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Abstract
The physics that determines the line shape of the 1S–2S transition in magnetically trapped H̄
is explored. Besides obtaining an understanding of the line shape, one goal is to replace the
dependence on large scale simulations of H̄ with a simpler integration over well defined
functions. For limiting cases, analytic formulas are obtained. Example calculations are
performed to illustrate the limits of simplifying assumptions. We also describe a χ2 method for
choosing experimental parameters that can lead to the most accurate determination of the
transition frequency.
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1. Introduction

One of the main goals of the ALPHA collaboration has
been to measure the 1S–2S transition in antimatter hydrogen,
H̄ [1, 2], with an accuracy comparable to that in normal mat-
ter H [3]. The motivation is to compare these two values as
a test of the CPT theorem [4]; one consequence of the CPT
theorem is that the transition frequencies of H̄ and normal
hydrogen should be identical. The frequency in normal mat-
ter H is known to an accuracy of a few Hz [3]. Currently, this
transition frequency is known to an accuracy of a few kHz in
H̄ [2] which is an excellent achievement considering the small
number of H̄ in the experiment and the fact that the transitions
occur in a magnetic trap which shifts the H̄ energies.

The transition frequency in the ALPHA experiments is
obtained by comparing the measured line shape to that
obtained from a large scale simulation of the H̄ trajectories
in the modeled magnetic fields. The trajectories are needed to
understand the positions where the H̄s cross the 243 nm beam

∗ Author to whom any correspondence should be addressed.

and their velocities when crossing. This information is used to
solve for the time dependence of the H̄ electronic states which
is used to compute the transition probability for each cross-
ing. A Monte Carlo sampling of the trajectories then gives the
transition probability and the probability the transition can be
detected. This simulation is a necessary, but somewhat opaque,
step in the comparison of the measured 1S–2S line shape to
what is expected assuming CPT. It is likely that the next gen-
eration of experiments will lead to data giving an accuracy of
a few 100 Hz or better. A few obvious changes will lead to
this improved accuracy: smaller power for the 243 nm laser
to reduce the AC Stark shift, larger 243 nm waist to decrease
transit broadening, colder H̄ [5, 6] to decrease transit broad-
ening, and more H̄ to decrease the statistical error bars on the
line.

The purpose of this paper is to examine the physics that
determines the line shape of the 1S–2S transition in mag-
netically trapped H̄. One of the goals is to clarify the role
different properties of the H̄ play in the line shape. Another
goal is to explain most aspects of the line shape using ana-
lytic formulas that arise in simplified limits and to show how
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the large scale simulations approach these analytic formulas.
A final goal is to explore a χ2 method for predicting how
choices for experimental parameters affect the uncertainty in
the frequency measurement.

This paper is organized as: section 2 contains a descrip-
tion of the basic physics determining the line shape, section 3
contains a description of how to calculate the transition prob-
ability for one H̄ crossing of the 243 nm beam, sections 4 (5)
contain descriptions for the line shape when the shifts of the
frequency due to a change in the magnetic field are not (are)
included, section 6 contains a description of a method for using
χ2 to choose the experimental parameters that would give the
most accurate frequency determination, and section 7 contains
a summary of the results.

2. Basic physics of the 1S–2S transition

2.1. Excitation

The two photon absorption from counter-propagating laser
beams gives a transition from the 1S to the 2S state with no
first order Doppler shift. Because the lifetime of the 2S state
in zero electric and magnetic fields is 1/8.2 s, external factors
(e.g. laser waist and power, H̄ temperature, magnetic fields,
etc) mainly determine the line shape of the 1S–2S transition.
This section sketches how to incorporate these effects.

We assume that a Gaussian beam well approximates the
light in the trap. If this assumption is violated, most of the ana-
lytic results below will no longer be accurate, but the results
from solving the optical Bloch equations can incorporate dif-
ferent laser shapes. For a description of a Gaussian beam, we
will take the z direction to be along the beam with the x, y direc-
tions perpendicular to the beam. The intensity at the center of
one beam is I0 = 2P0/(πw2

0) where P0 is the power in the beam
and w0 is the beam waist. The position dependent intensity for
a single Gaussian beam is

I(r, z) = I0[w0/w(z)]2 exp[−2r2/w2(z)] (1)

w2(z) = w2
0(1 + z2/Z2

R), (2)

where r2 = x2 + y2 and the Rayleigh range ZR = πw2
0/λ.

