
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Numerical study of two-body correlation in a 1D
lattice with perfect blockade

B Sun 1 and F Robicheaux
Department of Physics, Auburn University, Auburn, AL 36849, USA
E-mail: bzs0006@auburn.edu

New Journal of Physics 10 (2008) 045032 (10pp)
Received 29 October 2007
Published 30 April 2008
Online athttp://www.njp.org/
doi:10.1088/1367-2630/10/4/045032

Abstract. We compute the dynamics of excitation and two-body correlation for
two-level ‘pseudoatoms’ in a one-dimensional (1D) lattice. We adopt a simplified
model where pair excitation within a finite range is perfectly blocked. Each
superatom is initially in the ground state, and then subjected to an external
driving laser with Rabi frequency satisfying a Poissonian distribution, mimicking
the scenario in Rydberg gases. We find that two-body quantum correlation
drops very fast with the distance between pseudoatoms. However, the total
correlation decays slowly even at large distance. Our results may be useful to
the understanding of Rydberg gases in the strong blockade regime.

Recently, there have been many experimental efforts in investigating Rydberg gases [1]–[7],
spurred largely by fast developments in laser cooling and trapping. In such systems, the
dipolar interaction between two nearby atoms will shift the pair excitation out of resonance
with the driving laser. Local excitation is then greatly suppressed, showing the well-known
phenomenon of dipole blockade. It is an important mechanism responsible for the explanation
of many-body effects such as spectral line broadening [1, 2] and the expected sub-Poissonian
atom counting statistics [4, 8, 9]. It is also proposed to utilize dipole blockade to implement
quantum gates useful in quantum computation and information [10, 11]. To date, there have
been many theoretical proposals and numerical simulations in exploring the excitation dynamics
and coherence properties such as pair correlation and number correlation, which demonstrate
the important role that dipole blockade played in these systems.

Previous investigations of Rydberg gas have focused on the mean number of excitations
and how the excitations are correlated in a gas. However, there has not been a study of genuine
quantum correlation. This paper will discuss other useful information that can be extracted from
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Figure 1. A schematic view of partitioning 3 superatoms into 9 pseudoatoms.
Eachvk (k = 1,2,3) represents a superatom which is further divided into 3
pseudoatomswk,α (α = 1,2,3).

the wavefunction, especially the two-body quantum correlation and total correlation (including
classical correlation). As we will see later, two-body correlation is another important quantity
for characterizing such systems. To investigate correlation properties, we are mainly interested
in the following two questions. Firstly, in such systems, how does correlation behave as the
excitation begins to build up? Secondly, which correlation is more important? It has been shown
that a mean field approach is not appropriate in dealing with correlation and a full quantum
calculation is necessary [12]. However, the direct simulation of correlation is still absent due to
numerical complexities in real Rydberg gases.

We first consider the scenario as in current experiments where Rydberg atoms are confined
in a volumeV and driven by a laser. In the spirit of the dipole blockade model, we can divide
V into equally sized regionsV = ∪kvk with each region approximated as a sphere of blockade
radius Rb. We follow the usual notation and call the ensemble of atoms in each regionvk a
‘superatom’ [13]. For van der Waals interaction and a narrow band laser,Rb is determined from
C6/R6

b =�, whereC6 is the van der Waals coefficient in the atomic unit and� is the Rabi
frequency of the driving laser. Rydberg atoms are randomly distributed inV so that the number
of atoms in eachvk is in general different. For example, in the homogeneous case, the atom
numbers in each superatom follow a Poissonian distribution with the same mean atom number.
Such a picture is useful in explaining certain experimental results, e.g. the population dynamics
under a driving laser. In this case, each superatom evolves with different Rabi frequencies. This
leads to a fast and almost linear increase in the initial stage and saturation in the long time. How-
ever, such a model is not so interesting in showing the two-body correlation properties because
correlation between different superatoms is apparently 0. Therefore, a proper modification to the
superatom model is necessary in order to give nontrivial information on two-body correlation.

