an experiment
to investigate nonlinear x-ray—matter interactions with the
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Linac Coherent Light Source at the SLAC National Accelera-
tor Laboratory. They used a high-intensity x-ray free-electron
laser to study nonlinear scattering from solid beryllium. While
nonlinear Compton scattering had been earlier observed [14],
Fuchs et al. [13] found a nonlinear Compton signal that was
substantially redshifted from the value predicted by Brown
and Kibble [7]. To explain this additional redshift (=800 eV),
they proposed that the bound nature of the beryllium electrons
could be responsible. This argument was analyzed by Krebs
etal. [15]. They solved the time-dependent Schrodinger equa-
tion (TDSE) to simulate the nonlinear x-ray scattering, with
the bound electrons being modeled by a potential based on the
Hartree-Fock-Slater model. Their calculations did not reveal
any anomalies with respect to the free-electron results.

In this paper, we reexamine the additional frequency shift
in Fuchs et al. [13]. We use a numerical approach different
from that of Ref. [15] and study the effect of binding energy
(BE), electron-electron correlation, and photoionization on
the nonlinear Compton spectrum. We were able to obtain con-
vergent results for both the differential cross section and the
average scattered photon momentum for both linear Compton
and nonlinear Compton scattering. While we mainly agree
with the results of Krebs er al. [15], our calculations reveal
a small blueshift in the frequency of the scattered photon
with respect to the free-electron results. Following this, we
explore two possible alternate causes for the redshift. First,
we consider the role of electron-electron correlation effects on
the scattering profile. Second, we examine the possibility of a
semi-Compton process to give rise to the anomalous redshift.

For free electrons, we performed calculations where the
electron part of the wave function was restricted to two di-
mensions, but for most of the bound-electron calculations the
electron was fully three-dimensional (3D). For a given number
of dimensions, the calculation for a bound electron involves
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less time and space computationally than its free-electron
counterpart. It should be noted that a two-dimensional (2D)
model is quite adequate to describe both linear and nonlinear
Compton scattering but the exact factors required to calculate
the differential cross length is not well defined. The 3D
simulations lead to results with no adjustable parameters.

The model’s validity is demonstrated by reproducing the
differential cross length of x-ray scattering from a free elec-
tron from a QED-2+1 scheme, which is a 2D analog of the
Klein-Nishina formula [16,17]. Another way the validity of
the model is tested is by comparing it with the nonlinear
Compton differential cross section of Brown and Kibble [7]
for small binding energy. Finally the model is applied to the
x-ray-scattering scenario in Fuchs et al. [13] to study both
Compton and nonlinear Compton scattering from a bound
electron. In our calculations, we consider a range of binding
energies for the bound electrons from 0.4 to 6 a.u. This range
of binding energies is relevant for Be because the atomic Be
has an ionization potential of 0.34 a.u. and that of Be**
5.6 a.u.

Unless otherwise stated, atomic units will be used through-
out this paper.

II. METHODS AND MODELING

The first step in our approach is to model the initial state
of the electron. For the free-electron case, we use a Gaussian
wave packet as the initial state. Recently, Pan and Gover
[18] while analyzing spontaneous and stimulated emissions
found that the size of the initial wave packet has nontrivial
effects on the spectrum of the outgoing photons. These effects
appear when the outgoing photons are in a coherent state and
not a Fock state. However, for the scattering problem under
consideration, the size of the Gaussian wave packet is not
significant.

For the bound-electron case, we treat the electron as an
atomic single electron and model the rest of the atom with
an effective time-independent, local potential. We solve the
time-independent Schrodinger equation to obtain the ground-
state spatial wave function. For this, we use the relaxation
method, propagating the Schrodinger equation in imaginary
time until only the ground state remains. The ground-state
wave function, thus obtained, was the initial state of the bound
electrons in our calculations.

With the appropriate initial wave function, we can com-
pute the time-dependent wave function for the electron in a
classical field by numerically solving the TDSE. To model the
scattered photon, we employ lowest-order perturbation theory
and solve for the case of a single outgoing photon. We obtain
the scattering probability for different angles, which is used to
calculate the differential cross section as a function of angle.

The nonrelativistic treatment of the electron implied by the
TDSE should be accurate enough for the conditions below.
Consider the case of nonlinear Compton scattering of a photon
of w = 340 a.u. from a free electron. Even for the case of back
scattering, the electron would at most gain approximately
1.2 keV of energy from the photon [Eq. (22)]. From the ex-
periment by Fuchs ez al. [13], we expect an additional kinetic-
energy gain of approximately 1 keV. Together, that would still
give a Lorentz factor(y) of only 1.004 which is well within

the nonrelativistic regime. As a check on the approximation,
we consider the lowest-order relativistic correction to the
Schrodinger equation in Sec. IIB and demonstrate that it
hardly changes the overall results.

A. Deriving the nonhomogeneous Schrodinger equation

We model the vector potential by treating the incoming
electromagnetic (EM) wave classically and quantizing the
scattered wave [19]:

A=Ac+Ap. (1)

Here, A is the total vector potential. The quantities Ac and AQ
refer to the classical vector potential and the quantized vector
potential, respectively. The quantized vector potential is given
by [19]

a 2w 1 ;
AQ N el Z [felk'r&k,e + €'e —ik- r&;; é] (2)
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The symbols € and k refer to the unit polarization vector
and wave vector of the photon, respectively, with k- € = 0.
Here, w; = |k|c. The operators ak and ax . can create or
annihilate a photon in mode (k, €), respectively. The V in
the prefactor refers to the volume of the region used to
quantize the electromagnetic field modes. The quantity r is the
position vector and c is the speed of light in vacuum, which
is approximately 137.036 a.u. It is to be noted that the final
results are independent of the quantization volume V, because
we consider the limit of an infinite volume.

