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ABSTRACT

Recent experiments demonstrated that the cyclotron cooling rate of an electron plasma in a Penning–Malmberg trap can be increased by
placing the plasma in a cavity and adjusting the magnetic field to make the cyclotron motion resonant with a cavity mode. Here this physics
is studied with a coupled oscillator model and analyzed both analytically and numerically. Plasma cooling performance is evaluated over a
wide range of system parameters, including the number of electrons, the coupling to the local electric field, the magnetic field gradient, and
the detuning between the cavity and cyclotron frequencies. Scaling the equations shows that the system is well-described by a few key dimen-
sionless quantities.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012756

I. INTRODUCTION

Cold nonneutral lepton plasmas are employed in a wide range of
applications.1 Some of these applications, such as antihydrogen syn-
thesis,2 require temperatures in the low tens of Kelvin. The steady-
state temperature of these trapped plasmas is determined by the bal-
ance between heating (which arises from external noise sources, the
temperature of the confinement environment,3 and plasma expansion)
and cooling (from energy radiated away through the cyclotron emis-
sion). Except at the lowest temperatures,4 collisions between the
charged particles in the plasma rapidly equilibrate the perpendicular
and parallel temperatures.5 In the absence of a heating mechanism, the
plasma would, thus, come into thermal equilibrium with the black
body radiation of its environment, but with heating the equilibrium
temperature is higher.6 A simplistic but useful model yields
Teq ¼ T0 þ H=c, where T0 is the environment temperature, H is the
heating rate, and the radiative energy loss rate for electrons is
c ¼ 0:26B2 s�1 when B is in Tesla. If the rate of radiative loss can be
increased, then the effects of any heating sources H can be concomi-
tantly reduced. One method, which is impractical beyond a few Tesla,
is to increase the magnetic field. Another is to utilize the Purcell effect,

placing the plasma in a microwave cavity where a mode is resonant
with the cyclotron frequency, as first proposed by O’Neil7 in 1980.

The original discussion of the Purcell effect8 concerned the
nuclear magnetic resonance of nuclear spins in a cavity. One way to
think of this system is that the cavity concentrates the electromagnetic
modes to a small range of frequencies, enhancing the relaxation rate.
The corresponding electron cyclotron resonance with one electron in
a cavity has been carefully studied.9 The cavity plus one electron can
be thought of as two coupled oscillators, one of which, the cavity, is
more highly damped; the interaction between the cavity and the nearly
undamped cyclotron motion causes energy to flow from the cyclotron
motion to the cavity, where the energy is lost by damping. The plasma
case7 is analogous to having multiple oscillators. They all interact with
a single cavity mode, which couples their dynamics and facilitates
rapid transfer between the electron cyclotron motion and the cavity.

The first experimental verification came in 2015, where enhanced
cooling was demonstrated6 for low numbers of plasma electrons
(<106). The plasma was kept in a Penning–Malmbeg trap, with
the walls of the trap slightly bulged to produce an effective cavity10

with Q � 1000. In these experiments, significant enhancement over
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free-space cooling was obtained (factor of 10 or more). Subsequent
experiments11,12 further explored the efficacy of plasma cavity cooling
as a function of particle number and magnetic field gradient, and dem-
onstrated cooling for particle numbers approaching 108.

While the theory for one electron interacting with a cavity mode
is well understood, Ref. 6 found several counter-intuitive results for
the many-electron case. For example, the larger the single electron
rate, the closer the electron is to an antinode of the cavity mode, yet
Ref. 6 found the radiative decay rate was often largest when the plasma
was trapped at a node of the cavity mode. Furthermore, the cooling
rate decreased as the number of electrons increased, well before the
cavity was overloaded (the cavity temperature remained comparable
to or below the plasma temperature).

We describe a simplified model for treating this system and per-
form calculations in several limits of the plasma parameters. The sim-
plified model is cast as a set of coupled, damped oscillators with the
oscillation amplitude scaled so that the cyclotron motion and the cav-
ity oscillation are treated on the same footing. We describe how the
parameters in the simplified model are related to physical parameters
in an experiment and how to incorporate features like a spatially
dependent magnetic field, spatially dependent coupling to the cavity
mode, and collisions with background neutrals. We also describe how
to modify the equations to treat plasmas with millions of electrons
using only a few thousand representative electrons. In the limit that
the fastest rate in the system is the cavity decay rate, we give a set of
rate equations involving 4 coupled temperatures. In all examples, we
give a physical description for the behavior of the plasma.

This paper is organized as follows. In Sec. II, we derive the coupled
oscillator model. In Sec. III, the model is analyzed under the simplifying
assumption that axial dynamics is not important. We find that the
dynamics is described by a combination of single-electron and multi-
electron effects, and we identify different regimes of cooling depending on
ratios of an appropriately defined coupling strength to the cavity mode
and the frequencies NC1, C, dX, and D. Here C1 is the single-electron
decay rate at a cavity resonance, C is the cavity mode decay rate, dX is the
spread in electron detuning, andD is the mean detuning between the elec-
tron cyclotron motion in the plasma and the cavity mode. Comparisons
with numerical simulation are provided in Sec. IV. The case of axially
bouncing electrons is considered in Sec. V and collisions are briefly con-
sidered in Sec. VI. Conclusions are presented in Sec. VII.

II. BASICS OF MULTI-ELECTRON INTERACTIONS
WITH RESONANT CAVITY

In this section, we derive equations describing the interaction of a
cavity mode with electrons located near the axis of the cavity. Our
main result of the paper is the set of Eq. (8), which provides a tractable
description of plasma cooling in a cavity. These come from Maxwell’s
equations and the Lorentz force law, with approximations made to
model a regime typical of magnetized plasma experiments.

We begin by writing the vector potential Acavðx; tÞ for a TE radi-
ation field (a similar analysis holds for TM fields) inside a cylindrical
resonant cavity as

Acavðx; tÞ ¼
mec
e

X
a;k

a k½ �
a ðtÞh k½ �

a ðxÞ exp ð�ixatÞ þ c:c: (1)

The electron mass, electron charge, and speed of light are me, e, and c,

respectively. Here a ¼ fmnpg is the mode (multi)index, a½k�a is the

dimensionless mode amplitude, h½k�a is the dimensionless mode func-
tion, xa is the normal mode frequency, and k ¼ 1; 2 labels the degen-
eracy, as needed (the m 6¼ 0 TEmnp modes are doubly degenerate in a
cavity with perfect azimuthal symmetry). We use the normalization
maxðjh½k�a jÞ ¼ 1 for the mode function h and define the effective mode
volume Va throughð

d3x h k0½ ��
a0 � h k½ �

a ¼ Vada0adk0k; (2)

where dll0 ¼ 1 when l ¼ l0 and 0 otherwise.
We couple the cavity field (1) to a collection of N electrons, with

the jth electron having position xjðtÞ and velocity vjðtÞ. We assume
there is an additional (external) axial, nearly uniform magnetic field Bext

¼ Bbz that sets the electron cyclotron frequencies Xj ¼ ejBextðxjÞj=me

and provides radial confinement. We model inhomogeneities in Bext

with position-dependent cyclotron frequencies, so different electrons will
generally have differentXj. Axial confinement is provided by an external
electric field Eextðx; tÞ ¼ EðzÞbz. The coupled system obtained from
Maxwell’s equations and the Lorentz force law is

�r2Acavðx; tÞþ
1
c2
@2Acavðx; tÞ

@t2
¼ l0Jðx; tÞ

¼ �el0

X
j

vjðtÞdðx � xjðtÞÞ;

(3a)

_v j ¼ �
e
me

vj � Bext þ Ecavðxj; tÞ þ Eextðxj; tÞ
� �

; (3b)

where Ecav ¼ �@Acav=@t is the cavity electric field; we disregard the
cavity magnetic field in Eq. (3b) as its effect on the electron motion is
negligible compared to the effects of Bext and Ecav, and we neglect any
direct interactions between the electrons (though accounting for the
electrostatic mean self-fields would require only minor modifications
to the above equations).

To simplify the coupling equations, we first substitute (1) into
(3), then use the eikonal approximation j _a=aj � x; j€a= _aj � x, and
introduce the spherical basis be6 ¼ ð6bx � ibyÞ= ffiffiffi

2
p

; be0 ¼ bz. Recall
that a vector written in the spherical basis v ¼

P
vmbem has compo-

nents vm ¼ be�m � v and, in particular, v6 ¼ ð6vx þ ivyÞ=
ffiffiffi
2
p

. We
assume the frequency spacing of cavity modes is large enough that
electrons will only be resonant with a single (degenerate) cavity mode,
decoupling all other modes from our equations. We, thus, omit the
mode indices for clarity.

We factor out the dominant oscillation in the system by defining
�a via �a exp ð�i�XtÞ ¼ a exp ð�ixtÞ and define �vj6 	 vj6 exp ð7i�XtÞ,
where �X 	

P
j Xj=N is the average cyclotron frequency of the elec-

trons. We discard any remaining fast (non-resonant) oscillations using
the rotating wave approximation, leaving

_�a
1½ � ¼ iD� C

2

� �
�a 1½ � � il0e

2c
2mexV

X
j

�vj�h
� 1½ �
� ðxjÞ; (4a)

_�a
2½ � ¼ iD� C

2

� �
�a 2½ � � il0e

2c
2mexV

X
j

�vj�h
� 2½ �
� ðxjÞ; (4b)

_�v j� ¼ �iDj �
c
2

� �
�vj� � ixc �a 1½ �h 1½ �

� ðxjÞ þ �a 2½ �h 2½ �
� ðxjÞ

h i
; (4c)
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_vjz ¼ �eEðxjÞ=me; (4d)

where D 	 �X � x is the detuning of the average cyclotron frequency
from the cavity, Dj 	 Xj � �X are the detunings of the individual
cyclotron frequencies from the average cyclotron frequency, C ¼ x=Q
is a damping introduced to model resistive losses in the cavity walls (Q
denotes theQ-factor of the cavity), c is a damping introduced to model
coupling to traveling wave modes that leave the cavity (since our cavi-
ties are embedded within waveguides), and xj ¼ xjðtÞ is the time-
dependent position of electron j. The equations for �vjþ follow from
�vjþ ¼ ��v�j�. See Table I for a summary of notation and definitions.
The terms that have been dropped are counter-rotating, oscillating like
exp ð2ixtÞ, and they contribute corrections of order D=x; C=x or
smaller. Dropping them is valid so long as x and the Xj are larger
than any other frequency scale in the system. We assume that the
cyclotron radius is smaller than any other length scale, so that h6ðxjÞ
can be evaluated at the center of the cyclotron orbit (guiding center) of
the jth electron.