For the 1S–2S transition, λ = 243 nm. For counter-
propagating beams, the electric field at a position r, z is
E = E0[w0/w(z)] exp[−r2/w2(z)] cos[φ(r, z) + δ] cos(ωLt)
which has the form of a standing wave; the spatial phase
dependence, φ(r, z), is not relevant for our results. The
relationship between E0 and the one beam maximum intensity
is E2

0 = 8I0/(ε0c).
The theory for this transition has been discussed in sev-

eral places; we will follow the treatment in reference [7]. The
coupling of the 1S and 2S states proceeds through a virtual
transition to the bound nP and continuum E p-states. After adi-
abatically eliminating the p-states, the equations governing the
two-photon coupling between the 1S and 2S states are

dC1S

dt
=

ξE2
0w

2
0

ih̄w2
e−2r2(t)/w2

e−i(E2S−E1S−2 h̄ωL)t/ h̄C2S (3)

dC2S

dt
=

ξE2
0w

2
0

ih̄w2
e−2r2(t)/w2

ei(E2S−E1S−2 h̄ωL)t/ h̄C1S, (4)

where ωL = 2π f L is the angular frequency of the laser with
f L the laser frequency and E2S − E1S is the energy difference
between the 1S and 2S states at the position of the crossing.
We will use f in all expressions for frequency. Instead of com-
puting ξ by summing over the infinite number of nP states
and integrating over the continuum E p-states, we perform the
calculation with the atom inside a spherical box so that the
number of negative energy states is finite and the continuum
is discretized. If the radius of the box is sufficiently large, ξ is
independent of the value of the radius. The parameter ξ is

ξ = −e2

8

∑
n

D2S,nPDnP,1S

EnP − E1S − h̄ωL
� 12.3ε0a3

0, (5)

where a0 is the Bohr radius, D2S,nPDnP,1S =
∑

m〈2S|
r|nPm〉 ·
〈nPm|
r|1S〉, with m the azimuthal quantum number, and e is
the electric charge. The numerical value was obtained by per-
forming the sum using nP states whose radial wave function is
zero at 30a0.

There are several effects that are missing from these
equations which will be added or discussed below. The main
missing effects are: the AC Stark shift which arises because the
1S and 2S states have different AC polarizabilities, the second
order Doppler shift proportional to the kinetic energy over the
rest energy of the H̄, ionization of the 2S state by a third pho-
ton, radiative decay from the 2S state, mixing of the 2S and 2P
states due to the v × B effective electric field, etc.

The transition frequency depends on the spin coupling of
the positron and antiproton and the magnetic field. The 1Sc,
2Sc states have total angular momentum 0 in the B-field direc-
tion while the 1Sd, 2Sd states have the two spins antiparal-
lel to the B-field direction. Because the 1Sc–2Sc transition
has a ∼ 10× larger variation with B when B ∼ 1 T, we will
restrict the examples to the 1Sd–2Sd transition. The change in
frequency with B is given by [7]

d
dB

E2S − E1S

2h
=

(
1
2

186.071+ 387.678 B

)
kHz (6)

for B in Tesla. The second term is from the diamagnetic term
in the Hamiltonian and causes, at larger B, a larger variation of
the transition frequency with B.

Another shift can occur due to a v × B effective electric
field causing an interaction of the 2S with the 2P states. Using
equation (43) of reference [7], this shift is

ΔE2S/h ∼ 0.041 v2
⊥ Hz (7)

when B ∼ 1 T and the perpendicular velocity, v⊥, is in m s−1.
For a H̄ with a perpendicular kinetic energy of 50 mK, this
shift corresponds to ∼ 40 Hz which is negligible for the next
level of accuracy in ALPHA experiments. This shift can be
decreased by cooling the H̄s.

2.2. Detection

There are several processes that lead to transitions out of the
2S state which can be used to detect the excitation. Ordinary
matter experiments [3] detect photons emitted after excitation
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to the 2S state. Detecting emitted photons is probably unfea-
sible for H̄ which is trapped in a long tube. Therefore, other
processes are important for detection of the 1S–2S transition
in the ALPHA experiments.