The classical vector potential is modeled as a laser pulse
with linear polarization. We choose the coordinate system
such that the electric field only has a y component and the
x-ray pulse propagates in the x direction. Our choice for this
is given by the vector potential:

x\2
Ac = E Ccos I:Cl)in<[ — )—C>i| €xXp |:|: — Zlnzz(t _ E) ]i|)’\)
Win ¢ tw1d
3)

Here Ec and wji, refer to the amplitude and the angular
frequency of the incoming electric field, respectively, and #yiq
indicates the full width at half maximum of the pulse intensity.
It is to be noted that A¢ is a function of x and 7 only.

For the light-matter interaction, the Hamiltonian [20] is

. (P+Ay? . .
p=Er4r +V@) + Y ol . 4)

k.,e

Note that the exact form of the potential energy V(%) is
discussed in Sec. I1I. We use Eqs (1), (2), and (4) and separate
out the terms with and without A ». The terms with A are part
of the perturbative correction. In this paper, we retain only
the terms of first order in A . One reason for this is that the
higher-order terms give rise to two scattered photons and the
Lamb shift, both of which are beyond the scope of this paper.
Thus, our unperturbed Hamiltonian is

(P+Ac)?
2
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The perturbation term is
AY =P +Ac)-Ap. (©6)

The wave function is expanded in the Fock basis based on
the number of scattered photons. Therefore our wave-function
ansatz is as follows:

Wiow) = ¥ O, 0)10) + ) ¥l lr, e e

k.e

0 ()

where |0) refers to the vacuum state of the photon in Fock
space. The ansatz is adequate because the first term describes
an electron interacting with a classical EM field without any
scattered photons. The wave function of this electron is given
by ¥ @(r,t). The second term describes the presence of a
scattered photon. The quantity 1//,52(1‘, t) is the probability
amplitude at time ¢, for a photon to scatter into momentum
k and polarization € and the electron to be found at position r.

Given the Hamiltonian and the wave-function ansatz, we
proceed with the TDSE retaining only the terms up to first
order in perturbation and separating out the equations based
on the number of scattered photons. For no scattered photons,

o
2V ey =0 ®)
ot
where
Ae =AY =" oy . ©)
ke

Note that A¢ appears in Eq. (8) because ¥ is defined as the
wave function of an electron interacting with a classical EM
field. For one scattered photon we get

&)

ke _ g M = 2T g iwgt

fol = [—e e
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€ -P+AWOY? (10
where
W) =e ", (11)

The windowing function, W(¢), adiabatically turns on the
inhomogeneous term in Eq. (10) only for the duration of the
incident laser pulse, tyiq. This is done to find the ground state
of the electron-photon coupled system. This also prevents
the unphysical emission of photons, that would occur if the
interaction between the electron and quantized photons was
instantaneously turned on. Note that the function should be
smooth to avoid encountering the Gibbs phenomenon [21].
The choice of T is determined by the duration of the pulse.
The results of the calculation do not depend on t as long as
T > 3.21iq approximately. Another competing consideration
is that 7 should be as small as possible to ensure that we
only need to solve the TDSE for a short duration. In our
calculations we chose t ~ 3.2 fy;q. The results do not depend
on the specific choice of the windowing function as long as it
is a smooth function which attains a value of 1, only during
the duration of the incoming pulse.

A modification of the procedure developed in this subsec-
tion is considered in Sec. III C where the results of a two-
electron calculation are discussed to probe electron-electron
correlation effects in two dimensions.

B. Relativistic correction: (P + A)* terms

Here, we demonstrate how a relativistic correction may be
implemented. We do this by considering the next-higher-order
term in mechanical momentum and rederiving the expressions
in Egs. (8) and (10). A careful consideration of the non-
commuting terms in (P+A)is required to derive the new
equations. For no scattered photons,

oy
o

N 1 A
Hey© = il +A)'y @, (12

For one scattered photon,

&)

ke Aoyl = P A )
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(13)
where
G=[e""P+AP1+ [P +Ac) e ™)
+ [(P+Ac) e ™ (P + Ac)]
+ [(P+Ac)e ™ (P + Ac)*. (14)

The above equations are a simple way in which relativistic
corrections can be implemented. An alternative, more sophis-
ticated approach would be to use the relativistic Schrodinger
equation [22]. However, there is no need for such an approach
given the results in Sec. IIT A. If the fields were a few orders
of magnitude higher, there would be a need for a more
sophisticated treatment of relativistic corrections [23].

C. Differential cross section

The probability for a photon to scatter with momentum k
and polarization € is

Pke_/ O ydnr. (15)

Here d"r refers to the volume element in n dimensions.

The method described in Sec. Il A automatically leads to
a spread in the scattered photon momentum because the in-
coming field is not strictly monochromatic but rather a pulse.
The amount of the spread in scattered photon momentum is
determined by the width of the chosen laser pulse. Since there
is a momentum spread in the scattered x ray, the differential
cross section for a given scattering angle is a summation over
all possible magnitudes of scattered photon momentum. The
total one-photon cross section in three dimensions is given by

Pr.e
oM =3" . (16)
k,

- (number of photons/area)

where [19]

v 3
>y — P /d k (17)

k
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and

number of photons [ Idt

(18)
area @in

Here I refers to the intensity of the incoming field. It is to

be noted that the incoming pulse is assumed to be quasi-

monochromatic. This leads to the definition of the differential

cross section:

doV Vi, [Y, Pik’dk
Qe @2n) [1dt

Here V is the quantization volume. There exists a factor of
1/V in P ¢ which cancels out the V' in the numerator. Note that
wiy refers to the angular frequency of the incoming electric
field [Eq. (3)].