In accordance with experiment, we take the plasma to be near
the axis of the cavity. Thus, the guiding centers have radial coordinates
qj satisfying qj=qcav � 1, where qcav is the radius of the cavity. We
can take linear combinations of the degenerate modes so that near the
axis the new modes are almost completely left/right circularly polar-
ized. We can then choose a labeling convention such that

h½1�þ ðq� qcavÞ; h½2�� ðq� qcavÞ � ðq=qcavÞ2 
 0; hence, the k¼ 2
mode approximately decouples and leaves

_�a ¼ iD� C
2

� �
�a � il0e

2c
2mexV

X
j

�vj�h
�
�ðxjÞ; (5a)

_�v j� ¼ �iDj �
c
2

� �
�vj� � ixch�ðxjÞ �a; (5b)

_vjz ¼ �eEðxjÞ=me; (5c)

where we have dropped the degeneracy labels.
Finally, we introduce oscillator variables

b0 	 �a; (6a)

bj 	
e

xc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meVe0
p �vj�; (6b)

which make Eq. (5) more symmetrical,

i _b0 ¼ � Dþ i
C
2

� �
b0 þ

X
j

bjg
�
j ; (7a)

i _bj ¼ Dj � i
c
2

� �
bj þ b0gj; (7b)

_vjz ¼ �eEðxjÞ=me; (7c)

with gj ¼ eh�ðxjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meVe0
p

. Once the external electric field is speci-
fied, Eq. (7c) can be solved for zjðtÞ, which gives the axial motion of
the guiding centers. Substituting the solution back into Eqs. (7a) and
(7b) leaves

i _b0 ¼ � Dþ i
C
2

� �
b0 þ

X
j

bjg
�
j ðtÞ; (8a)

i _bj ¼ DjðtÞ � i
c
2

� �
bj þ b0gjðtÞ; (8b)

with the guiding center motion providing the time-dependence of gj
and Xj. In the rest of the paper, we detail the implications of Eq. (8)
for plasma cooling via electron cyclotron radiation. From the defini-
tions above, the electron kinetic energy (which we use as a proxy for
the plasma temperature) is proportional to

P
j jbjj

2. Solving (8) for
bjðtÞ, thus, allows us to determine the cooling rate of the plasma.

Equation (8) is linear in the (complex) oscillator amplitudes, so
the system may be regarded as a type of Schr€odinger equation
idjbi=dt ¼ MðtÞjbi. The frequency g couples the (cavity and plasma)
oscillators and plays a role similar to the Rabi frequency, setting the
timescale for energy exchange between the cavity and the plasma (in
the absence of dissipation). Alternatively we can view Eq. (8) as a col-
lection of ðN þ 1Þ oscillators with a special type of non-local coupling
(all oscillators coupled to one). See Refs. 13–23 for other applications
of such coupled oscillator systems. Finally we note that a similar for-
malism (with appropriate adjustments to C, g, etc.) can be used to
model other cooling mechanisms24 (such as resistive cooling). For
example, if we wish to apply our formalism to ion cooling, it may be
impractical to use cyclotron cooling since having a cavity mode reso-
nant at the ion cyclotron frequency requires a very large cavity.
However, we can reinterpret g as a cavity-plasma coupling strength
resulting from an appropriate alternative cooling mechanism, thereby
allowing a similar analysis [with equations similar to (8)] for non-
cyclotron cooling.

III. CAVITY INTERACTION WITH AXIALLY STATIONARY
ELECTRONS: THEORETICAL CONSIDERATIONS
A. Introduction

We first analyze Eq. (8) in the absence of axial motion. This fixes
the guiding centers in place (equivalent to setting Eext 
 0 and initial-
izing the electrons with no axial velocity) and gives each electron its
own time-independent Xj, which results in a time-independent M.
The solution for the oscillators is, thus, jbðtÞi ¼ exp ð�iMtÞjbð0Þi.
Solving the system is reduced to diagonalizing M. In this section, we
analytically solve the system for the case of a single electron and the
case of many electrons with identical cyclotron frequencies. Then we
introduce the theoretical framework for understanding the numerical
simulations of many electrons with detuning (Sec. IV). Although, in
practice, electrons will always have axial motion, key features of
plasma cooling can be understood without including axial motion, so
we postpone discussion of its additional effects to Sec. V.

B. Behavior of a single electron

For a single electron, we expect enhanced radiative power loss
from coupling to the cavity due to the Purcell effect.8 We reproduce
the calculations here using our notation. Note that with only one elec-
tron,X1 ¼ �X 	 X and, thus, D1 ¼ 0. Equation (8) becomes

i _b0 ¼ � Dþ i
C
2

� �
b0 þ b1g

�
1; (9a)

i _b1 ¼ �i
c
2
b1 þ b0g1: (9b)

To find the decay rate, we look for eigenvalues of Eq. (9) by substitut-
ing b0; b1 � exp ð�iatÞ. The complex frequency a satisfies the qua-
dratic equation
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aþ i
c
2

� �
aþ Dþ i

C
2

� �
¼ jg1j2: (10)

It is instructive to examine the two solutions in the limit
g� C;D,

a1 ’ �D� i
C
2
� jgj2

Dþ iðC� cÞ=2 (11)

and

a2 ’ �i
c
2
þ jgj2

Dþ iðC� cÞ=2 ; (12)

where a1 corresponds to the mode where mainly the cavity is excited
and a2 corresponds to the mode where mainly the cyclotron motion is
excited. We can discard c from the denominators as C� c in the
cases of interest. The two solutions,

a1 ’ �D� dx� i
C� C1

2
(13)

and

a2 ’ þdx� i
cþ C1

2
; (14)

thus, show a frequency shift,

dx 	 4jgj2D
C2 1þ ð2D=CÞ2
� � ; (15)

and a change in decay rate,

C1 	
4jgj2

C 1þ ð2D=CÞ2
� � : (16)

The enhanced single-electron decay (16) offers a useful heuristic for
optimizing cooling of plasmas with many electrons since C1 sets the
cooling timescale even in the multi-electron case. For example, cooling
is optimized when the average plasma cyclotron frequency is on reso-
nance (D¼ 0) when the plasma is at an antinode (larger g) and at
larger cavity Q (smaller C). Conversely, electrons with large detunings
will not cool efficiently, so it is important to keep the cyclotron fre-
quencies within the cavity linewidth.

C. Behavior of many electrons

We now turn to the case of many electrons interacting with the
cavity. If the magnetic field is non-uniform, the cyclotron frequencies
will have a spread

dX2 ¼ hðX� �XÞ2i: (17)

Equation (16) suggests we should couple all electrons on resonance
and, thus, minimize dX; however, coupling additional resonant
electrons suppresses power loss as only a single collective mode,
the superradiant mode [Eqs. (18)], couples directly to the cavity. The
superradiant mode experiences enhanced power loss, while the
remaining subradiant modes mix into the superradiant mode in pro-
portion to their detunings. In the limit of no detuning (uniform mag-
netic field), only the superradiant mode (containing 1=N of the total

energy) will decay, leaving the electrons with most of their initial
energy.

1. Uniform magnetic field

In a uniform magnetic field, all electrons have Dj ¼ 0. Equation
(8) can be solved exactly in this regime by introducing the superra-
diant mode bc that couples directly to the cavity and the N � 1 subra-
diant modes orthogonal to it,

bj ¼ gjbc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nhjgj2i

q
þ orthogonal; (18a)

bc ¼
X
j

g�j bj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nhjgj2i

q
; (18b)

where hjgj2i ¼ ð1=NÞ
P

j jgjj
2. (Two modes

P
j cjbj and

P
j c
0
jbj are

orthogonal if
P

j c
�
j c
0
j ¼ 0.) The orthogonal modes decouple from the

system and decay with a rate c, leaving only the superradiant mode
coupled to the cavity,

i _b0 ¼ � Dþ i
C
2

� �
b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nhjg2ji

p
bc; (19a)

i _bc ¼ �i
c
2
bc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nhjgj2i

q
b0: (19b)

These equations have the same form as (9) with jg1j2 replaced by
Nhjg1j2i. Thus, for Njg1j2 � C (equivalently NC1 � C), the super-
radiant mode decays with a rate

CN ¼ NC1 ¼
4Nhjgj2i

C 1þ ð2D=CÞ2
� � : (20)

This is a manifestation of Dicke superradiance25,26 since the superra-
diant mode contains on average

ffiffiffiffi
N
p

particles and has a radiation the
rate of ð

ffiffiffiffi
N
p
Þ2 ¼ N times that of a single particle.

The condition NC1 � C ensures the eigenmodes of the system
are almost pure cavity or plasma modes. For later convenience, we
define the cavity-plasma mixing parameter

vcrit 	 x2=ðNQ2gÞ � C=ðNC1Þ: (21)

The cavity and plasma are largely unmixed for vcrit � 1 and mixing
becomes strong as vcrit ! 1. In the strong mixing regime, we need the
general form for the superradiant decay rate [obtained by solving for
the eigenfrequencies of (19)],

CN ¼

C
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16=vcrit

p� �
for vcrit > 16;

C
2

for vcrit � 16;

8>><>>: (22)

where we have set D; c ¼ 0 for simplicity. We see that strong mixing
causes both the cavity and plasma decay rates to become C=2, an effec-
tive shift of the cavityQ due to the plasma.

The above result has important implications for cavity cooling of
the cyclotron motion. If the magnetic field is too uniform and there is
nothing to disturb the electron normal modes, then one mode with
energy �kBT will lose energy very rapidly. However, the N � 1 other
modes will lose their energy very slowly. Since N is a large number,
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this ideal system does not significantly benefit from coupling to the
cavity mode.

2. Dephasing due to magnetic field gradient

We now turn to the case where the magnetic field is non-
uniform, so that different electrons have differing cyclotron fre-
quencies with spread dX (17). The superradiant mode can now
mix with the subradiant modes through dephasing due to the
spread in cyclotron frequencies. We study this behavior and how it
affects removal of energy from cyclotron motion through numeri-
cal simulations in Sec. IV. Here we lay the theoretical groundwork
for understanding the results.