In this paper, we discuss an elongated Rydberg gas whose transverse size is smaller than
Rb. This allows us to treat the Rydberg gas as a quasi-one-dimensional (1D) system. The advan-
tage is twofold. On the one hand, the edge effect in numerical simulation is smaller and the
results converge relatively faster than those in higher dimensions with the same atom number.
On the other hand, it permits an easier readout of the quantum state for an ensemble of atoms in
any region along the longitudinal direction. Similar to the 3D case, we divide such a quasi-1D
gas into a collection of superatoms aligned along the longitudinal direction. We investigate the
two-body correlation by further dividing each superatom (vk) into smaller subregions labeled as
wk,α, i.e.vk = ∪

Nw

α=1wk,α. The center ofwk,α is denoted asrk,α. The number of partitions in each
vk, labeled asNw, is assumed the same,∀k. For the interest of this paper, we term each subregion
wk,α as a ‘pseudoatom’ located at positionrk,α. In figure1, we give a schematic view of parti-
tioning three superatoms into nine pseudoatoms. The subscriptsk andα can be further combined
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into a single one by relabeling them as in a spin chain. Interaction between two pseudoatoms
on sitesj andk are assumed to be a van der Waals interaction with the distance|r j − rk|. This
approximation neglects the position variance of excitation in each pseudoatom. By partitioning
each superatom into more pseudoatoms, the error can be reduced. Different from the case of
nearest neighboring superatoms (with a distance 2Rb), where the interaction is usually ignored,
we can see that nearest neighboring pseudoatoms (with a distance of a fraction ofRb) interact
much more strongly so all of the pseudoatoms are correlated analogous to a spin chain.

Due to theR−6 dependence of interaction, the transition from blockade to no blockade
has a narrow width ofR. This gives us the motivation to assume a perfect blockade with
pseudoatoms within a certain distance and completely no blockade outside it. From the many
body point of view, the introduction of this approximation allows us to concentrate on the much
simpler short-range interaction rather than the long-range interaction. It not only lets us see
the effect due to pure blockade, but also greatly reduces the needed basis which makes the
numerical simulation in a much larger system possible. The validity of this approximation will
be discussed in the later part of this paper. Because of this type of partition for a superatom, the
maximal number of pseudoatoms that can be blocked is just the maximal distance between two
pseudoatomsj andk which have an interactionVj,k much larger than the Rabi frequency�, i.e.
maxj,k{ j − k|Vj,k/� > η}. Besides the vagueness of this definition, in practice we chooseη = 6.
A little algebra shows that the maximal number of pseudoatoms that can be blocked is given
by maxk=0,1,2...{k|k< 0.37Nw}. The first few values are given here: forNw = 2,3,4,5,6, . . .,
the maximal number of pseudoatoms that can be blocked is found to be 0,1,1,1,2, . . .,
respectively. So the simplest nontrivial situation starts fromNw = 3, perfect blockade only
between two nearest neighboring pseudoatoms. In this paper, we will limit our discussion to
the situation where perfect blockade only exists between two nearest neighboring pseudoatoms.

Because of our approximation, the Hamiltonian can be written asĤ =
∑N−1

k=0 Jk

P̂(k)σ̂ (k)x P̂(k), with the projector

P̂(k)
≡

∏
q=k±1

1− σ̂ (q)z

2
, (1)

whereN is the total number of pseudoatoms.Êσ
(k)

are Pauli matrices for thekth pseudoatom.
Jk =

√
Xk/λ is the scaled Rabi frequency for thekth pseudoatom. We are assuming a resonant

laser field with a constant intensity.Xk is a random variable satisfying a Poissonian distribution
with mean valueλ. In this case,λ denotes the average number of Rydberg atoms in a
pseudoatom. More explicitly,λ= Nr/Nw with Nr the number of Rydberg atoms in a superatom
which can be determined from the Rydberg gas densityn, the blockade radiusRb and the area
in the transverse directionA through the relationNr = 2nRbA. The underlying motivation
for the assumed form ofJk is the number fluctuation and the collective excitation in each
pseudoatom [6]. A given set of{J0, . . . , JN−1} is said to define a configuration. Our numerical
results are obtained by averaging over many configurations. We note that the Hamiltonian
formally describes a nonphysical multi-body interaction, which is of course an effective
Hamiltonian constrained by the perfect blockade requirement. All the pseudoatoms are initially
in the ground state|g〉