Two processes are presumed to dominate the detection in
experiments reported previously [1, 2]. The first is ionization
of the 2S state by a third 243 nm photon. This can occur dur-
ing the excitation process itself or when an excited H̄ recrosses
the 243 nm beam at a later time. The second is when the v × B
effective electric field causes mixing with 2P states where the
positron has the untrapped spin orientation. This allows a one
photon emission back to the ground state into magnetically
untrapped 1S states. Both of these processes result in annihila-
tion on the trap wall as the detection step. Unfortunately, both
depend on the perpendicular speed of the H̄ to some extent
which affects the measurement of the transition line shape.
However, we will argue below that future experiments should
use substantially lower 243 nm laser power and colder H̄s to
achieve higher precision in the frequency measurement. In this
case, neither of these mechanisms will be effective: the ion-
ization is proportional to the laser power and the spin flip is
proportional to the temperature.

One possibility is to impose a weak electric field which
would cause mixing between the 2S and 2P states. This can
lead to a spin flip after a one photon decay back to the ground
state. If the electric field were larger than |v × B|, then the
decay would be relatively independent of the H̄ position and
velocity distribution. Another possibility is to stimulate transi-
tions from the 2S to the 2Pf state using microwaves. The 2Pf
state has a large probability to decay to untrapped 1S states
which lead to annihilation on the trap walls. Microwave inten-
sity of ∼ 0.01–0.1 mW cm−2 would be sufficient to make it
the dominant decay process. More importantly, the transition
rate will be nearly independent of the H̄ velocity and position
distribution. Only when the H̄ travels to regions of higher B-
field will the transition rate change because the frequency of
the microwave transition depends on B. However, most of the
H̄ trap has nearly the same B-field which is why this transition
will not strongly depend on the H̄ distribution. Thus, a benefit
of both detection methods is that the transition line shape is
not distorted by the detection process.

3. Transition probability for one beam crossing

In this section, we give the expressions for the probability for a
transition into the 2S state when the H̄ crosses a Gaussian beam
of intensity I(z). Because the beam has a finite width, there is a
finite time for the H̄ to cross the beam, leading to a line width
(transit broadening) roughly the inverse of the time to cross
the beam. The material in this section briefly summarizes the
derivation in reference [7].

3.1. Perturbative expression

When the laser is weak enough, saturation of the transition, the
AC Stark shift, and ionization out of the 2S state are negligible
effects. If the atom crosses the laser beam quickly enough, the
radiative decay of the 2S state can also be neglected. In this

Figure 1. Schematic of the excitation out of the trappable 1S-state
|1〉 into the trappable 2S-state |4〉. The 2S-state population can
decay by photon emission into the 1S-states and by absorption of a
third 243 nm photon into the p-continuum, |3〉.

case, setting C1S = 1 in equation (4) is a good approximation
and an integral over time will give the amplitude to transition
to the 2S state.

We are interested in the case where the beam waist is much
smaller than the scale over which the magnetic and electric
fields vary substantially. This will lead to a position dependent
detuning which we define through h̄Δ ≡ 2h̄ωL − (E2S − E1S)
with the 1S and 2S energies evaluated at the point where the
H̄ crosses the beam. Given these conditions, the H̄ will have
nearly constant velocity so that r2(t) = b2 + v2

⊥t2 with b the
distance of closest approach to the beam axis and v⊥ the mag-
nitude of the velocity perpendicular to the beam axis. The
resulting integral is the Fourier transform of a Gaussian which
leads to the probability for a transition:

|C2S|2 � 32π
ξ2I2

0

h̄2ε2
0c2

w4
0

w2v2
⊥

e−4b2/w2
e−[2πwΔ f /v⊥]2

, (8)

where Δ f = f L − f 0 with f 0 = (E2S − E1S)/(2h) and the
waist, w, evaluated at the distance of closest approach. In
all expressions, the z dependence of the intensity and waist,
I(z),w(z) in equations (1) and (2), will not be explicitly writ-
ten for notational convenience. If the laser has a substantial
linewidth, this expression needs to be convolved with the fre-
quency distribution of the laser as in equation (32) of reference
[7]. We will assume this is a small fraction of the width due to
the finite crossing time and not include the linewidth of the
laser below.