To prepare, we simplify Eq. (8) further by setting all gj ¼ g, with
g real (this occurs, for example, when the plasma is small compared to
the variation in the shape of the cavity mode). We introduce dimen-
sionless time s 	 gt, dimensionless decay rates ~C 	 C=g; ~c 	 c=g,
and dimensionless detunings ~D 	 D=g; ~D j 	 Dj=g. Unless noted oth-
erwise, a tilde on a quantity with units of frequency will indicate rescal-
ing by g. In dimensionless variables, the basic coupling equations
become

i
db0
ds
¼ � ~D þ i

~C
2

� �
b0 þ

X
j

bj; (23a)

i
dbj
ds
¼ ~Dj � i

~c
2

� �
bj þ b0: (23b)

We set ~D ¼ 0 as its effect was discussed in Sec. III B. We will see that
the decay of the energy in cyclotron motion is generally fast compared
with the decay rate c, so we set ~c ¼ 0 as this has little effect on our
results. With these simplifications, Eq. (23) is governed by three
parameters: ~C, N, and d~X 	 dX=g, the characteristic spread of the ~Dj.
Typical experimental parameters considered in this paper are equiva-
lent to normalized parameter values ~C � 103 � 104; N � 103 � 107,
and d~X � 0� 2~C � 0� 104. The dimensionless single electron
decay rate satisfies (when ~D ¼ 0) ~C1 ¼ 4=~C � 10�4 � 10�3.

With the help of simulations (see Sec. IV), we identify several
important regimes. When N ~C1 � ~C and detuning is small, d~X � ~C,
the system in (23) can be thought of as a perturbation to the uniform
magnetic field case discussed in Sec. IIIC 1. That is, the subradiant
modes are weakly coupled to the superradiant mode—cavity mode
system (19). In this small detuning regime, the rate at which energy is
extracted from cyclotron motion is governed by the parameter

v 	 ðd~XÞ~C=N ¼ ðdXÞx=ðNQg2Þ � dX=ðNC1Þ; (24)

the ratio of average frequency spread to the single-particle decay rate.
The transition from small to large detuning occurs as d~X ! ~C or
equivalently as v! ~C

2
=N ¼ vcrit. This critical v, vcrit was introduced

in Eq. (21), where it was shown to govern the level of mixing between
plasma and cavity.

We can now use v and vcrit in place of d~X and ~C to characterize
the behavior of cyclotron cooling, and the above discussion indicates
the existence of four regimes, defined by whether v� vcrit or not and
whether vcrit � 16 or not [see Eq. (22)]. However, for small vcrit (of
order 16 or less), there is very little cavity-enhanced cooling of the
plasma, no matter the value of v. This effectively gives us a single
regime, which we refer to as weak cooling. For large vcrit, we have the

small detuning (v� vcrit) and large detuning (v � vcrit) regimes. Both
of these regimes can support relatively strong cooling, with improved
cooling at larger v in the small detuning regime and smaller v in the
large detuning regime. See Fig. 1 for details on the small detuning
regime and Fig. 2 for a graphical summary of the behavior in the dif-
ferent regimes.

One might wonder how particle number affects these regimes,
but an interesting feature of (23) is that at fixed v and vcrit, the

FIG. 1. Evolution of the normalized temperature T=T0 of N¼ 1000 electrons with
respect to the dimensionless time parameter ~C1s is shown. The electrons are given
random cyclotron frequencies drawn from a uniform distribution with standard devi-
ation dX. The top seven curves correspond to v ¼ 0; 1; 3; 5; 10; 20; and 30 with
greater cooling at larger v. The steepest decay corresponds to the single electron
result with decay rate ~C1. In this simulation, the electrons are coupled to a TE121
cavity mode with vcrit 
 5700.

FIG. 2. The dependence of the normalized final temperature Tf =T0 on the frequency
spread v plotted for different cavity parameters vcrit . We use the final time
tf ¼ ln ð10Þ=C1. The curves with simulated data marked by dots correspond to
vcrit ¼ 1; 10; 100; and approximately 5700 with greater cooling at larger vcrit. The
final temperatures from Fig. 1 correspond to the left portion of the vcrit 
 5700 curve.
For comparison, we display the solutions to the rate Eq. (26) (the two curves with no
markers). The dashed-dotted-dotted green and dashed-dotted orange curves corre-
spond to ~Cbc ¼ 0:19v~C1 and ~Cbc ¼ ~C1v2= 4þ 8v=

ffiffiffi
3
p	 


, respectively. The dis-
agreement between simulations and the rate equations begins at v � 0:1vcrit for
large vcrit and at v � vcrit for small vcrit. This indicates the onset of the large detuning
regime.
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behavior of the system in normalized time ~Cs ¼ C1t is largely inde-
pendent of N. Specifically, the dimensionless decay rate (normalized to
~C1) for N � 1000 particles differs from the decay rate at larger N
(at fixed v and vcrit) by less than �1%. This is because the particle
number N plays two roles. On the one hand, N sets the parameters of
the system such as v and vCrit; on the other hand, N sets the number
of random draws from a continuum Vlasov-like distribution (see
Appendix B for more details on this continuum limit). By disentan-
gling these roles, we can simulate a plasma of Ne electrons using only
Nm � Ne macroparticles (random draws). Since the current is / Nq
and the coupling to the cavity has strength / q=m, we need to keep
Nmq2m=mm ¼ Nee2=me fixed to ensure the correct system parameters
independent of the number of samples Nm. This corresponds to
holding Ng2 fixed and, thus, also holding v ¼ ðdXÞC=ðNg2Þ and
vcrit ¼ C2=ðNg2Þ fixed. After setting v and vcrit using the true plasma
and cavity parameters (using the true particle number Ne), the remain-
ing N in our model is just the macroparticle number Nm, which we
can set as low as Nm � 1000 to properly simulate the plasma.

IV. CAVITY INTERACTION WITH AXIALLY STATIONARY
ELECTRONS: NUMERICAL SIMULATION AND ANALYSIS
A. Small detuning, v� vcrit; vcrit � 16

We now solve Eq. (23) numerically. We first look at the regime
where the electron cyclotron frequencies are well within the linewidth
of the cavity, d~X � ~C. The parameters for the simulations were cho-
sen to match those for the TE121 mode of Ref. 6. The cavity frequency
is x ¼ 2p� 21:8 GHz with a decay rate of C ¼ x=1580. The effective
mode volume is V ¼ ð1=0:83Þ cm3, which leads to a resonant single-
electron decay rate of C1 ¼ 4g2=C ¼ 60:9 s�1.

In all calculations, the amplitude of each electron’s cyclotron
motion, bj, is chosen randomly with a Gaussian distribution for the
real and imaginary parts so that the temperature starts at 1000K. This
will simulate an initial thermal distribution for the cyclotron motion.
We are interested in how this temperature evolves with time for differ-
ent v ¼ ðd~XÞ~C=N . Note that we require Nv� ~C

2 � 6� 106 to stay
in the small detuning regime considered in this section. At N¼ 1000
particles (the number used in our simulations), this corresponds
to v� 6000. We use the average kinetic energy of the electrons
hKi ¼ ð1=NÞ

P
j mjvj�j

2=2 /
P

j jbjj
2 as a proxy for the electron

temperature (ignoring that the distribution may become non-thermal
during cooling). We solved (23) for 50 different (random) initial con-
ditions so that 50 000 electrons were simulated.

The time dependence of the cyclotron temperature is shown in
Fig. 1 for different values of v. The decay rate increases as v increases;
the different curves correspond to v ¼ 0, 1, 3, 5, 10, 20, and 30. For
comparison, we also show the single-electron case, which is the fastest
decay in the plot. The final time in the plot is such that the single elec-
tron decay loses 90% of its initial energy through coupling to the cavity
(sf ¼ ln ð10Þ=~C1). The effect of ~c is negligible as ~csf ’ 9� 10�3.

As expected from Sec. IIIC 1, the case when v ¼ 0) ~Dj ¼ 0
gives no appreciable decay when there are a large number of electrons
in the plasma. With increasing spacing (v), the decay rate increases
because the subradiant modes will mix with the superradiant mode bc
as the individual amplitudes bj accumulate a phase relative to each
other. This increase in the decay rate is explicitly shown in Fig. 2,
where the left portion of the solid black curve has the final tempera-
tures from Fig. 1 plotted against v. Note that as v passes

0:1vcrit ’ 570, we leave the small detuning regime and the decay rate
starts to decrease with increasing v.

B. Adiabatic approximation, v� vcrit; vcrit � 16

For the cooling of electrons, it is important to have an estimate of
how fast energy is removed from the plasma for non-zero, but small,
average spacing. In this section, we derive the decay of the cyclotron
energy for this case under the assumption that D;C are much larger
than any other frequency in the system (g;Dj). In this regime, we can
adiabatically eliminate the cavity mode from (8),

b0 ’ �
X
j

ig�j
�iDþ C=2

bj; (25a)

i _bj ’ Dj � i
c
2

� �
bj þ

X
j0

gjg
�
j0

Dþ iC=2
bj0 : (25b)

The adiabatic approximation helps with numerical calculations
because numerically integrating the original Eq. (23) requires time
steps ds � 1=~C (dt � 1=C), whereas the approximate Eq. (25) can
use time steps ds � 1=ðN ~C1Þ [dt � 1=ðNC1Þ] that are much larger at
least for N < 106. Equation (25) were numerically tested and worked
well in the limit where gjg

�
j0=C was fixed and C!1.

C. Rate equations, v� vcrit; vcrit � 16

In this section, we explore the possibility for using rate equations
to describe the coupling of the electrons’ cyclotron motion to a cavity.
These equations arise from thinking of the system (23) as partitioned
into three oscillators that are coupled together. The cavity is only cou-
pled to the collective mode so that the energy is transferred with a rate
N ~C1. The other modes are coupled to the collective mode with a rate
proportional to the dephasing v ¼ ðd~XÞ~C=N . This suggests the cou-
pled equations (for ~D;~c ¼ 0),

dTcav

ds
¼ �~CTcav þ N ~C1ðTc � TcavÞ; (26a)

dTc

ds
¼ �N ~C1ðTc � TcavÞ þ ðN � 1Þ~CbcðTb � TcÞ; (26b)

dTb

ds
¼ �~CbcðTb � TcÞ; (26c)

where ~Cbc is the rate for energy to be removed from the non-collective
modes and put into the collective mode, Tcav � jb0j2 is the cavity tem-
perature, Tc � jbcj2 is the temperature of the collective mode, and
Tb �

P
j jbjj

2 is the temperature of the N � 1 non-collective modes,
and we have assumed the cavity is coupled to a zero temperature bath.
These equations correctly reproduce the v! 0 limit [Eq. (19)] and
are an approximate generalization for finite v. The final temperature
of the electrons is Te ¼ ½ðN � 1ÞTb þ Tc�=N . Because N is typically
much larger than 1, we have N � 1 
 N and Te 
 Tb. The case we
consider has ~C � N ~C1, which means Tcav � Tc. Thus, the cavity
temperature decouples from (26), leaving Tf =T0 ’ exp ð�~Cesf Þ with
~Ce ’ ~Cbc

~C1=ð~C1 þ ~CbcÞ.
The simplest form for the coupling between the collective and

non-collective modes is to take Cbc / dX=N (~Cbc / v~C1). This pro-
duces the green dashed-dotted-dotted line in Fig. 2, which is best fit at
large v (1� v� vcrit) when ~Cbc ¼ 0:19v~C1. However, it is clear

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 082101 (2020); doi: 10.1063/5.0012756 27, 082101-6

Published under license by AIP Publishing

https://scitation.org/journal/php


from Fig. 2 that this strongly overestimates the rate at small v. We
used a simple form for ~Cbc which has the correct behavior for both
small v and larger v,

~Cbc ¼
12d~X

2
=N2

3~C1 þ 4
ffiffiffiffiffi
12
p

d~X=N
¼ v2

1þ 2v=
ffiffiffi
3
p ð~C1=4Þ: (27)

As can be seen in Fig. 2 (orange dashed-dotted line), this form gives
good results for all v� vcrit even though it is an ad hoc fit to the
behavior at small and large v. Since ~Ce / ~C1, with the proportionality
only a function of v, and since ~C1sf is fixed, the rate equation solution
for Tf =T0 will only depend on v. This is a general feature of the system
(23): for v� vcrit the decay rate rescaled by C1 depends only on v
(for ~c; ~D 
 0).