The two-photon cross section in three dimensions has been
defined in multiple ways [24,25]. Here we define it so that the
SI units would be m?/(W/m?):

19)

P,
@) _ Lk Lhe
o = Wjp W . (20)
Therefore the differential cross section would be
do® Vo, [, Pkyekzdk. e

dQ  (@2n)}  [Idt

In both the one-photon and two-photon differential cross
sections, we calculate these integrals with respect to k*>dk by
doing a Gaussian fit for the plots of P vs k and then per-
forming an integral of the Gaussian function. The differential
cross sections obtained from the 3D calculations do not have
any adjustable parameters.

The exact factors to obtain the differential cross length
from the scattering probability in two dimensions are not
well defined. Therefore, we obtain this factor by scaling
our differential cross sections to get an overall fit with the
analytical free-electron results [7,16].

D. Solving the TDSE

We solve the TDSE using a Cartesian coordinate system
with the wave function represented on a grid of points. The
values of the grid parameters are specified in Sec. II E. For the
kinetic-energy operator in the Hamiltonian, we use a three-
point central difference formula. The TDSE for v @ (r, 1)
[Eq. (8)] is solved using the leap-frog method [26]. We choose
the leap-frog method for two reasons: first, it preserves unitar-
ity; second, it leads to converged results, which is discussed in
detail in Sec. IIE. The leap-frog method involves computing
the wave function, which is two time steps ahead of the
current wave function, using the wave function at the current
time step and the wave function at the intermediate time.
The second-order Runge-Kutta method is used to obtain the
value of the wave function at the first time step which is
required for the leap-frog approach. At every time instance,
we simultaneously solve for 1#,26) (r, t) for a range of scattered
photon momenta centered around the Compton momentum
or the Brown and Kibble prediction [Eq. (22)] for the linear
Compton or nonlinear Compton, respectively. The plot of Py .
[Eq. (15)] as a function of scattered photon momentum & is a
Gaussian curve (see Fig. 1) to a good approximation.
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FIG. 1. Scattering probability P, as a function of scattered

photon momentum k for nonlinear Compton calculations in two
dimensions for an angle of 120° and 150°, respectively, for a free
electron. The red points indicate the results of the numerical calcula-
tion and the blue line indicates a Gaussian fit. The calculations were
performed over an equal number of k values on either side of the
theoretical value. Note that the peaks are at the expected nonlinear
Compton momentum [Eq. (22)]. This calculations were done with
Ec =107 a.u., wy, = 340 a.u., and t,,;g = 0.125 a.u.

In all our calculations unless otherwise stated, we use
electric field Ec = 107 a.u. and angular frequency wj, =
340 a.u. for the incident laser pulse. In SI units, these values
correspond to an electric field of ~5 x 10'* V/m and an
intensity of ~3 x 10°* W/m?. The chosen angular frequency
corresponds to an incoming photon energy of about 9.25 keV.
These values belong to the range used in the experiment by
Fuchs et al. [13].

E. Grid and other numerical parameters

In our calculations, convergence is measured in two ways,
by calculating the area under Py  vs k plots and by calculating
the change in the peak position of the scattering probability.
For all the calculations except in Sec. IIIC, the change in
this area with respect to change in grid spacing or grid size
was under 2%. The change in the peak position of scattering
probability with respect to change in grid spacing or grid size
was under 0.5%.

For the 2D free-electron calculations, a grid size of 400 x
400 with a grid spacing of 0.1 a.u. in both x and y directions
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resulted in converged results. For the 3D calculations with
Z =1 and 2 a grid range of 400 x 400 x 400 with a grid
spacing of 0.1 a.u. resulted in converged results. For Z = 4
a grid range of 229 x 229 x 229 with a grid spacing of 0.07
units resulted in converged results.

The primary source of error in scattered photon momentum
arises from the kinetic-energy operator. The leading-order
error term is proportional to the square of the grid spacing. For
the case of nonlinear Compton scattering from a bound elec-
tron at an angle of 130° and for a grid spacing of 0.07 a.u., the
error is of the size of about 3% of the nonlinear Compton shift.
This error is much smaller than the size of the anomalous shift
observed in Ref. [13], which is about 100% of the Compton
shift. In Sec. III B, we take our estimate for scattered photon
momentum, k, below this 3% error by using Richardson’s
extrapolation to eliminate the leading-order error term.

For ty4, we use a range of 0.1-1 a.u. which corresponds to
a pulse of duration ~10~'® s. The use of such a short pulse is
justified because the results for the differential cross section
are found to be independent of the choice of tyq. A small
change in peak scattered momentum is observed for different
pulse widths. The magnitude of this change is less than about
1% of the momentum shift observed by Fuchs ez al. [13]. Also,
for the chosen range of fy,4, there is no reflection of the wave
function from the walls, as the distance traveled by the wave
packet of the electron is much smaller than the size of the grid.

III. APPLICATION
A. Free-electron case

We apply the method developed in Sec. I, to a free electron
interacting with a laser pulse in two dimensions and compare
the results of our calculation with the equivalent of the Klein-
Nishina formula in two dimensions [16]. Note that the Klein-
Nishina formula and its analog in two dimensions are derived
for monochromatic radiation. Since we employ a pulse, we
evaluate the integral D = [ Y Py ckdk to find a quantity pro-
portional to the differential cross length for a given intensity
and incoming frequency. We compute this quantity D for
different angles and compare this with the differential cross
length from the QED-2+1 scheme [16] and the differential
cross section from Brown and Kibble [7]. From this point in
our discussions, we will refer to D as the differential cross
length for convenience keeping in mind that the calculation
has been scaled to match the analytical result.

We plot the differential cross length we obtained for lin-
ear Compton as a function of angle and the results from
QED-2+1 [16] in Fig. 2. Upon comparison, we find that
our calculated differential cross length agrees well with the
free-electron analytical results.