3.2. Optical Bloch equation

In the previous section, we made several assumptions that
could affect the line shape. This section will give the equations
that can be solved for a more accurate calculation of the tran-
sition probability. We follow the derivation of reference [7] by
using the density matrix formalism to describe the evolution
of the electronic states of the H̄, figure 1. We only include
four states in this treatment: |1〉 is the low field (trappable) 1S
state which initially has 100% of the population, |2〉 is a high
field (untrappable) 1S state which can be produced in decays
from the 2S state, |3〉 represents photo-ionization which results
when the 2S state absorbs a third photon, and |4〉 is the low field
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(trappable) 2S state which is reached in the two photon transi-
tion from the 1S state. Properly speaking, |3〉 is not a state but
a continuum of states, Ep; approximating photoionization as
decay to a single state can be used because we are only inter-
ested in the total population of ionized atoms and it only enters
the density matrix equation through decay terms.

The density matrix equations are written in Lindblad form

dρ̂
dt

=
1
ih̄

[Ĥ, ρ̂] + L(ρ̂) (9)

which leads to the following equations for the non-zero matrix
elements of ρ̂:

ρ̇11 = − i
2
Ω14(t) (ρ41 − ρ14) + Γ41ρ44

ρ̇22 = Γ42ρ44

ρ̇33 = Γ43ρ44 (10)

ρ̇44 = − i
2
Ω14(t) (ρ14 − ρ41) − Γρ44

ρ̇14 = − i
2
Ω14(t) (ρ44 − ρ11) +

(
−iΔAC − 1

2
Γ

)
ρ14,

where ΔAC = Δ− 2πΔ f AC(t) and ρ41 = ρ∗14 determines the
last non-zero element. The Γ4i are the decay rates to the dif-
ferent final states, Γ is the sum of these rates, and Ω14 is the
two-photon Rabi frequency. The two beam AC Stark shift
frequency for the 1S–2S transition is

Δ f AC(t) = 2I e−2r2(t)/w2
1.67 Hz, (11)

where I is the intensity of one beam at z and r = 0 in
W cm−2 and the factor 1.67 Hz is from reference [8]. For
two counterpropagating 1 W beams with 200 μm waist, the
Δ f AC ≈ 5 kHz. The two photon Rabi frequency is

Ω14(t) =
16ξI
h̄ε0c

e−2r2(t)/w2
. (12)

The total decay rate of the 2S state is Γ = Γ41 + Γ42 + Γ43

where Γ41,Γ42 is the radiative decay rate into the trapable and
untrapable 1S states, respectively; see reference [7] for these
decay rates. If a microwave or static electric field is causing
transitions from the 2S to the 2P states, then the Γ41,Γ42 will
be increased by factors depending on the strength and detuning
of the microwaves or the strength and direction of the electric
field. Finally, the ionization rate out of the 2S state is

Γ43 = I e−2r2(t)/w2
7.57 s−1, (13)

where I is in W cm−2 and the 7.57 was determined by numer-
ically solving for the photo-ionization cross section out of the
2S state from 243 nm photons. For two counterpropagating
1 W beams with 200 μm waist, the Γ43 ≈ 2π4 kHz.

In the calculations below, we numerically solve the den-
sity matrix equations using I(t) and r(t) for individual atom
trajectories.

4. Line shape: no magnetic or electric fields

In this section, we give results when the shifts in transition
frequency due to external E- and B-fields are ignored. The
perturbative transition rate can be analytically calculated for
a thermal distribution of H̄ velocity as well as for an equal dis-
tribution of velocities within a sphere in velocity space. The
perturbative transition rate can be reduced to a single integral
when the distribution only depends on the H̄ kinetic energy.

4.1. Perturbative result

For this section, we use the perturbative calculation of the tran-
sition probability for one beam crossing, equation (8), as the
starting point. We then average over the H̄ positions and veloc-
ities to get the rate for transition into the 2S state. To simplify
the notation, we will combine the terms in the probability that
do not contain v⊥ or b into

A ≡ 32π
ξ2I2

0

h̄2ε2
0c2

w4
0

w2
. (14)

The rate that H̄s pass the beam with a distance between b
and b + db is

F = ρ2Dv⊥2 db, (15)

where the ρ2D is the two-dimensional H̄ density and the 2 arises
because the H̄ can pass on either side of the beam for a given
direction v̂⊥. The probability distribution for finding an H̄ with
a perpendicular speed between v⊥ and v⊥ + dv⊥ will be called
v⊥D(v⊥)dv⊥.