These rate equations only hold when the total spread in fre-
quency is much smaller than the cavity linewidth, C. For a total spread
comparable to or larger than C, some of the electrons are outside of
the linewidth of the cavity, requiring a modification to the rate
equations.

D. Large detuning and weak cooling regimes, v � vcrit

The case where there are many electrons coupled to a cavity
mode was considered in Ref. 7. There the argument was made that the
optimum spread of frequencies is d~X ’ ~C. The basic idea is that the
dephasing rate of the collective mode is proportional to d~X, and this is
competing with the fact that the decay rate decreases when the cyclo-
tron frequency is outside of the cavity linewidth. Since the single-
electron decay rate is ~C1=½1þ ð2~D=~CÞ2�, having ~D > ~C=2 quickly
decreases the single-electron decay rate suggesting the fastest decay
should have d~X � ~C. We refine this discussion below.

The calculations based on (23) are the most relevant for this case
because the cavity response cannot be treated as fast compared to the
other time scales in the problem. Because d~X is comparable to or
larger than ~C, we will define ~C1 to be the single-electron decay rate
exactly on resonance; the decrease in the decay rate due to detuning
will be explicitly shown when needed.

We now determine what frequency spread is optimal for maxi-
mizing the cooling rate. Figure 2 shows the final temperature at a time
when the single-electron case has decreased by a factor of 10
[sf ¼ ln ð10Þ=~C1]. The different curves with markers are for vcrit ¼ 1,
10, 100, and ’ 5700, with better cooling at larger vcrit. The markers
are the results of simulations run for N¼ 1000 particles, averaged over
50 random initial conditions. Better cooling at larger vcrit is natural
since vcrit � ~C

2
and the faster the cavity mode decays, the more

quickly we can remove energy from the plasma. For a large vcrit
(�16), there is a wide range of v available for optimal cooling. We
need v� 1 to have good mixing into the collective mode, but this
effect saturates at v � 60. From there, the cooling is essentially con-
stant as a function of v until we enter the large detuning regime at
v=vcrit ¼ dX=C � 0:1. At this point, more and more electrons fall
outside the linewidth of the cavity, resulting in worsening cooling with
increasing spread v. For smaller values of vcrit, the large detuning
regime begins before the mixing into the collective mode saturates.
This increases the optimal frequency spread v=vcrit, but at the cost of
less cooling at the optimum. From Fig. 2, we see that the optimal
v=vcrit increases to about 0.2 for vcrit ¼ 100, about 0.5 for vcrit ¼ 10,
and about 1 for vcrit ¼ 1.

We may alternatively plot the final temperature as a function of
vcrit for different v, as shown in Fig. 3. The different curves are for
v ¼ 0:1, 1, 5, and 30, with larger v giving lower temperatures at large
vcrit. Since ~C will typically be fixed by the cavity, we have vcrit / 1=N
and may regard Fig. 3 as a plot vs (inverse) particle number. At small
particle number (large vcrit), increasing the frequency spread improves
cooling since all v in the figure are much smaller than vcrit. This is in
accord with the results of Fig. 2. For large particle numbers (small
vcrit), we have the opposite effect: decreasing the frequency spread
brings many electrons back into the linewidth of the cavity and
improves cooling. We can understand why the curves in Fig. 3 cross
and reverse their ordering by looking back at Fig. 2. The chosen values
of v ¼ 0:1; 1; 5; 30 will lie on the decreasing (left) portion of a vcrit
curve when vcrit � 30, so the lowest temperature will belong to the
largest v in this regime. Conversely, when vcrit�0:1, the chosen v will
lie on the increasing (right) portion of a vcrit curve and so the lowest
temperature will belong to the smallest v in this regime. Between these
regimes, the lowest temperature will switch from the smallest to the
largest v, depending on how the v distribute themselves around the
minimum of a vcrit curve.

E. Discussion

Putting everything together, we see that plasma cooling is gov-
erned by a combination of single- and multi-electron effects. For opti-
mal cooling, we need to maximize the (on-resonance) single-particle
decay rate C1 ¼ ð2e2=mee0Þðjhj2Q=VxÞ while allowing for a large
detuning still within the cavity linewidth, NC1 � dX � x=Q. From
the simulation results (see in particular, Fig. 2), optimal cooling can be
achieved by satisfying 10NC1 � dX � 0:1C and maximizing C1 sub-
ject to these constraints. Typically, this results in equating
10NC1 � dX � 0:1C, which places a strong constraint on the cavity
Q-factor (for a given number of particles).

For more detailed analysis of the cooling dynamics, we make use
of the dimensionless parameters v ¼ 4dX=ðNC1Þ and vcrit ¼ 4x=
ðQNC1Þ together with the simulation results displayed in Figs. 2
and 3. For example, if we are interested in cooling 106 electrons in a
cavity with Q-factor 1580 at a frequency of x ¼ 2p� 21:8 GHz using

FIG. 3. The dependence of the normalized temperature Tf=T0 on vcrit for different
values of v is shown. The curves correspond to v ¼ 0:1 (red dash-dot), 1 (green
dot), 5 (blue dash), and 30 (black solid). At low vcrit, there is almost no cooling since
most of the electrons are outside the linewidth of the cavity.
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a cavity mode with effective volume V¼ 1.2 cm3 and a magnetic field
gradient of dB � 10�3 T, we compute v and vcrit for our setup,

v ¼ 4dX
NC1

¼ 2dB
N

e0
e

Vx

jhj2Q
� 11:5; (28a)

vcrit ¼
4x

QNC1
¼ 2

N
me0
e2

Vx2

jhj2Q2
� 5:7; (28b)

where we have assumed our plasma is located near an antinode
(h � 1). We can now look at Fig. 2 where v � 11:5 and vcrit � 5:7
(between the red dashed curve and blue dotted curve). This shows
our plasma will lose approximately 15% of its initial energy within
Dt ¼ ln ð10Þ=C1 � 38 ms.

We can see from the graph that we are far from optimal cooling.
We can decrease the magnetic field gradient, reducing v by about a
factor of two so that the plasma loses more than 30% of its energy in
the same amount of time. Alternatively, we can decrease Q by a factor
of four, increasing vcrit to about 90, letting the plasma lose about 75%
of its energy in Dt ¼ 4� 38 ms.

As another example, we compare our (axially stationary electron)
model to experimental data in Fig. 4. The experiment cooled
N ¼ 3� 107 electrons located near the antinode of a TE111 cavity mode
withx ¼ 5:1� 1010 s�1; Q � 700, and mode volume V ¼ 10�5 m, as
described in Ref. 12. Four different magnetic field gradients were
applied to both short (L¼ 36mm) and long (L¼ 63mm) plasmas,
resulting in eight different frequency spreads Df (denoting the full-width
frequency spread). This gives dimensionless parameters vcrit ¼ 3:5 and
v ¼ ð8:8� 10�2ÞDf (MHz). The model curve is constructed from sim-
ulations using these parameters and a total of 5� 104 macroparticles.
The agreement between model and experiment is reasonable: peak cool-
ing is predicted to be within 10%–20% and the optimal frequency spread
to be within 50%. The significant disagreement at larger frequency
spread results from the plasma coupling to nearby modes, producing
enhanced cooling. We note that agreement between data and experi-
ment gets worse at smaller particle number. There the plasma does not
flatten the potential as much, making effects of axial motion more
important. Better agreement can be obtained by accounting for axial

motion, additional mode coupling, and uncertainties in experimental
parameters (which can be as large as 30%), but the reasonable success of
the simple model is already promising.

V. MOVING ELECTRONS COUPLED TO A CAVITY MODE

In this section, we allow the centers of the electron cyclotron
orbits to move. The centers follow a guiding center motion, oscil-
lating axially with characteristic bounce frequencies xb;j (we ignore
any electron–electron interactions, including collisions). We char-
acterize the distribution of bounce frequencies using the average
�xb 	

P
j xb;j=N and rms spread dxb. This results in time-

dependent cyclotron frequencies XjðtÞ ¼ ejBextðxjðtÞÞj=me and
cavity couplings gjðtÞ ¼ eh�ðxjðtÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meVe0
p

, where xjðtÞ ¼ rj?
þ zjðtÞbz and rj? is the transverse position of the guiding center for
electron j. The transverse position of the electron relative to its
guiding center is absent from the above equations because the
cyclotron radius is much smaller than the variation in Bext and h�.
The coefficients on the right-hand side of Eq. (8) are, thus, time-
dependent, and though we may still regard (8) as a Schr€odinger
equation idjbi=dt ¼ MðtÞjbi, the formal solution is now the time-
ordered exponential jbðtÞi ¼T exp ð�i

Ð
MðtÞ dtÞjbð0Þi. The

formal solution is useful when treating the time-dependence as a per-
turbation to the time-independent system; however, for the cases of
interest, the time-dependent contribution will often be large and cannot
be handled perturbatively. Instead, we will numerically integrate (8)
using the methods discussed in Appendix A.