Next, we compare the calculated 2D differential cross
length (see Fig. 3) for nonlinear Compton scattering with
the analytical expression from Brown and Kibble [7]. We
also evaluate the differential cross lengths using the rela-
tivistic corrections developed in Sec. IIB for comparison.
The procedure for scaling the differential cross length used
previously is employed here as well. According to Brown and
Kibble [7], for nonlinear Compton scattering, the frequency
of the scattered photon using a nonrelativistic approximation

0 30 60 90 120 150 180
0 (degrees)

FIG. 2. Comparison of differential cross lengths as a function of
angle subtended by the detector with the analog of the Klein-Nishina
formula for two dimensions [16] for linear Compton scattering.
The red points are the results of the numerical calculation and the
blue line represents the results from the analytical expression [16].
The results of the numerical calculations in two dimensions were
scaled by a single factor. This factor was chosen such that, overall,
the numerical results fit well with the analytical results. The above
calculations were done with the same parameters as Fig. 1.

is given by
_ nwinp
"1 4 notwp(1 — cosh)’

® (22)
Here, n determines the order of the process, for example,
n = 1 for Compton scattering. The discussions in this paper
are restricted to processes where n < 2. The symbols w and
wiy, refer to the angular frequency of the scattered photon
and incoming photon, respectively, and « is the fine-structure
constant.

3.0
S 25!
m [}
@ 20/ .
o
— 1.5¢
g 10 i
S
b 05 . -
© i § o

0.0 ‘ ‘

0O 30 60 90 120 150 180
0 (degrees)

FIG. 3. Comparison of differential cross sections (lengths) as a
function of scattering angle in two dimensions with the results of
Brown and Kibble for nonlinear Compton scattering. The blue points
indicate the nonrelativistic results obtained using Eqgs. (8) and (10).
The black squares were obtained using the approach from Sec. II B.
The orange line indicates the result from Brown and Kibble. The
results of the numerical calculations in two dimensions were scaled
by a single factor. This factor was chosen such that overall the
numerical results fit well with the analytical results. The above
calculations were done with the same parameters as Fig. 1.
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It is important to note that the expression for the differential
cross section by Brown and Kibble was derived in three
dimensions, but our calculations are for the differential cross
length in two dimensions. Upon comparison, we find that that
our results are in good agreement with the Brown and Kibble’s
results up to a constant factor. There is also no significant
change (see Fig. 3) in the agreement with Brown and Kib-
ble’s result because of the relativistic correction discussed in
Sec. I B. Brown and Kibble had arrived at their results by
solving the Dirac equation but our agreement with their results
justifies the approximation with the TDSE.

It was found that the scattering probability for nonlinear
Compton exhibits a second-order dependence on the intensity
of the incoming EM field as expected and the scattering proba-
bility for Compton scattering exhibits a first-order dependence
on the intensity of the incoming EM field. This behavior was
observed over at least three orders of magnitude (up to 1000
a.u.) in the electric field.

B. Bound-electron case

Here we consider the case of bound electrons because of
its relevance to Fuchs et al. [13]. Unlike the calculations for
a free electron, here we adopt a 3D approach for the most
part. It is to be noted that a 3D calculation can be done with
relative ease for the case of a bound electron, as the grid
needed for convergent solutions is smaller. Hence, it involves
less memory and time computationally when compared to the
case of a free electron.

While the method developed in Sec. II allows for flexibility
with respect to the choice of potential, to keep things simple a
softcore Coulombic potential of the following form is chosen:

—Z
Y2+ +2+a

Here, Z is equal to the effective nuclear charge seen by the
electron in atomic units. By varying this, we can model the
scattering from bound electrons of different BE. The parame-
ter a is included to avoid the singularity [27-30] at the origin.
While it is preferable to minimize the value of this parameter,
there are constraints that arise from the grid spacing.

With this potential, we proceed as per Sec. II and obtain the
scattering probability, Py . (see Fig. 4-7). From the scattering
probability calculations for nonlinear Compton scattering for
different bound-state parameters, two things should be noted.
First, there is a momentum shift, albeit an insignificant one
when compared to the shift measured by Fuchs etal. [13]. Sec-
ond, Ref. [13] measured a redshift while the simulations show
a blueshift. While the additional shift in Compton wavelength
has been well documented and studied [31,32], interestingly
we find that a similar shift occurs in nonlinear Compton
as well.

We calculate the differential cross section for Compton and
nonlinear Compton as a function of angle for a bound electron.
When we compare the calculated linear Compton differential
cross section with the Klein-Nishina formula [17], we find
excellent agreement (see Fig. 8) despite it being a bound
electron. Upon comparing the nonlinear Compton differential
cross section with Brown and Kibble’s result [7], we find

V) =

(23)

46 | ]
w L
& 4.1 o |
™ = (3
o 36| S o
3.1¢ S 12 1
2.6 : ‘ :
2.37 2.39 2.41 2.43 2.45
k (a.u.)

FIG. 4. The above plot was computed by solving the problem in
two dimensions for Z =4, a = 0.1 a.u., with a BE of 5.9593 a.u.
at an angle of 130° and #,;y = 1. It reveals the Compton defect in
linear Compton scattering. The red vertical line and the blue vertical
line indicate the expected peak (nonrelativistic) and the actual peak,
respectively, in the scattered photon momentum k. The red points
indicate the results of the numerical calculation and the blue curve
indicates a Gaussian fit.

a general agreement (see Fig. 9). However, the calculated
differential cross section for angles between 120° and 150°
exhibits about 10% discrepancy. A part of this discrepancy
arises from the fact that the Brown and Kibble formula
used was nonrelativistic and therefore is missing factors of
(fT:). The differential cross section for Compton scattering
from Kibble and Brown is also missing these factors which
were included in the Klein-Nishina formula. Therefore, it is
difficult to determine the amount of error that originates from
the numerical calculation and the amount that originates from
the electrons being bound. These calculations were done for a
range of values for Z and a and the results were found to be
approximately the same.