⊗N, and then subjected to a resonant external laser field. The subsequent
dynamics constrained by the perfect blockade are what we are after in this paper.

For nearest neighboring blockade, the maximally possible excitation for all pseudoatoms is
found to be [N/2] where [· ] denotes the integer part. As a consequence, the number of restricted
basis,Nb, is significantly reduced from that of the full basis set. To compute the wavefunction,
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Figure 2. Excitation fractionPex as a function of time for differentλ. The inset
shows an enlarged version of initial dynamics.

we expand it in the restricted basis labeled as|µp〉, i.e.

ψ(t)=

Nb∑
p=1

cp(t)|µp〉, (2)

the fraction of excitation is found to be

Pex(t)=
1

N

Nb∑
p=1

|cp(t)|
2
〈µp|

N−1∑
k=0

|e〉k〈e||µp〉. (3)

In figure2, we show the numerical results of excitation fraction as a function of time for
pseudoatom numberN = 16. The results are obtained by using wrap boundary condition and
averaging over 1000 different configurations of{Jk}. We can see that the overall trends of the
curves for differentλ are similar. In all cases,Pex first increases almost linearly and overshoots to
a maximal value, then oscillates and saturates to about 26%, close to the expected value (25%).
It comes from the fact that for two pseudoatoms with perfect blockade, the wavefunction should
behave like cos(J t)|gg〉 + sin(J t)(|eg〉 + |ge〉)/

√
2, so the total time-averaged excitation for one

pair of pseudoatoms is 50%, i.e. 25% for each pseudoatom. It is also obvious that the larger
λ, the less fluctuation inJk, so that we can observe more oscillations. Forλ= ∞, when there
is no fluctuation at all, the oscillation period can be estimated from analyzing the spectrum of
the Hamiltonian. Labeling the eigenvalues and the corresponding eigenstates asEα and |Eα〉
(α = 1,2, . . . , Nb) respectively, we find that there exists a nearly periodic structure in the plot
of |〈ψ(t = 0)|Eα〉|2 versusEα. In this case,Pex does not saturate to a fixed value forN = 16
pseudoatoms.

The excitation fraction of a physical Rydberg gas can be qualitatively obtained by the
mean field approach [3], which is essentially a reduction to the single-atom picture. However,
the two-atom correlation, where the off-diagonal terms of the density matrix are important,
cannot be simply accounted for from the mean field approach. In the following, we will focus on
correlation properties of a reduced two-pseudoatom subsystem from a full quantum mechanical
calculation.
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Figure 3. Pair correlationPee as a function of distance for differentλ. Solid lines
are a guide to the eye.

The first quantity we will look into is the pair correlation,Pee, at saturation time, which
is defined as the ratio of the probability of both pseudoatoms excited divided by the square
of probability of single-pseudoatom excitation [12]. In figure 3, we showPee as a function of
distance for differentλ. Compared with the results in [12] (see figure2) which uses a continuous
model, our results captures the main physics in a much simpler way. We can see that for both the
discrete and continuous model,Pee exhibits similar behavior: it is negligible within a distance
and there is a sharp increase after that; at large distance, it saturates to 1, corresponding to
no correlation. For all threeλ in our calculation, the next to nearest neighbor always has the
largest value. This can be interpreted as follows. Assuming the index of the first pseudoatom to
be 0, the separationd is simply the label of the other pseudoatom.Pee for d = 1 is 0 because
pseudoatom 1 cannot be excited once pseudoatom 0 is excited. Ford = 2, Pee is well above 1.
This is because if pseudoatom 0 is in the excited state, then pseudoatom 1 must be in the ground
state. Thus pseudoatom 2 is more likely to be in the excited state. Similarly, pseudoatom 3 will
be less likely in the excited state, resulting in a value lower than 1. The fast approach to 1 at
large distance means that such pair correlation is only short range. We do not present the result
for λ= ∞ due to the non-negligible oscillation even at long enough time.