We split our analysis of axial motion into two cases. In the first
case, we examine the effect of the time-dependent cavity coupling
gjðtÞ assuming the axial magnetic field is very nearly uniform so that
(averaging over axial motion) Xj 
 �X ! Dj 
 0. This type of axial
motion produces sidebands in the cooling rate (as a function of D),
allowing the plasma to cool away from the central resonance. Since the
only cooling is due to the time-dependence of g, axial motion leading
to a strong oscillatory component of gðtÞ improves the plasma cooling
rate. In the second case, we consider the effect of time-dependent
cyclotron frequencies assuming (as in Sec. IV) that the plasma is
small compared to the variation in the shape of the cavity mode, so
gjðtÞ ¼ g is time-independent. Here the cooling is due to the spread in
cyclotron frequencies and axial motion tends to average this spread
away. Thus, in this case, we want to reduce the effect of axial motion
to improve the cooling of the plasma.

When reporting our results in this section, we plot only the cyclo-
tron (transverse) temperature of the plasma. The figures, thus, repre-
sent the rate at which energy is removed from cyclotron motion. Since
axial motion is not cooled through coupling to the cavity, the actual
cooling rate is typically one third lower.

Some rough estimates will guide whether we should think of �xb

as being large or small. At 1000K, an electron has a speed of�2� 105

m/s. Taking the plasma length to be 1 cm gives a frequency of �f b � 10
MHz and �xb ¼ 2p�f b � 108 s�1. This is comparable to the C for sev-
eral of the cavity modes in Ref. 6. Lower temperatures and longer plas-
mas would lead to �xb substantially smaller than C.

A. Time-dependent cavity coupling

In this section, we examine the time-dependence gjðtÞ caused by
electron axial motion and the spatial variation of h�ðxÞ. We assume
the external magnetic field is sufficiently uniform to take Dj ¼ 0. As

FIG. 4. Comparison of experimental cooling rates (squares) with model predictions
using axially stationary electrons (solid green line). The black squares are data for
short (L¼ 36 mm) plasma and the white squares are data for long (L¼ 63 mm)
plasma. Both plasmas were subjected to the same four magnetic field gradients.
Peak cooling rate and optimal frequency spread are predicted reasonably well.
Disagreement at larger frequency spread is expected due to the plasma coupling to
nearby modes and from effects of axial motion.
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long as the plasma is not too long (compared to the cavity mode func-
tion), we can Taylor expand gðzÞ ¼ eh�ðq 
 0; zÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meVe0
p

, choos-
ing z¼ 0 as the center of the plasma: gðzÞ ¼ gþ g0z þ g00z2=2.
In particular, gjðtÞ ¼ gðzjðtÞÞ ¼ gþ g0zjðtÞ þ g00z2j ðtÞ=2. We set
c¼ 0 to isolate the effect of the time-dependent coupling. This simpli-
fies Eq. (8) to

i
db0
dt
¼ �D� i

C
2

� �
b0 þ

X
j

g�j ðtÞbj; (29a)

i
dbj
dt
¼ gjðtÞb0: (29b)

Note that when the plasma is centered on a node, gðtÞ ¼ g0zðtÞ and
when it is centered on an antinode, gðtÞ ¼ gþ g00z2ðtÞ=2. These dif-
ferent forms for g can have important consequences for cooling. For
example, small axial oscillations around an antinode will have essen-
tially no effect on cooling (since g00dz2 � g), while small axial oscilla-
tions around a node will produce a small, but typically noticeable
effect.

1. Single electron

To understand some of the general features of (29), it is worth-
while to examine the single-electron case in detail, reducing (29) to
two equations as we did in going from (8) to (9). With only one elec-
tron, xb;1 ¼ �xb 	 xb, and the analysis is simplest when
C1 � xb � C. In this case, the cavity responds much faster than the
changes to the cyclotron motion, so the cavity can be adiabatically
eliminated,

b0 ’ �
ig�ðtÞ

�iDþ C=2
b1; (30a)

db1
dt
’ � jgðtÞj2

�iDþ C=2
b1; (30b)

b1ðtÞ ’ exp
ðt
0
�idxðt0Þ � C1ðt0Þ=2
� �

dt0
 !

b1ð0Þ; (30c)

where dx and C1 are given by (15) and (16), respectively, with jgj2
replaced by jgðtÞj2. Thus, there is not a substantial change to the
single-electron result in this limit, except for the substitution of the
instantaneous coupling. If the decay rate C1ðtÞ is small compared to
xb, then the long time behavior is determined by the time average of
jgðtÞj2 and the energy in the cyclotron motion decays with a rate equal
to the time average of C1ðtÞ.

When xb is on the same order as C (or larger), the results depend
in detail on the behavior of gðtÞ. Since zðtÞ ¼

P
k zk exp ðikxbtÞ, we

can expand gðtÞ ¼ gðzðtÞÞ as a power series in exp ðixbtÞ,

gðtÞ ¼
X1
k¼�1

gðkÞeikxbt : (31)

The coefficients gðkÞ depend on the functional form of z(t).
For example, when g ¼ gþ g0zðtÞ þ ð1=2Þg00z2ðtÞ and zðtÞ
¼ z0 cos ðxzt þ /Þ, the coefficients are gð0Þ ¼ gþ g00z20=4; gð1Þ

¼ gð�1Þ� ¼ g0z0 exp ði/Þ=2, and gð2Þ ¼ gð�2Þ� ¼ g00z20 exp ði2/Þ=8.

Since the single-electron equations have the form ij _bi ¼ MðtÞjbi
with M(t) periodic with frequency xb, we can perform a Floquet
expansion for the b0 and b1. The two mode amplitudes can be written
in terms of slowly evolving functions multiplied by oscillatory terms
with angular frequency kxb,

b0ðtÞ ¼
X1
k¼�1

bðkÞ0 ðtÞeikxbt ; (32a)

b1ðtÞ ¼
X1
k¼�1

bðkÞ1 ðtÞeikxbt ; (32b)

where the bðkÞl are slowly varying functions on the timescale of
min(1=xb; 1=C). Substituting (32) into the equation for b0 and using
the fact that we are interested in times Ct � 1 gives

bðkÞ0 ’
1

D� kxb þ iC=2

X
‘

gð‘Þ�bðk�‘Þ1 : (33)

Setting bðkÞ1 ðtÞ ¼ bðkÞ1 exp ð�iatÞ and using the equation for b1 gives
an eigenvalue equation for the Floquet frequency a,

ða� kxzÞbðkÞ1 ¼
X
‘

gð‘Þbðk�‘Þ0 : (34)

In general, a will need to be determined numerically. However, we can
use a perturbative approach because we are interested in the case
where g� D;C;xb.

The perturbative solution is constructed by starting with bð0Þ1 ¼ 1
and a¼ 0. We represent the perturbative parameters g=D; g=C, and
g=xb by the single quantity e because all three perturbative parameters
are on the same order (typically much less than 10�3). One can see
that the other bðk6¼0Þ1 are on the order e2. Thus, to order e1,

bðkÞ0 ¼
gðkÞ�

D� kxb þ iC=2
þOðe3Þ: (35)

This result can be used in the k ¼ 0 equation to obtain the solution for
the Floquet frequency

a ¼
X
k

gðkÞbð�kÞ0 ¼
X
k2N g

gðkÞgð�kÞ�

D� kxb þ iC=2
þOðe2Þ; (36)

where ng 	 fkjgðkÞ 6¼ 0g counts the non-zero gðkÞ. Since gðtÞ is
a real function, gð�kÞ ¼ gðkÞ, so the single-electron decay rate
C1 ¼ �2Im½a� is

C1 ¼
X
k2ng

4jgðkÞj2=C
1þ 2ðD� kxbÞ=C½ �2

; (37)

which shows Lorentzian sidebands at D ¼ 6kxb with strengths pro-
portional to the (square of the) appropriate Fourier component of the
coupling.

Figure 5 shows calculations for the case where the
gðtÞ ¼ g½cos bþ

ffiffiffi
2
p

sin b cos ðxbtÞ�. This form of g was chosen so
that the cycle average of g2 was independent of the strength of the
oscillatory component (as parameterized by b). This form for g has
gð0Þ ¼ g cosb and gð61Þ ¼ 1=

ffiffiffi
2
p	 


sinb. We present calculations for
three choices of b: a small oscillatory component in g (b ¼ p=10),
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equal strength for the oscillatory and non-oscillatory components
(b ¼ p=4), and a purely oscillatory g (b ¼ p=2). The plots show the
ratio of the final to initial energy in the cyclotron motion as a function
of the detuning for a final time tf ¼ ln ð10Þ=C1ðb ¼ 0Þ (when a
non-oscillating electron has lost 90% of its energy). In all of the plots,
xb ¼ 3C=2 and all of the other parameters are the same as in the
earlier figures. The plots are from numerical solutions of the
single-electron equations, but they are indistinguishable from using
Tf =T0 ¼ exp ð�C1tÞ with C1 given by (37).

2. Many electrons

The treatment is more subtle for many electrons since now each
electron can have a different xb;j and a different amplitude of oscilla-
tion. We first examine the case where xb;j � C. The multi-electron
generalization of (30a) and (30b) is

b0 ’ �
X
j

ig�j ðtÞ
�iDþ C=2

bj; (38a)

dbj
dt
’ �

X
j0

gjðtÞg�j0ðtÞ
�iDþ C=2

bj0 ; (38b)

which is the same as (25) except the g’s are now time dependent. In
the experimental cases we consider, �xb � C1 � 4jgj2=C, so the time
dependence of the g will be important.

The simplest case to treat is when xb;j ¼ �xb is the same for every
electron. This occurs if the electrons are hot and in a harmonic poten-
tial. Although all electrons have the same frequency, they will have dif-
ferent random phases to their axial motion. Since the rate that energy
is removed from the plasma is / Cjb0j2, it might be tempting to con-
clude from (38a) that the different phases will lead to an average of 0
for the cross terms and, thus, to enhanced cooling. However, this is
incorrect because the bj become correlated with gj. This case is nearly
as ineffective at removing energy from the plasma as the case where all

the detunings are the same (see Sec. III C 1). One can see this by per-
forming a cycle average on (38b), which gives

dbj
dt
’ �

X
j0

X
k2ng

gðkÞj gð�kÞ�j0
�iDþ C=2

bj0 ; (39)

where ng ¼ fkjgðkÞ 6¼ 0g. The matrix on the right hand side of this
equation is rank jngj ¼ 2ng þ 1, where ng is the number of non-zero
gðk>0Þ. Thus, there will be 2ng þ 1 modes that strongly decay and the
rest, N � ð2ng þ 1Þ ’ N , will not decay at all. This observation is true
whether or not each electron has a random phase or a random ampli-
tude of oscillation.