11| ]
/HH\\
10 E
e o g ]
o = =
% 9 g £
-~ pd <
8l 1
7
4.64 4.66 4.68 4.7 4.72
k (a.u.)

FIG. 5. The above plot was computed by solving the problem in
two dimensions at an angle of 130° for Z = 4, a = 0.1 a.u. leading
to a binding energy of 5.9593 a.u. The red points indicate the results
of the numerical calculation and the blue curve indicates a Gaussian
fit. It reveals an analog of the Compton defect in nonlinear Compton
scattering. The red vertical line and the blue vertical line indicate the
expected peak (nonrelativistic) and the actual peak, respectively, in
the scattered photon momentum k. Here, t,q = 1.
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FIG. 6. Scattering profile for Compton scattering for a bound
electron in three dimensions at an angle of 60° with #,;y = 0.1. The
bound state of the electron is characterized by parameters Z = 4,
a = 0.1 a.u. leading to a BE of 3.9496 a.u. The red points indicate
the results of the numerical calculation and the blue line indicates a
Gaussian fit.

It is to be noted that the results of Krebs ef al. [15] are in
terms of the double differential cross section and their double
differential cross section has an extra frequency factor. Upon
finding the area under their curve for double differential cross
section by approximating it as a Gaussian and after accounting
for differences in frequency, we find that our results are of the
same order as theirs and agree to within a factor of &2. This
comparison is approximate because the estimate for the area
is crude due to the limited number of data points in the results
of Ref. [15].

For all the calculations, the polarization of the scattered
photon was in the same plane as that of the plane of polar-
ization of the incoming photons. When the polarization of the

NNNN
ronN—=

100p, .
O =~ ND W PN O1 OO N 0

4.3‘ 44 45 46 47 48 49 5 ~5.1
k (a.u.)

FIG. 7. Scattering profile for nonlinear Compton scattering for a
bound electron in three dimensions at an angle of 120° with t,;,q =
0.1. The figure contains the Gaussian fits from bound states char-
acterized by Z = 1, 2, 3, and 4 with binding energies (a.u.) 0.4037,
1.322,2.5345, and 3.9449, respectively. Here a = 0.1, Ec = 107 a.u.,
win = 340 a.u. In the experiment in Ref. [13], the peak was observed
at a k value of ~4.5 a.u., but from the calculations the bound nature
of the electron does not appear to have altered the peak scattered
momentum from the free-electron value.

3.0
2.5
2.0
1.5
1.0
0.5
0.0

do"/da (107 a.u)

0 30 60 90 120 150 180
0 (degrees)

FIG. 8. Comparison of the differential cross section for Compton
scattering from a bound electron as a function of scattering angle
with the results of the Klein-Nishina formula. The red points indicate
the results of the numerical calculation and the blue line indicates
the results of the Klein-Nishina formula. The above calculations
were done with the same parameters as in Fig. 6. All numerical
calculations in three dimensions were done with no adjustable
parameters.

scattered photon was chosen to be perpendicular to the plane
of polarization of the incoming photons, the scattering prob-
abilities were found to be more than six orders of magnitude
smaller, for the case of nonlinear Compton scattering.

For calculating the additional shifts (defect) in k, we first
numerically calculate the average k instead of obtaining the
peak momentum from the Gaussian fit. When the polarization
of the scattered photon is in the plane of polarization of the
incoming photons,

kP,
g = =P (24)
kak
3.0
S 25!
©
> 20! .
| [
2 15/
g 10/
@
o 05/
©
0.0 A N —
0 30 60 90 120 150 180

0 (degrees)

FIG. 9. Comparison of the differential cross section as a function
of scattering angle for nonlinear Compton scattering from bound
electrons with Brown and Kibble’s free-electron result. The bound
electron is characterized by parameters Z =4 and a = 0.1 a.u.
with a BE of 3.9496. The red points are a result of the numerical
calculations in three dimensions while the blue line indicates the
results of Brown and Kibble. The above calculations were done with
the same parameters as Fig. 7. All numerical calculations in three
dimensions were done with no adjustable parameters.
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Here k,y, is the estimate for the scattered photon momentum
that we use to calculate the defect, with respect to the theo-
retical nonrelativistic free-electron prediction for both linear
and nonlinear Compton scattering. Because the x rays in
the calculation have a Gaussian time dependence, the final
momentum distribution is the convolution of the infinite res-
olution distribution with a Gaussian. The average of the final
k is unchanged by the convolution because the Gaussian is a
symmetric function while the peak value does slightly shift
with the #y4. In the calculations here, the scattering probabil-
ity falls off slower than a Gaussian distribution for k values
far from that for free-electron linear and nonlinear Compton
scattering, which leads to small shifts. The underlying cause
for this lies in the nature of the Compton profile of the bound
electron. Following this, Richardson’s extrapolation method
[26] is used to obtain an estimate for the defect in scattered
photon momentum after accounting for the numerical error
from the grid spacing to the leading order. For the cases of
Z =1, 2, 3, and 4 with a = 0.1, the defects were found to be
of the size of &1072 a.u. in k, which corresponds to an energy
of about a few eV. It was found that the size of the defect
increases with the binding energy of the electron. The defect
was also found to be independent of the incident field over the
range 1-110 a.u. of electric-field amplitude.

Let kna and kiniian be the peak scattered momentum of
the outgoing x-ray photon and the peak momentum of the
incoming x-ray photons, respectively. For the case of nonlin-
ear Compton scattering from a free electron at an angle of
120°, kfinal — Kinitiar ~ —0.25 a.u. From the experiment [13],
ktinal — kiniiat ~ —0.5 a.u. From our bound-electron calcula-
tions, we find that kfpa — kiniiar ~ —0.25 a.u. but there is a
small blueshift correction to this which is of the size ~ 4+ 1073
a.u. From these results, it is evident that the bound nature of
the electron cannot explain the anomalous shift observed in
Ref. [13].