While the above pair correlation only relies on the diagonal elements of the reduced
two-body density matrix, the genuine quantum correlation must be computed from the full
reduced two-body density matrix. We use entanglement of formation (EOF) as our measure for
quantum correlation [14]. It is related to the so-called concurrence,C = max(0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4), whereλi are the eigenvalues of a Hermitian matrix,R ≡

√
ρ(σy ⊗ σy)ρ

∗(σy ⊗

σy)
√
ρ, in descending order. EOF (ε) is then given byε = h((1 +

√
1− C2)/2), whereh(x)=

−xlog2(x)− (1− x)log2(1− x). ε gives 0 for separable states and 1 for maximally entangled
states.

In figure 4, we show EOF for pseudoatom pairs(0,1) for differentλ. We find thatε(0,1)

shows a similar pattern to the excitation fraction. During the same timescale, they approach
a maximal value and then decay slowly. This reflects two simple facts, that entanglement
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Figure 4. EOFε as a function of time for differentλ. The inset shows an enlarged
version of initial dynamics.
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Figure 5. ε as a function of time for different pairs withλ= 3.

originates from excitation and it is superposed coherently in the initial stage. The behavior of
entanglement for other pairs is shown in figure5. We can see that they again behave in a similar
way, although the first peaks are offset in time.

To investigate how entanglement varies with the distance between pseudoatoms, we use
the first peak of EOF for different pairs to characterize its dependence on the distance. Our
results are shown in figure6. We note that EOF drops almost exponentially as the distance
increases for allλ. Thus, we emphasize an important point here: only nearest neighboring
pseudoatoms have relatively large entanglement. Entanglement of other pseudoatom pairs
is negligible during the full timescale we investigate. This is consistent with our intuitive
understanding that there is no long-range order in such systems.
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Figure 6. The first peak of EOF as a function of distance for different pairs. Solid
lines are a guide to the eye.
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Figure 7. Total correlation of pair(0,1) as a function of time for differentλ. The
inset shows an enlarged version of initial dynamics.

We can see that quantum correlation is significant only for nearest neighboring
pseudoatoms. However, this is not the case for the total correlation (including classical
correlation). To compute the total correlation, we adopt the measure as suggested by Zhou and
You [15]. For density matrixρ(12) of pseudoatoms 1 and 2, it is given by

Mc =
2
3Tr|ρ(12) − ρ(1) ⊗ ρ(2)|, (4)

whereρ(k) is the reduced density matrix of thekth pseudoatom. Different from [15], here the
prefactor 2/3 is chosen so that this measure gives 1 for a maximally entangled state.

In figure 7, we show the total correlation as a function of time for differentλ. We again
see that they show a similar pattern to EOF. To investigate the distance dependence of total
correlation, we show the first peak value of total correlation in figure8. We can see that total
correlation does not drop like a single exponential function with distance as in EOF. Rather
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Figure 8. The first peak value of total correlation as a function of distance.
Marked curves are forN = 16 with correspondingλ shown in the legend.
Unmarked curves are forN = 20 with the lower (dashed) and upper (dotted)
curves corresponding toλ= 3 and 48, respectively.

interestingly, it does not even decrease monotonically with increasing distance. A simulation
with N = 20 atoms shows similar behavior with distance. We find that they give almost identical
results for several initial distances. However, close to the middle point of the lattice (distance
N/2), those values ofN = 20 have correspondingly lower values thanN = 16. Therefore, such
non-monotonicity will become negligible forN → ∞, i.e. a finite size effect. We conclude
that although quantum correlation is not important in most cases, the total correlation cannot
be simply ignored, i.e. there is non-negligible classical correlation in such systems. It is
necessary to include not just nearest neighboring pseudoatoms when considering correlation-
related properties.