There are three conditions that must hold for there to be substan-
tial decay of the energy in the plasma. The first is that the oscillating
part of g must be substantial; these are the gðk6¼0Þ. The second is that
there needs to be a spread in the axial frequency of oscillation dxb that
is larger than the decay rate of the collective mode, NC1 (this corre-
sponds to large axial v). Finally, the spread in axial frequencies should
be smaller than or comparable to C; otherwise, there will be electrons
outside the linewidth of the cavity. As with the case of stationary elec-
trons, the last two conditions become impossible to simultaneously
satisfy when NC1 > C.

In the calculations that follow, every electron (in a particular run)
has the same b but different phases and axial frequencies:
gjðtÞ ¼ g½cosbþ

ffiffiffi
2
p

sinb cos ðxb;jt þ /jÞ�. The phases are chosen
from a uniform distribution between 0 and 2p. The frequencies are cho-
sen from a uniform distribution centered on �xb with rms spread dxb.

To simplify notation, we let cdxb ¼
ffiffiffiffiffi
12
p

dxb be the full spread of the

frequency distribution. We require �xb 
 cdxb=2. We draw the cyclo-
tron amplitudes from a thermal distribution as before. The final time
was chosen so that one non-oscillating electron, perfectly on resonance
with the cavity, loses 90% of its energy: tf ¼ ln ð10Þ=C1. The calcula-
tions were performed varying N, C1, b, �xb, and dxb. The calculations
used 46 ¼ 4096 electrons per run and were averaged over 4 runs.

Figures 6 (b ¼ p=4) and 7 (b ¼ p=10) show the final tempera-

ture for different �xb with �xb ¼ cdxb=2. As in Sec. IV, we found that
calculations with nearly the same scaled couplings and frequencies gave
nearly identical results. For example, runs with fewer (e.g., N ¼ 45)
electrons gave nearly identical plots (not shown) when the rates and
frequencies were appropriately scaled. These figures show two impor-
tant trends. The first is that the energy can only be efficiently removed
from the cyclotron motion when the spread in axial frequencies
becomes comparable to or larger than NC1. As with the results from
the stationary electrons, we want vaxial 	 dxb=ðNC1Þ � 1. The sec-
ond important trend is that the decay only comes from the oscillating
term of the coupling. We can see this by comparing Fig. 6 to Fig. 7 as
the only difference between them is the decrease in the amount of oscil-
lation. Since the part of the decay rate depending on oscillation is
proportional to sin2b, there is approximately a factor of 5 decrease in
the decay rate between the figures. The importance of the oscillating
component is particularly clear in Fig. 7 where the decay rates converge
to the single-electron rate, where the latter is obtained using only the
oscillating part of g.

Figure 8 uses the same set of frequency spreads dxb as Fig. 6 but
with the much larger �xb ¼ C=2. Comparison of these two figures
shows that for smaller dxb, the large �xb ¼ C=2 leads to more effective

FIG. 5. The ratio of final to initial cyclotron energy for the case of one electron with
harmonic axial motion plotted vs the cavity detuning. The different curves all have
an axial frequency xb ¼ ð3=2ÞC, but with different amounts of oscillation in g. The
final time is ln ð10Þ=C1ðb ¼ 0Þ. The curves are for b ¼ p=10 (solid red), p=4
(dashed blue), and p=2 (dotted green). The results of the single-electron equations
are plotted but are indistinguishable from Eq. (37).
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cooling than �xb � 0. Based on the single-electron results, we would
expect the opposite effect: for �xb � 0, the Lorentzian sidebands at
6�xb combine with the central resonant peak and enhance cooling,
while for �xb ¼ C=2, the side bands stay separated. This phenomenon
(better cooling at large �xb) occurs because the non-oscillating part of
g is contributing toC1, so dxb=C1 is proportionally smaller (the decay
is more blocked) when �xb � 0. Once dxb is comparable to or larger
than NC1, the best decay rate is for �xb � 0, in agreement with previ-
ous results since the decay in this limit approaches the single electron
result.

The last case we consider is when the plasma is centered at an
antinode of the cavity mode. We assume the plasma is sufficiently

short compared to the spatial variation in the cavity mode so that we
may use a second-order expansion gðtÞ ¼ gþ ð1=2Þg00z2ðtÞ. When
centered at an antinode, the coupling decreases away from z¼ 0,
which means g00 < 0. The case where the axial motion is essentially
harmonic does not introduce qualitatively new features. Writing the
axial position as zðtÞ ¼ z0 cos ð�xbt þ /Þ gives a time dependence
gðtÞ ¼ ðgþ g00z20=4Þ þ ðg00z20=4Þ cos ð2�xbt þ 2/Þ. This is the same
form as above but the frequencies and their spread are doubled. From
the discussions above, only the oscillating term will lead to substantial
cooling when there are many electrons. On resonance the maximum
cooling rate will be half of the coefficient of the oscillating term:
�ð1=2Þ4ðg00z20=4Þ

2=C.
Typically, the amplitude of the axial oscillation is such that the

change in coupling is not very large (10%–20%) because the size of the
oscillating term is quadratic in the plasma length (as opposed to linear
when the electrons are near a node). This strongly reduces the amount
of coupling that is oscillating with time. Since the decay rate is propor-
tional to the square of the oscillating component of g, time-dependent
coupling due to axial motion will have little effect on cooling a plasma
near an antinode, unless the plasma is long enough for gðzÞ to vary
substantially.

B. Time-dependent frequency shift

We now explore the effect of time-dependent cyclotron frequen-
cies XjðtÞ arising from electrons moving through an inhomogeneous
magnetic field. We assume each electron’s cyclotron frequency
changes linearly with the distance from the center of the plasma,
XjðtÞ ¼ �X þ �X

0
zjðtÞ. As above, zjðtÞ is a periodic function, not neces-

sarily a simple harmonic, with period 2p=xb;j. The coupling g between
the cyclotron motion and the cavity will be taken to be a constant in
this section. We again take c¼ 0 for simplicity.

In this regime, Eq. (8) become

i
db0
dt
¼ �D� i

C
2

� �
b0 þ g�

X
j

bj; (40a)

i
dbj
dt
¼ DjðtÞbj þ gb0; (40b)

FIG. 6. The ratio of final to initial cyclotron energy of 46 ¼ 4096 electrons (averaged
over 4 runs) undergoing harmonic axial motion plotted vs cavity detuning. All curves
have b ¼ p=4; �xb ¼ cdxb=2; NC1=C ¼ 0:2, and a final time of ln ð10Þ=C1. The
different curves have an axial frequency spread cdxb=ðNC1Þ ¼ 0.1 (solid red), 0.2
(medium-dashed blue), 0.5 (short-dashed green), 1.0 (long dashed-dotted purple),
1.5 (long dashed-dotted-dotted light green), and 2.5 (medium-dashed maroon). At
D¼ 0 the final temperature decreases with increasing cdxb. The single-electron
result is the deepest short-dashed orange curve. The single-electron result dropping
the gð0Þ term (i.e., the non-oscillating part of the coupling) is the deepest solid
black line.

FIG. 7. Same as Fig. 6 except b ¼ p=10.

FIG. 8. Same as Fig. 6 except �xb ¼ C=2.
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where DjðtÞ ¼ �X
0
zjðtÞ. For the plasmas we consider, all of the elec-

trons oscillate around the same z, which means that the cycle average
of the detuning is approximately the same for every electron. Thus, we
will only consider the case where the cycle average of Dj is zero; the
average shift is in the parameter D. All of the results in this section
were obtained by numerically solving (40). The approximations intro-
duced below are mainly for the purpose of understanding the results.

1. Single electron

To understand some of the general features, it is worthwhile to
examine the single-electron case in detail, reducing (40) to two equa-
tions as we did in going from (8) to (9).

We treat only the simplest case, where the time dependence in
D1ðtÞ has frequencies much smaller than C and D. In this situation,
the cavity oscillation can be adiabatically eliminated [see, for example,
(25) and (30)],

db1
dt
’ � jgj2

�iD� iD1ðtÞ þ C=2
b1; (41a)

b1ðtÞ ’ exp �
ðt
0
idxðt0Þ þ C1ðt0Þ=2
� �

dt0
 !

b1ð0Þ; (41b)

where dx and C1 are given by (15) and (16), respectively, with D
replaced by Dþ D1ðtÞ. Thus, the amplitude of oscillation is an expo-
nential of a simple quadrature of the time-dependent frequency shift
and decay rate.

Equation (41b) exhibits an interesting feature when xb is much
larger than C1 (so there is very little decay during one period 2p=xb).
On the timescale of the decay of the cyclotron motion,ðt

0
idxðt0Þ þ C1ðt0Þ

2

� �
dt0 ’ ihdxit þ hC1i

2
t; (42)

where hi indicates an average over the period 2p=xb. Since hD1i ¼ 0,
we have effectively the same situation as a stationary electron
(D1ðtÞ ¼ 0) up to a relative error�hD2

1i=C2.

2. Many electrons

As with the case where the coupling was time dependent, the
many-electron case has more subtlety because there is both an average
bounce frequency �xb and a spread dxb. We first examine the case
wherexb;j;Dj; gj � C;D. The multi-electron generalization of (41) is

b0 ’ �
ig�

�iDþ C=2

X
j

bj; (43a)

dbj
dt
’ �iDjðtÞbj �

jgj2

�iDþ C=2

X
j0

bj0 ; (43b)

which is the same as (25) except the Dj’s are now time dependent and
gj ¼ g.

In the following calculations, the Dj will have a time dependence
given by an approximate triangle function (with rounded corners)
with period 2p=xb;j. The frequencies xb;j are chosen from a Gaussian
distribution (with rms spread dxb), while the phase of DjðtÞ is chosen

from a uniform distribution. This approximately leads to a uniform
distribution of detunings.

An extreme case is when the only difference in the DjðtÞ is the
phase: DjðtÞ ¼ D1ðt � TjÞ. When the frequency �xb is larger than C1,
the decay is suppressed compared to the case where the Dj are time-
independent. Since typically �xb > C1, we can expect that electrons
oscillating identically but with different phases will not lead to strong
coupling to the cavity. As with the time-dependent cavity coupling
(Sec. VA), a spread in axial frequencies couples the plasma more
strongly to the cavity.