The rate of H̄s transitioning from the 1S to the 2S state
divided by the two-dimensional H̄ density is

G = 2A
∫ ∞

0
e−4b2/w2

db
∫ ∞

0
D(v⊥)e−[2πwΔ f /v⊥]2

dv⊥

=
Aw

√
π

2

∫ ∞

0
D(v⊥)e−[2πwΔ f /v⊥]2

dv⊥. (16)

Note that the G has units of area/time.
We note that this expression is somewhat problematic for

small Δ f because the perturbation calculation of the transi-
tion probability has a factor of 1/v2

⊥ which can cause |C2S|2 to
be larger than 1 for small Δ f which is impossible. Thus, the
perturbative calculation of the line shape will be inaccurate for
small detuning. The range of detuning where the line shape is
inaccurate decreases as the intensity decreases.

4.1.1. Thermal distribution. The results in this section repro-
duce those in reference [9] for the special case of equal inten-
sity in the counter-propagating beams. The distribution of v⊥
for a thermal distribution is Dth = (2/v2

th) exp(−v2
⊥/v

2
th) with

v2
th ≡ 2kBT/M with T the temperature and M the mass of the

H̄. The thermal transition rate into the 2S state is

Gth =
Aw

√
π

v2
th

∫ ∞

0
exp

[
−v2

⊥
v2

th

− (2πwΔ f )2

v2
⊥

]
dv⊥

=
πAw
2vth

e−| f L− f 0|/φ, (17)
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where φ = vth/(4πw) which gives a linewidth proportional to
vth/w as expected (although the exponential of the absolute
value of the detuning is an interesting functional form).

Because the perturbative calculation is problematic for
small detuning, we expect the transition rate to be modified
for f L � f 0. Therefore, the discontinuous change in slope of
Gth( f L) with respect to the laser frequency will be modified for
the actual transition.

When the H̄s are in a trap, the v⊥ distribution, D(v⊥),
must exactly go to zero for energies that can escape the trap.
Therefore, the thermal distribution will only be relevant for
kBT much less than the trap energy. For the reported ALPHA
experimental results, the H̄ trap depth is E/kB ∼ 1/2 K.

4.1.2. Energy dependent distribution. The next case we con-
sider is when the v⊥ distribution arises from a distribution with
respect to energy in 3D with the velocity in the z-direction
averaged out. In this case, the D(v⊥) will be a function of
v2
⊥. For a general case, the integral in equation (16) needs to

be performed numerically. Although the essential singularity
at v⊥ = 0 looks bad, the integrals over one parameter can be
evaluated by simply increasing the number of points.

As an example that can be done analytically, consider the
early ALPHA experiments where the distribution of H̄s could
be considered as the low energy portion of a high tempera-
ture distribution. As an extreme example, we consider the case
where the velocity distribution is flat in vx , vy, vz up to the
condition v2

m > v2
x + v2

y + v2
z ; this is a flat distribution within

a sphere in velocity space. This gives Dm = 3
√
v2

m − v2
⊥/v

3
m.

Using this distribution, the transition rate in units of area/time
is

Gm =
Aw

√
π3

2vm

∫ 1

0

√
1 − s2 e−η2/s2

ds

=
3Awπ

√
π

8vm

[
(2η2 + 1)erfc(|η|) − 2|η|√

π
e−η2

]
, (18)

where η = 2πw( f L − f 0)/vm. As with the previous section,
this expression will be least accurate for f L � f 0 but will
become accurate over a larger range as the laser intensity
decreases.

4.2. Optical Bloch result

Because this section only investigates the excitation of the 2S
state, we will set the branching ratio of the radiative decay to
be 100% into the untrapped 1S state. With this condition, the
excitation rate divided by the two-dimensional H̄ density is

Gob =

∫ ∞

0

∫ ∞

0
2v2

⊥D(v⊥)(1 − ρ11)db dv⊥, (19)

where the density matrix element, ρ11 is evaluated at large time
for parameters b and v⊥.

4.2.1. Thermal distribution. In this section, we present results
from numerically solving the optical Bloch equations and
using the result to calculate the rate, G. We solved the optical
Bloch equations, equation (10), using equal steps in db to sam-
ple the crossing distance, b, and equal steps in dv⊥ to sample

the perpendicular speeds, v⊥. From above, the thermal distri-
bution gives D(v⊥) = (2/v2

th) exp(−v2
⊥/v

2
th) in equation (19).

We performed calculations for two temperatures, 10 and
50 mK, and laser powers from 0.1 to 1 W to illustrate the
limitation of the perturbative line shape, equation (17).