C. Electron-electron correlation effects

We examine if electron-electron interaction effects could
contribute to the redshift in the nonlinear Compton scattering.
This can be done by a simple extension of the procedure de-
veloped in Sec. II. The Hamiltonian is modified to include the
mechanical momentum from each electron and an interaction
potential is introduced.

The modified Hamiltonian is given by

[Py +Ar)P [Py +Am)P
2 2
1

+
V@ —x)? + 01 —y)? +a

+ > ol e (25)
ke

H= + V() +V(r)

Here r; and r, refer to the position vectors of the electrons and
V(ry) and V (r;) are the 2D equivalents of the expression in
Eq. (23). The wave-function ansatz remains the same except
that the quantities ¥ and ;") are now functions of both r;
and r, along with time . ’

With this approach, the calculations have to be restricted
to two dimensions because of the time and space required

14 ‘
Int—off
12 ¢ Int-on ------ 1
| S
N 10} ¥ N\ 1
) v ]
° y \
v—o 6 L ,lu \‘\ 1
41 d Y ]
215 -1_,' \‘\l ]
o o . . . . . L
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k (a.u.)

FIG. 10. Scattering profile for nonlinear Compton scattering for
an angle of 130°. The curves represent Gaussian fits while the points
are the result of the numerical calculation. The dark green points
and the green curve represent the case with the electron-electron
interaction turned off and the brown points and the brown dotted line
indicate the case with the interaction turned on. Here Z =4, a = 0.1,
Ec =107 a.u., wy, = 340 a.u., ty;q = 0.1 a.u.

to handle the problem computationally. Restricting the calcu-
lation to two dimensions is reasonable given that there was
not any significant difference in the 2D and 3D results from
Secs. IIT A and III B, respectively.

The same numerical procedure discussed in Sec. IID is
used to obtain the scattering probability Py  as a function of
scattered photon momentum k. A comparison of the calcula-
tion with and without the electron-electron interaction does
not indicate any significant change (Fig. 10).

This calculation is performed with a grid spacing of
0.14 awu. and therefore it is not converged to the same
extent as the previous calculations. In single bound-electron
calculations in two and three dimensions, there is no
substantial change in the nature of our results as the grid
spacing is decreased from 0.2 to 0.07 a.u. We extrapolate
from this trend and argue that the electron-electron correlation
effects are unlikely to be the cause of the redshift observed in
the experiment by Fuchs et al. [13].

D. Semi-Compton process

We consider a process where a bound electron absorbs
an incoming photon and the now-ionized electron scatters
another incoming photon inelastically to give rise to a photon
of frequency ~2wj,. The electron ends up being recaptured
by the atom during the process. This process should manifest
itself in the calculations if the grid spacing was decreased
enough to access the energy range in the continuum of the
ionized electron. When the bound electron absorbs a photon, it
gains a momentum of ~26 a.u. This would not be represented
in a grid with a spacing of 0.1 a.u., hence we consider a grid
spacing of 0.02 a.u.

We resort to a 2D calculation to probe such a fine grid.
The calculations do not reveal any significant difference in
the scattering profile. We also consider the effect of binding
energy on this scattering profile by decreasing the parameter
a in the potential. We do not find any significant effect beyond
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the Compton defect discussed in Sec. III B which is at least
two orders of magnitude smaller than the shift observed by
Fuchs et al. [13].

IV. CONCLUSION AND SUMMARY

We described a method to numerically calculate the linear
and nonlinear Compton effect for free or bound electrons. The
results from the calculation can be used to determine whether
the bound nature of the electrons is caused the anomalous
frequency shift observed in the experiment by Fuchs et al.
[13]. To justify the approximations we compared our free-
electron results with the analytical expressions available for
differential cross sections of Compton [16,17] and nonlinear
Compton scattering [7]. We found excellent agreement in
those cases.

We employed a Coulombic interaction potential to model
bound electrons and obtained their differential cross sections
for Compton and nonlinear Compton scattering. Despite the
electrons being bound, the calculations for the differential
cross section agreed with the Brown and Kibble results. The
calculations did not exhibit a redshift in the wavelength of
the scattered photon, in disagreement with the experiment
[13] but in agreement with the calculations of Krebs et al.
[15]. For bound electrons, we also found the small expected
blueshift in the case of Compton scattering and interestingly a

blueshift in the case of nonlinear Compton scattering as well.
Our calculations support the conclusion in Ref. [15] that it
is not the bound character of the electron that is causing the
anomalous frequency shift seen in Fuchs ez al. [13].

The role of electron-electron correlation effects on the
redshift was explored by doing a two-electron calculation in
two dimensions. The results of the calculation did not indicate
the presence of the redshift in Ref. [13]. Following this, we
considered the case of a semi-Compton process where linear
Compton scattering occurs off of an ionized electron with the
electron getting recaptured. This could give rise to a photon of
frequency of X2wy,. A calculation accounting for this process
did not exhibit a redshift similar to the one observed in the
experiment by Fuchs e al. [13]. No calculations have yet been
able to reproduce the shift observed in Ref. [13].

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Basic Energy Sciences,
under Grant No. DE-SC0012193. We thank the Science IT at
Department of Physics, Purdue University for their assistance.
We thank D. A. Reis and P. H. Bucksbaum for our discussions
about their experiment. We are also grateful to D. Krebs,
D. A. Reis, and R. Santra for providing a preprint of their
work. A.V. thanks X. Wang and T. Seberson for discussions
on computational issues.

[1] W. G. Cross and N. F. Ramsey, The conservation of energy
and momentum in Compton scattering, Phys. Rev. 80, 929
(1950).