The extension of our results to higher dimensions seems difficult due to the computational
limitation. For 2D configurations and nearest neighbor blockade, we can only simulate up to
5× 5 square lattice. Without presenting more figures, we briefly discuss our results. Our major
results for 1D still hold in 2D configurations. We find that EOF shows similar patterns but drops
even faster as distance increases. This is possibly due to the fact that in 2D, as more neighboring
pseudoatoms are involved, the fluctuation is more intensive than that in 1D. In addition, the
corresponding pair entanglement is found to be smaller than that in 1D. Thus, we conjecture
that the pair entanglement is even smaller in a 3D cubic lattice.

Before concluding, we want to justify the validity of our simplified Hamiltonian. We
will show that the fast decay of entanglement with distance is not an artifact of the assumed
short-range interaction. To confirm this point, we carry out simulations using the long-range
interaction,

Ĥ ′
=

∑
k

Jkσ̂
(k)
x +

∑
j<k

D

| j − k|6

1 + σ̂ ( j )
z

2

1 + σ̂ (k)z

2
, (5)

where Jk takes the same form as in the Hamiltonian̂H . The dimensionless parameterD
quantifies the interaction strength between two nearest neighboring pseudoatoms. Because we
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Figure 9. εmax as a function of distance forNw = 5 with nearest neighboring
blockade.
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Figure 10. Mc,max as a function of distance forNw = 5 with nearest neighboring
blockade.

always use the distance between two nearest neighboring pseudoatoms as the length scale,
D also depends onNw, i.e. the decrease in the distance is equivalent to the increase in the
interaction strength. We carry out similar calculations by using the full basis ofĤ ′. Selected
results forNw = 5 with nearest neighboring blockade are shown in figures9 and10, for εmax

and Mc,max as a function of distance, respectively. We find that the main features by usingĤ ′

are qualitatively reproduced by the simplified HamiltonianĤ , which leads us to conclude that
the behavior of entanglement with distance is not an artefact of short-range interaction in the
simplified HamiltonianĤ . And for the total correlation, the overall shape of the curves remains
the same. More importantly, the total correlation does not drop as fast as entanglement with
distance, which provides further evidence that our simplified model captures the main physics.
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We emphasize that this calculation not only justifies our simplified model, but also means that
those effects in figures6 and8–10are mostly due to blockade, which shows that the long-range
interaction is actually not so important to correlation properties.

In conclusion, we have performed full quantum calculations on correlation properties for
pseudoatoms in a 1D lattice structure with perfect blockade. By comparing the results from a
reduced basis and a full basis calculation, we justify the validity of the simplified Hamiltonian
for perfect blockade among pseudoatoms. This agreement also means that single- and two-
particle correlation properties (e.g. average excitation and correlation) are determined mostly
by the pure blockade effect. From numerical simulation, we find that there are both quantum
and classical correlations accompanying the building up of atomic excitation. Our results show
that two-body entanglement is only important for nearest neighboring pseudoatoms and it drops
exponentially fast with the distance between them even when there is no fluctuation in the
system. However, the total correlation decays much more slowly with distance, showing the
system in this paper is mostly classically correlated. As a simple extension to higher dimension,
we compute our model system in a 2D 5× 5 square lattice. We find 2D results agree qualitatively
with those of 1D. From the theoretical point of view, our findings imply that a better description
of Rydberg gas beyond the mean field or superatom picture should also at least take classical
correlation into consideration. We hope that our study can be helpful to the understanding of
Rydberg gases in the strong blockade regime.
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