In order to more easily compare the results for different
laser powers, we scaled the G by dividing by the squared laser
power. The calculations were done for a 200 μm waist and do
not include shifts from the electric or magnetic field in order
to emphasize the effects from the AC Stark shift and the sat-
uration of the transition. Calculations were done for 0.1, 0.2,
0.5, and 1.0 W of power in each beam. The results are shown
in figure 2 where we have suppressed the AC Stark shift in (a)
and (b) but shown the full results in (c) and (d).

There are a few important trends that are worth noting. For
the calculations that suppressed AC Stark shift, figures 2(a)
and (b), only saturation of the 1S–2S is changing the results
from perturbation theory, equation (17). The decay of the atom
while crossing the beam has a minor effect for the parame-
ters of these calculations. As foreshadowed above, saturation
is more important for slowly moving atoms which are the
ones that mainly contribute to the signal near zero detuning.
The region of detuning where the optical Bloch differs from
the perturbative results decreases with decreasing laser power.
Unsurprisingly, saturation is more important for the 10 mK H̄s
than for those at 50 mK due to the larger fraction of slow atoms.
The AC Stark shift in figures 2(c) and (d) is the other important
effect in these calculations. The size of the shift is approxi-
mately the same for the two temperatures because it depends
on the path through the laser beam and not the time in it. How-
ever, the size of the shift is a factor of ∼ 3.5 smaller than the
estimate from equation (11). For example, at 1 W, the peak
in figures 2(c) and (d) are shifted by 1.5 kHz compared to 5.3
kHz from equation (11). The actual shift is smaller because the
5.3 kHz is the shift at the intensity maximum whereas the H̄s
travel through the beam, experiencing both large and small
intensity, and they always miss the exact center when they
cross the beam so the peak intensity on a particular crossing
is less than the maximum.

4.2.2. Energy dependent distribution. The results in this
section are for the case where there is a flat velocity distribution
within a sphere in velocity space of radius vm and zero oth-
erwise. This gives D = (3/v3

m)
√
v2

m − v2
⊥ as discussed above.

As with the previous section, we numerically solve the optical
Bloch equations to obtain ρ11 and use equation (19) to calculate
the rate.

These results are compared to the analytic, perturbative
expression, equation (18), in figure 3. For this case, we have
somewhat higher H̄ energies than the previous section because
previous experiments, references [1, 2], have a trap depth of
∼ 1/2 K which matches figures 3(b) and (d). The shape of the
rate versus frequency is qualitatively similar to the previous
results. There is a similar cusp feature for the calculations that
do not include the AC Stark shift, figures 3(a) and (b). As with
the previous section, the AC Stark shift, figures 3(c) and (d),
gives a ≈ 1.5 kHz displacement of the peak position for 1 W
power in one beam.
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Figure 2. The thermally averaged 1S–2S transition rate. All results use a beam waist of 200 μm and do not include magnetic and electric
field shifts versus detuning of the two photon transition. The results are all scaled by a factor of 1/P2

0 with P0 the power in one beam so that
the lines are on the same scale for different powers. The perturbative treatment, equation (17), (red solid line) does not change with intensity.
The optical Bloch results change with power: 1 W (blue dashed), 0.5 W (orange short dash), 0.2 W (green dotted), and 0.1 W (purple
dash-dot). (a) and (c) are for 10 mK thermal distribution (b) and (d) are for 50 mK thermal distribution. Plots (c) and (d) include the AC
Stark shift in the optical Bloch equations while (a) and (b) do not.

Figure 3. Same as figure 2 except for a flat velocity distribution up to the limit |
v| = vm with (1/2)Mv2
m/kB = 100 mK for (a) and (c) and

500 mK for (b) and (d).

The width for the 100 mK case in figure 3 has approxi-
mately the same width as the 50 mK in figure 2, within 10%.
This is because the flat distribution within a sphere is missing
the higher energy H̄’s which broaden the line. Although the
line shapes are similar, the thermal distribution falls faster at
smaller detunings and then slower at larger detuning reflecting
the difference in shape of a thermal and a flat distribution with
respect to speed.