[2] Z. Bay, V. P. Henri, and F. McLernon, Simultaneity in the
Compton effect, Phys. Rev. 97, 1710 (1955).

[3] B. I. Lundqvist and C. Lydén, Calculated momentum distribu-
tions and Compton profiles of interacting conduction electrons
in lithium and sodium, Phys. Rev. B 4, 3360 (1971).

[4] P. Eisenberger and P. M. Platzman, Compton scattering of X
rays from bound electrons, Phys. Rev. A 2, 415 (1970).

[5] M. J. Cooper, M. Cooper, P. E. Mijnarends, P. Mijnarends, N.
Shiotani, N. Sakai, and A. Bansil, X-Ray Compton Scattering
(Oxford University, New York, 2004), Vol. 5.

[6] L. Ball and J. G. Kirk, Probing pulsar winds using inverse
Compton scattering, Astropart. Phys. 12, 335 (2000).

[7] L. S. Brown and T. W. B. Kibble, Interaction of intense laser
beams with electrons, Phys. Rev. 133, A705 (1964).

[8] Vachaspati, Harmonics in the scattering of light by free elec-
trons, Phys. Rev. 128, 664 (1962).

[9] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A.
Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker et al., First
lasing and operation of an dngstrom-wavelength free-electron
laser, Nat. Photon. 4, 641 (2010).

[10] T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T.
Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa et al., A
compact X-ray free-electron laser emitting in the sub-angstrom
region, Nat. Photon. 6, 540 (2012).

[11] K. Tamasaku, E. Shigemasa, Y. Inubushi, T. Katayama, K.
Sawada, H. Yumoto, H. Ohashi, H. Mimura, M. Yabashi,

K. Yamauchi er al., X-ray two-photon absorption compet-
ing against single and sequential multiphoton processes, Nat.
Photon. 8, 313 (2014).

[12] G. Doumy, C. Roedig, S.-K. Son, C. L. Blaga, A. D. DiChiara,
R. Santra, N. Berrah, C. Bostedt, J. D. Bozek, P. H. Bucksbaum
et al., Nonlinear Atomic Response to Intense Ultrashort x Rays,
Phys. Rev. Lett. 106, 083002 (2011).

[13] M. Fuchs, M. Trigo, J. Chen, S. Ghimire, S. Shwartz, M.
Kozina, M. Jiang, T. Henighan, C. Bray, G. Ndabashimiye
et al., Anomalous nonlinear X-ray Compton scattering, Nat.
Phys. 11, 964 (2015).

[14] C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S.
Boege, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer,
W. Ragg, D. L. Burke et al., Observation of Nonlinear
Effects in Compton Scattering, Phys. Rev. Lett. 76, 3116
(1996).

[15] D. Krebs, D. A. Reis, and R. Santra, Time-dependent QED
approach to x-ray nonlinear Compton scattering, Phys. Rev. A
99, 022120 (2019).

[16] J. M. Guilarte and M. Mayado, QED_2+ 1: The Compton effect,
arXiv:hep-th/0009003 (2000).

[17] O. Klein and Y. Nishina, The scattering of light by free elec-
trons according to Dirac’s new relativistic dynamics, Nature
(London) 122, 398 (1928).

[18] Y. Pan and A. Gover, Spontaneous and stimulated emissions of
a preformed quantum free-electron wave function, Phys. Rev. A
99, 052107 (2019).

[19] Rodney Loudon, The Quantum Theory of Light (Oxford Univer-
sity, New York, 1983).

013409-9


https://doi.org/10.1103/PhysRev.80.929
https://doi.org/10.1103/PhysRev.80.929
https://doi.org/10.1103/PhysRev.80.929
https://doi.org/10.1103/PhysRev.80.929
https://doi.org/10.1103/PhysRev.97.1710
https://doi.org/10.1103/PhysRev.97.1710
https://doi.org/10.1103/PhysRev.97.1710
https://doi.org/10.1103/PhysRev.97.1710
https://doi.org/10.1103/PhysRevB.4.3360
https://doi.org/10.1103/PhysRevB.4.3360
https://doi.org/10.1103/PhysRevB.4.3360
https://doi.org/10.1103/PhysRevB.4.3360
https://doi.org/10.1103/PhysRevA.2.415
https://doi.org/10.1103/PhysRevA.2.415
https://doi.org/10.1103/PhysRevA.2.415
https://doi.org/10.1103/PhysRevA.2.415
https://doi.org/10.1016/S0927-6505(99)00112-7
https://doi.org/10.1016/S0927-6505(99)00112-7
https://doi.org/10.1016/S0927-6505(99)00112-7
https://doi.org/10.1016/S0927-6505(99)00112-7
https://doi.org/10.1103/PhysRev.133.A705
https://doi.org/10.1103/PhysRev.133.A705
https://doi.org/10.1103/PhysRev.133.A705
https://doi.org/10.1103/PhysRev.133.A705
https://doi.org/10.1103/PhysRev.128.664
https://doi.org/10.1103/PhysRev.128.664
https://doi.org/10.1103/PhysRev.128.664
https://doi.org/10.1103/PhysRev.128.664
https://doi.org/10.1038/nphoton.2010.176
https://doi.org/10.1038/nphoton.2010.176
https://doi.org/10.1038/nphoton.2010.176
https://doi.org/10.1038/nphoton.2010.176
https://doi.org/10.1038/nphoton.2012.141
https://doi.org/10.1038/nphoton.2012.141
https://doi.org/10.1038/nphoton.2012.141
https://doi.org/10.1038/nphoton.2012.141
https://doi.org/10.1038/nphoton.2014.10
https://doi.org/10.1038/nphoton.2014.10
https://doi.org/10.1038/nphoton.2014.10
https://doi.org/10.1038/nphoton.2014.10
https://doi.org/10.1103/PhysRevLett.106.083002
https://doi.org/10.1103/PhysRevLett.106.083002
https://doi.org/10.1103/PhysRevLett.106.083002
https://doi.org/10.1103/PhysRevLett.106.083002
https://doi.org/10.1038/nphys3452
https://doi.org/10.1038/nphys3452
https://doi.org/10.1038/nphys3452
https://doi.org/10.1038/nphys3452
https://doi.org/10.1103/PhysRevLett.76.3116
https://doi.org/10.1103/PhysRevLett.76.3116
https://doi.org/10.1103/PhysRevLett.76.3116
https://doi.org/10.1103/PhysRevLett.76.3116
https://doi.org/10.1103/PhysRevA.99.022120
https://doi.org/10.1103/PhysRevA.99.022120
https://doi.org/10.1103/PhysRevA.99.022120
https://doi.org/10.1103/PhysRevA.99.022120
http://arxiv.org/abs/arXiv:hep-th/0009003
https://doi.org/10.1038/122398b0
https://doi.org/10.1038/122398b0
https://doi.org/10.1038/122398b0
https://doi.org/10.1038/122398b0
https://doi.org/10.1103/PhysRevA.99.052107
https://doi.org/10.1103/PhysRevA.99.052107
https://doi.org/10.1103/PhysRevA.99.052107
https://doi.org/10.1103/PhysRevA.99.052107