Figure 9 shows the final temperature as a function of the
spread of detunings f ¼

ffiffiffi
3
p

v=2 for different dxb. For all calcula-
tions, NC1 ¼ C=20 (vcrit ¼ 80) so that all of the electrons have fre-
quencies within the linewidth of the cavity mode. We simulated
44 ¼ 512 electrons averaged over 16 different random configura-

tions. The different lines correspond to cdxb=C ¼ 0, 0.01, 0.02,
0.05, 0.1, 0.2, 0.5. The important point is the cooling rate is similar
to that for stationary electrons when dxb � NC1. As the spread
in axial frequencies becomes larger, energy is removed more
slowly from the plasma. As long as the cavity cooling rate C is
much larger than any other rate or frequency parameters, the
plasma cooling rate is determined by the ratio vaxial ¼ dxb=ðNC1Þ.
For example, Tf =T0 for NC1=C ¼ 0:1 and spread cdxb=C ¼ 0:2
was nearly the same as for NC1=C ¼ 0:05 and spreadcdxb=C ¼ 0:1.

There is a small but interesting feature in Fig. 9. At larger values

of f, the Tf for slowly moving electrons (cdxb=C ¼ 0.01 or 0.02) is
somewhat lower than for stationary electrons. This effect is consis-
tently present in the simulations, and we believe this is because the
moving electrons have detuning distributions that fluctuate with time,
giving a small additional mechanism for dephasing the cyclotron
motion, leading to better mixing with the superradiant mode, and ulti-
mately resulting in better cooling.

FIG. 9. Ratio of final to initial cyclotron energy vs normalized frequency spread f
for the case where the detuning oscillates. We may compare this with the results of
non-oscillating detunings displayed in Fig. 2. All curves have vcrit ¼ 80. The differ-
ent lines correspond to different axial frequency spreads vaxial ¼ 0 (solid black), 0.2
(short-dashed red), 0.4 (dotted-dashed blue), 1 (dashed-dotted-dotted green), 2
(medium-dashed purple), 4 (solid light green), and 10 (short-dashed maroon).
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VI. COLLISIONS

Electron–electron collisions can affect cooling if they scatter energy
into the collective mode. If the plasma is much smaller than the variation
in the cavity mode shape, then electron–electron collisions have no effect
on the collective mode and do not contribute to cooling. This is because
the collective mode bc ¼

P
j gjbj=

ffiffiffiffi
N
p
¼ ð
P

j bjÞg=
ffiffiffiffi
N
p

reduces to the

center-of-mass mode, which cannot be affected by collisions. If the cavity
mode varies along the plasma, then it may be possible for collisions to
scatter into the collective mode, particularly for collisions whose scale is
comparable to the variation of the cavity mode. Such collisions can occur
(even for slowly varying cavity modes) near the edge of the plasma,
where Debye shielding produces large electric field gradients.
Electron–electron collisions may, thus, provide another mechanism for
dephasing the collective mode.

In this section, we analyze a different type of collision: electrons
colliding with background neutral atoms or molecules. There are two
types of electron–neutral collisions to consider. The first type is inelas-
tic scattering. At low electron energies, this will mainly result in
momentum transfer between the neutral and the electron without any
internal change of the neutral. This is a slow process due to the tiny
electron to neutral mass ratio, so we ignore its effect on cooling here.
The second type is nearly elastic scattering where only the direction of
the electron’s velocity changes. For now, we ignore any coupling such
a collision might produce between the cyclotron and axial motion of
the electron. Instead, we model the effect as an instantaneous change
in the phase of bj (when the jth electron collides with a neutral). This
abrupt change in phase provides an additional mechanism for dephas-
ing the collective mode, allowing energy to flow into it from the
orthogonal modes.

For now, we fix the centers of the cyclotron orbits so that there is
no axial motion. In particular, any scattering from background neu-
trals will only be in the transverse (non-axial) directions.

A. Collisions only

To isolate the effect of collisions, we consider (25) for the case
where gj ¼ g and Dj ¼ c ¼ 0. Without collisions, the cavity quickly
removes the energy from the superradiant (collective) mode with a
rate NC1, but cannot remove energy from any of the subradiant
(orthogonal) modes. To model collisions, we added a stochastic step to
the equations. After every time step, dt, we cycled through each elec-
tron and compared a random number to a scattering probability
Ccoldt. If the random number is less than the scattering probability,
then the bj is multiplied by exp ði/Þ where / is a random number
between �p and p. Perhaps surprisingly, within this model the rate
that energy is lost through the cavity again depends only on parame-
ters relative to NC1.

Figure 10 shows the results of including collisions for two differ-
ent particle numbers N ¼ 45 and 46 (with appropriately rescaled colli-
sion rate). As is clear from the figure, the final temperature at
tf ¼ ln ½10�=C1 only depends on the collision rate in units of the
superradiant rate, as we again see the familiar invariance with respect
to particle number. This simple model leads to a rate of energy loss
approximately equal to C1ccol=½0:5þ ccol�Þ, where ccol ¼ Ccol=ðNC1Þ
is the scaled collision rate. Thus, the single-electron elastic scattering
rate needs to be roughly equal to or larger than the superradiant rate
for collisions to be important.

The scaling can be understood from a simple rate equation. As in
Sec. IVC, Tb is the temperature of the N � 1 subradiant modes, and
Tc is the temperature of the superradiant mode. The rate that collisions
scatter energy from the subradiant modes into the superradiant one is
proportional to the average energy in a subradiant mode kbTb times
the single-electron collision rate. Similarly, the rate energy scatters out
of the superradiant mode into the subradiant modes is proportional to
the energy in the superradiant mode kBTc times the single-electron
collision rate. For simplicity, take the proportionality constant to be c.
The rate equations for the energy flow are then

dTc

dt
¼ cCcolðTb � TcÞ � NC1Tc; (44a)

dTb

dt
¼ �cCcol

N
ðTb � TcÞ: (44b)

The fastest possible decay is on a timescale of �1=C1 which is long
compared to the inverse of the rates in (44a). Therefore, the time
derivative of Tcmust be small, leading to

Tc ’
cCcol

cCcol þ NC1
Tb: (45)

Substituting this into the second equation gives

dTb

dt
¼ �cCcol

N
NC1

cCcol þ NC1
Tb ¼ �C1

cccol
cccol þ 1

Tb; (46)

where the scaled collision rate ccol was defined above. We find c ¼ 2
from the fit line in Fig. 10.

B. Collisions plus a frequency spread

We now include the effects of both collisions and cyclotron fre-
quency spread. We consider the case dX; NC1; Ccol � C. We again
set D ¼ c ¼ 0 and solve (30) using random phase jumps to model col-
lisions. The rate Eqs. (26) and (44) generalize to

FIG. 10. We use the same cavity parameters as in previous figures (C ¼ 8:67
� 107s�1; C1 ¼ 60:9s�1) and look at the effect of only collisions (v¼ 0). The two
lines correspond to 45 ¼ 1024 (solid red) and to 46 ¼ 4096 (medium-dashed blue)
electrons. The final temperature is plotted vs the collision rate scaled by the super-
radiant rate: ccol ¼ Ccol=ðNC1Þ. The third line plotted (short dashed green) is the
function exp ð�ln ½10�ccol=½0:5þ ccol�Þ. The lines are nearly indistinguishable.
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dTcav

dt
¼ �CTcav þ NC1ðTc � TcavÞ; (47a)

dTc

dt
¼ �NC1ðTc � TcavÞ þ ðNCbc þ 2CcolÞðTb � TcÞ; (47b)

dTb

dt
¼ �ðCbc þ 2Ccol=NÞðTb � TcÞ; (47c)

where Cbc is from (27), Ccol was discussed in Sec. VIA, Tc is the tem-
perature of the collective mode, and Tb is the temperature of the N� 1
non-collective modes. We have also taken N � 1 and coupled the
cavity to a zero-temperature bath. The electron temperature is
Te 
 Tb. In Fig. 11, we mark the simulation results [solutions to (25),
including the effects of collisions] as a function of frequency spread f
for four different collision rates ccol. We plot the corresponding solu-
tions to the rate Eq. (47) as smooth lines. We see that the rate equa-
tions approximate the cases of pure collisions (f¼ 0) and no collisions
(ccol ¼ 0) very well, but slightly underestimate the cooling rate for
ccol � 0:1 and f > 3.

C. Collisions plus axial motion

We now consider the more realistic scenario of collisions scatter-
ing electrons in three dimensions. We define a scaled axial velocity bj;z
for each electron, following the definition of the transverse
velocities bj. When a collision occurs in the stochastic step, we fix the
magnitude of the scaled velocity b ¼ ðjb� j2 þ b2�;zÞ

1=2 and randomly
rotate its direction with cos ðhÞ chosen from a flat distribution between
�1 and 1 and / chosen from a flat distribution from 0 to 2p.
The parameters after the collision are bj ¼ b sin ðhÞ exp ði/Þ and
bj;z ¼ b cos ðhÞ. This model gave qualitatively similar results to the
two-dimensional model. The main difference is the rate of energy
decrease is somewhat slowed because of the energy now being tracked
in the axial motion.

The rate equations are modeled analogous to (47) with an extra
temperature for the axial motion, Tz. The model we consider only has

one quadratic degree of freedom for the axial motion so the electron
temperature is Te ¼ ð2Tb þ TzÞ=3. This means the change in temper-
ature for the axial motion is twice that for the cyclotron motion. The
equations generalize to

dTcav

dt
¼ �CTcav þ NC1ðTc � TcavÞ; (48a)

dTc

dt
¼ �NC1ðTc � TcavÞ þ ðNCbc þ 2CcolÞðTb � TcÞ; (48b)

dTb

dt
¼ �ðCbc þ 2Ccol=NÞðTb � TcÞ � CcolðTb � TzÞ; (48c)

dTz

dt
¼ 2CcolðTb � TzÞ: (48d)

To account for a different number of degrees of freedom in the axial
motion, one can change the factor multiplying ðTb � TzÞ. The results
of the model and rate equations are shown in Fig. 12 for C� NC1.
As with the collisions that did not account for the axial motion, the
rate equations do an excellent job of reproducing the model but some-
what underestimate the rate for f > 3 for a scaled collision rate
ccol � 0:1.

VII. CONCLUSIONS

We presented a simple oscillator-based model describing the
cooling of a magnetized plasma that is nearly resonant with a micro-
wave cavity mode. Our model reproduces the Purcell effect for a single
electron, showing an enhanced decay rate inside a cavity. The behavior
of the full plasma is governed by ratios of frequency spreads, the
enhanced single-electron rate, and the cavity linewidth. Optimal cool-
ing can be achieved by setting these roughly equal.