AKILESH VENKATESH AND FRANCIS ROBICHEAUX

PHYSICAL REVIEW A 101, 013409 (2020)

[20] C. Cohen-Tannoudji, B. Diu, and L. Franck, Quantum Mechan-
ics (Mecanique Quantique), Revised English ed. (Hermann,
Paris, 1978), Vol. 2.

[21] J. W. Gibbs, Fourier’s series, Nature (London) 59, 200 (1898).

[22] T. K. Lindblom, M. Fgrre, E. Lindroth, and S. Selstg, Semirel-
ativistic Schrodinger Equation for Relativistic Laser-Matter
Interactions, Phys. Rev. Lett. 121, 253202 (2018).

[23] M. Fgrre, Breakdown of the nonrelativistic approximation in
superintense laser-matter interactions, Phys. Rev. A 99, 053410
(2019).

[24] D. J. Bamford, L. E. Jusinski, and W. K. Bischel, Absolute two-
photon absorption and three-photon ionization cross sections
for atomic oxygen, Phys. Rev. A 34, 185 (1986).

[25] Farhad HM Faisal, Theory of Multiphoton Processes (Springer,
New York, 2013).

[26] W. H. Press, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing, 2nd ed. (Cam-
bridge University, Cambridge, England, 1992).

[27] K. J. LaGattuta, Laser effects in photoionization: Numerical
solution of coupled equations for a three-dimensional Coulomb
potential, JOSA B 7, 639 (1990).

[28] S. X. Hu and L. A. Collins, Intense laser-induced recombina-
tion: The inverse above-threshold ionization process, Phys. Rev.
A 70, 013407 (2004).

[29] A. Kotakowska, M. S. Pindzola, F. Robicheaux, D. R.
Schultz, and J. C. Wells, Excitation and charge trans-
fer in proton-hydrogen collisions, Phys. Rev. A 58, 2872
(1998).

[30] A. Gordon, C. Jirauschek, and F. X. Kértner, Numerical solver
of the time-dependent Schrodinger equation with Coulomb
singularities, Phys. Rev. A 73, 042505 (20006).

[31] P. M. Bergstrom, Jr., Compton scattering of photons from
electrons bound in light elements, Report No. ANL/PHY-94/1,
Argonne National Laboratory, 1994.

[32] F. Bloch, Contribution to the theory of the Compton-line, Phys.
Rev. 46, 674 (1934).

013409-10


https://doi.org/10.1038/059200b0
https://doi.org/10.1038/059200b0
https://doi.org/10.1038/059200b0
https://doi.org/10.1038/059200b0
https://doi.org/10.1103/PhysRevLett.121.253202
https://doi.org/10.1103/PhysRevLett.121.253202
https://doi.org/10.1103/PhysRevLett.121.253202
https://doi.org/10.1103/PhysRevLett.121.253202
https://doi.org/10.1103/PhysRevA.99.053410
https://doi.org/10.1103/PhysRevA.99.053410
https://doi.org/10.1103/PhysRevA.99.053410
https://doi.org/10.1103/PhysRevA.99.053410
https://doi.org/10.1103/PhysRevA.34.185
https://doi.org/10.1103/PhysRevA.34.185
https://doi.org/10.1103/PhysRevA.34.185
https://doi.org/10.1103/PhysRevA.34.185
https://doi.org/10.1364/JOSAB.7.000639
https://doi.org/10.1364/JOSAB.7.000639
https://doi.org/10.1364/JOSAB.7.000639
https://doi.org/10.1364/JOSAB.7.000639
https://doi.org/10.1103/PhysRevA.70.013407
https://doi.org/10.1103/PhysRevA.70.013407
https://doi.org/10.1103/PhysRevA.70.013407
https://doi.org/10.1103/PhysRevA.70.013407
https://doi.org/10.1103/PhysRevA.58.2872
https://doi.org/10.1103/PhysRevA.58.2872
https://doi.org/10.1103/PhysRevA.58.2872
https://doi.org/10.1103/PhysRevA.58.2872
https://doi.org/10.1103/PhysRevA.73.042505
https://doi.org/10.1103/PhysRevA.73.042505
https://doi.org/10.1103/PhysRevA.73.042505
https://doi.org/10.1103/PhysRevA.73.042505
https://doi.org/10.1103/PhysRev.46.674
https://doi.org/10.1103/PhysRev.46.674
https://doi.org/10.1103/PhysRev.46.674
https://doi.org/10.1103/PhysRev.46.674