We identified several dimensionless parameters that helped cate-
gorize the different regimes of cooling (small detuning, large detuning,
weak cooling). Cooling increases with frequency spread in the small
detuning regime (since having too many electrons exactly resonant
with the cavity mode is disadvantageous due to a collective mode
blocking the decay) and decreases with frequency in the large detuning

FIG. 11. We plot the ratio of final to initial cyclotron energy vs normalized frequency
spread f, including the effects of elastic collisions. We may compare this with
results that ignore collisions, presented in Fig. 2. We illustrate results of four differ-
ent scaled collision rates ccol ¼ Ccol=ðNC1Þ, with markers for ccol ¼ 0 (purple þ),
ccol ¼ 0:1 (green X), ccol ¼ 0:2 (blue �), and ccol ¼ 0:4 (orange square). The lines
are from the rate equation model (47).

FIG. 12. The same as Fig. 11 but for the case where elastic collisions mix in the axial
motion. The final temperature (including Tz) is plotted vs the scaled spread in cyclo-
tron frequency f for four different scaled collision rates ccol ¼ Ccol=ðNC1Þ ¼ 0
(purple þ), 0.1 (green X), 0.2 (blue �), and 0.4 (orange square). The lines are from
the rate equation model (48).
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regime (as too many electrons leave the cavity linewidth). We showed
how simple rate equations can describe the small detuning regime. We
also identified a continuum limit, allowing for plasma simulations
with much fewer macroparticles.

We showed how axial motion can either enhance cooling (by cre-
ating a spread in cavity mode coupling strengths) or hinder cooling
(by washing out the spread in cyclotron frequencies). Axial motion
also provides sidebands, which allow the plasma to cool away from
resonance. Collisions with background neutrals provide an additional
source of dephasing, thus enhancing the cooling (at least in the small
detuning regime).

Our model thus lays out a foundation for the theoretical
understanding of magnetized plasma cooling inside a microwave
cavity.
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APPENDIX A: NUMERICAL SOLUTION

Equation (8) can be solved using the Crank–Nicolson method
or one that uses a higher order Pad�e approximation (order 2, for
example) in the numerator and denominator. We start with (8) in
the form

d~b
dt
¼ �iMðtÞ~b; (A1)

where �iM is the matrix right hand side of (8).
If M is time-independent, then~bðtÞ ¼ exp ð�iMtÞ~bð0Þ. If M is

time-dependent, we can use a sequence of small time steps
~bðt þ dtÞ ¼ exp ð�iMðt þ dt=2Þ dtÞ~bðtÞ to construct the solution.
The Crank–Nicolson method is the lowest order Pad�e approxima-
tion of order 1 in the numerator and denominator,

e�iQ ¼ 1� iQ=2
1þ iQ=2

þ OðQ3Þ; (A2)

with the error term being iQ3=12. This approximation works best
when M is time-dependent. When M is time-independent, we use
the Pad�e approximation of order 2 in the numerator and
denominator,

e�iQ ¼ 1� iQ=2� Q2=12

1þ iQ=2� Q2=12
þ OðQ5Þ

¼ 1� iaQ=2
1þ iaQ=2

� �
1� ia�Q=2
1þ ia�Q=2

� �
; (A3)

with the error term being iQ5=720 and with a ¼ 1þ i=
ffiffiffi
3
p	 


=2.
The second line shows the best way to evaluate this approximation
as two Crank–Nicolson steps.

The Crank–Nicolson step is implemented as follows:

1� iMdt=2
1þ iMdt=2

~b ¼ 2
1þ iMdt=2

~b �~b 	~x �~b: (A4)

The vector~x is obtained by solving a linear equation A~x ¼~b where
the only non-zero elements of A ¼ ð1þ iMdt=2Þ=2 are on the

diagonal and on the edges A0� and A�0. This sparse matrix equation
can be solved as

A00 �
X
�

A0�A
�1
�� A�0

� �
x0 ¼ b0 �

X
�

A0�A
�1
�� b�; (A5a)

A��x� ¼ b� � A�0x0; (A5b)

with the number of operations being of order N. If the equations
are time-independent, various combinations can be calculated and
stored, greatly increasing the speed of the calculation (for example,
the combination A0�A�1�� and the term in parentheses).

When numerically implementing the equations that have adia-
batically eliminated the cavity mode [such as (25)], the matrix solu-
tion of the Crank–Nicolson approximation is still sparse. In this
case, we use the Sherman–Morrison formula (Ref. 27).

APPENDIX B: CONTINUUM LIMIT OF OSCILLATOR
EQUATIONS

Here we derive the continuum limit of the oscillator equations

i _b0 ¼ � Dþ i
C
2

� �
b0 þ

XN
j¼1

bjg
�
j ; (B1a)

i _bj ¼ Dj � i
c
2

� �
bj þ b0gj: (B1b)

We order the oscillators so that Djþ1 > Dj for all j ¼ 1;…;N . Let w
be a continuous detuning variable. We take a lattice of N points in
w such that wj ¼ Dj and define functions bðwÞ and gðwÞ such that
bðwj; tÞ ¼ bjðtÞ and gðwj; tÞ ¼ gjðtÞ. This lets us rewrite (B1) in
terms of w as

i _b0 ¼ � Dþ i
C
2

� �
b0 þ

X
j

bðwj; tÞg�ðwj; tÞ; (B2a)

i
@

@t
bðwj; tÞ ¼ wj � i

c
2

� �
bðwj; tÞ þ b0gðwj; tÞ: (B2b)

The continuum limit N !1 of (B2b) is obtained when the lattice
of points wj becomes dense enough to be replaced with the continu-
ous variable w.

The continuum limit of the sum,

XN
j¼1

bðwj; tÞg�ðwj; tÞ; (B3)

is more subtle. We can multiply and divide by Dwj ¼ wjþ1 � wj
inside the sum,

XN
j¼1

bðwj; tÞg�ðwj; tÞDwj=Dwj: (B4)

We would like to pull 1=Dwj outside the sum so that the limit of
what remains would be a Riemann integral.

Each wj is sampled from the same probability distribution
PðwÞ (

Ð
PðwÞ dw ¼ 1). We can look for an average value of Dwj to

pull out of the sum. Consider a small interval dwj containing wj.
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The average number of points that fall in this interval is approxi-
mately n ¼ NPðwjÞdwj. The average spacing of points is
Dwj ¼ dwj=n ¼ 1=ðNPðwjÞÞ. So 1=Dwj is (on average) NPðwjÞ. This
lets us rewrite the sum as

N
XN
j¼1

bðwj; tÞg�ðwj; tÞPðwjÞDwj; (B5)

which in the large N limit becomes the integral

N
ð
dwbðw; tÞg�ðw; tÞPðwÞ: (B6)

Thus, the continuum limit of the equations (B1) is

i _b0 ¼ � Dþ i
C
2

� �
b0 þ N

ð
dwbðw; tÞg�ðw; tÞPðwÞ; (B7a)

i
@

@t
bðw; tÞ ¼ w� i

c
2

� �
bðw; tÞ þ gðw; tÞb0: (B7b)

We can find the dispersion relation for this system by taking
b0; b � exp ð�iatÞ,

aþ Dþ i
C
2
¼ N

ð
dwPðwÞ jgðw; tÞj

2

a� wþ i
c
2

: (B8)

If we take g ¼ constant and use a uniform PðwÞ ¼ ðdX
ffiffiffiffiffiffiffiffiffi
ð12Þ

p
Þ�1

between D6
ffiffiffi
3
p

dX, we get the dispersion relation

aþ Dþ i
C
2
¼ Njgj2

dX
ffiffiffiffiffi
12
p ln

a� Dþ dX
ffiffiffi
3
p
� ic=2

a� D� dX
ffiffiffi
3
p
� ic=2

 !
: (B9)

TABLE I. Summary of symbols and definitions used for key quantities.

Quantity Symbol Definition

Mode frequency x —
Mode function hðxÞ Acav ¼ mc

e

P
a aahaðxÞe�ixat þ c:c:

Mode volume V
Ð
d3xh�a0 � ha ¼ Vada0a

j’th electron cyclotron frequency Xj Xj ¼ eBextðxjÞ=m
Average cyclotron frequency �X �X ¼

P
j Xj=N

Cyclotron frequency spread dX dX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j ðXj � �XÞ2=N
q

Electron bounce (axial) frequency xb;j —
Average bounce (axial) frequency �xb �xb ¼

P
j xb;j=N

Axial frequency spread dxb dxb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j ðxb;j � �xbÞ2=N
q

Axial frequency full spread cdxb
cdxb ¼

ffiffiffiffiffi
12
p

dxb (uniform distribution)
Cyclotron detunings Dj Dj ¼ Xj � �X
Cavity detuning D D ¼ �X � x
Cavity mode decay rate C (due to resistive effect of the walls)
Cyclotron mode decay rate c (due to coupling to traveling modes)
Spherical basis vectors beþ;0;� be6 ¼ ð6bx � ibyÞ= ffiffiffi

2
p

; be0 ¼ bz
Components of spherical basis vectors v6; vz v6 ¼ be�6 � v ¼ ð6vx þ ivyÞ=

ffiffiffi
2
p

; vz ¼ be�0 � v
Cavity mode amplitudes a; �a; b0; ~b0 �a ¼ ~b0 ¼ aeiDt ¼ b0eðiD�c=2Þt

Cyclotron velocities vj6;�vj6; bj; ~bj �v6 ¼ v6e7i�Xt ; ~bj ¼ e�vj�= xc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mVe0
p	 


¼ bjeðiD�c=2Þt

Cavity coupling parameter gj; g gj ¼ eh�ðxjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mVe0
p

(use g when all gj same)
Single electron frequency shift dx dx ¼ ð4jgj2D=C2Þ=½1þ ð2D=CÞ2�
Single electron decay rate C1 C1 ¼ ð4jgj2=CÞ=½1þ ð2D=CÞ2�
Collective mode decay rate in uniform magnetic field CN CN ¼

C
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4NC1=C

p� �
; 4NC1 < C; CN ¼ C=2; ; 4NC1 > C

Dimensionless quantities s, d~X; ~D; ~C,etc. s ¼ gt; d~X ¼ dX=g; ~D ¼ D=g; ~C ¼ C=g, etc.
Normalized average frequency spacing v; f v ¼ ðd~XÞ~C=N ¼ 4dX=ðNC1Þ ¼ 2f=

ffiffiffi
3
p

Critical frequency spacing vcrit vcrit ¼ ~C
2
=N ¼ 4C=ðNC1Þ

Normalized axial frequency spacing vaxial vaxial ¼ dxb=ðNC1Þ
Collision rate Ccol —
Normalized collision rate ccol ccol ¼ Ccol=ðNC1Þ

APPENDIX C: SUMMARY OF SYMBOLS AND DEFINITIONS
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