5. Line shape: nonzero magnetic shift

In this section, we give results when the shifts in transition
frequency due to magnetic fields are included. The perturba-
tive transition rate can be calculated analytically for a ther-
mal distribution and power law potential and reduced to a
single integral for a distribution which is equally likely for
energy less than a limit. If the distribution only depends on
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the energy, the perturbative transition rate can be reduced to a
two dimensional integral.

The main idea in this section is that the probability for cross-
ing the beam at a position, z, depends on the trapping fields
and will be represented by a probability distribution of the H̄’s,
P(z). The shift in the transition frequency depends on the mag-
netic field at the position z as well. By convolving these effects
with the transition rate as a function of z, the overall transition
rate, J , can be calculated. As with the previous section, the J
will have units of area/time.

If the v⊥ distribution does not depend on z, then the transi-
tion rate only has a z dependence through the transition fre-
quency, f 0(z): G( f L − f 0(z)). There are distributions where
the v⊥ distribution does depend on z in which case we will
indicate the extra parametric dependence as G( f L − f 0(z), z).
An example of this is a distribution which is flat in velocities
and z for E < Em and zero for E > Em. The overall transition
rate is then

J =

∫
G( f L − f 0(z), z)P(z)dz, (20)

where the integral is over the region where P(z) is nonzero.

5.1. Perturbative result

For weak lasers where the perturbative result is accurate, the
rate can be calculated from equation (16) when given the
v⊥ distribution, D(v⊥), at the position z. For the two spe-
cial cases treated in the figures above, analytic expressions,
equations (17) and (18), are available. For a general posi-
tion distribution, P(z), and magnetic field, B(z), the overall
transition rate will result from a one-dimensional integration,
equation (20).

For the next two subsections, we assume that the magnetic
field has a simple form

B(z) = B0 + Bνzν (21)

with ν an even integer to give an effective potential energy that
traps the H̄ in z. In section 5.2.3, we discuss more physical
magnetic fields.

5.1.1. Thermal distribution: power law potential and shift. In
this section, we assume the H̄ distribution is from a thermal
distribution in velocity and position. In this case, the v⊥ dis-
tribution is independent of z resulting in the transition rate in
equation (17). The position distribution is

Pth(z) = C e−βμBνzν , (22)

where μ is the magnetic dipole moment of the 1Sd state,
C = ν(βμBν)1/ν/[2Γ(1/ν)], β = 1/(kBT) and Γ(z) is the
Gamma function. Because μ will always be multiplied by β,
which typically will not be very well known, the magnetic
dipole moment of the electron can be used. The constant in
front of the exponential gives a normalized position distribu-
tion. In terms of z, the transition frequency versus z can be
found from equation (6) to give

f 0(z) = f 0(0) + f νzν + f 2νz2ν , (23)

where f 0(0) is the frequency evaluated at B = B0,
f ν = (93.035 + 387.678B0)Bν kHz, and f 2ν = 193.839B2

ν

kHz where B0 is in Tesla and Bν is in T m−ν (to avoid the
symbol T which could be confused with temperature). Putting
together with equation (17), the overall transition rate is

Jth =
πAC
2vth

∫ ∞

−∞
w e−|Δ f− f νzν− f 2νz2ν |/φ e−βμBνzν dz, (24)

where φ = vth/(4πw), Δ f = f L − f 0(0), and the z-
dependence of the waist, w(z), is from equation (2). For
the typical cases in the ALPHA experiment, the waist is
200 μm giving ZR = 0.52 m. The z-dependence in the waist
will lead to errors of ∼1% in J and, therefore, we will ignore
this dependence. Even with this approximation, we have not
found an analytic expression for equation (24) and evaluated
it numerically.

For low temperatures, the H̄ cannot reach magnetic fields
substantially larger than B0. In this case, the contribution
from f 2νz2ν is negligible and the integral can be evaluated
analytically. For f 2ν = 0,

Jth(Δ f < 0) =
πw0A
2vth

τ
1/ν
+ eΔ f /φ

Jth(Δ f > 0) =
πw0A
2vth

τ
1/ν
+

Γ(1/ν, t+)
Γ(1/ν)

eΔ f /φ

+
πw0A
2vth

τ
1/ν
−

γ̃(1/ν, t−)
Γ(1/ν)

e−Δ f /φ,

(25)

where τ± = βμBν/[βμBν ± ( f ν/φ)], t± = [βμBν ± ( f ν/φ)]
zν0, and f νzν0 = Δ f = f L − f 0(0) defines the position where
the detuning is zero. The incomplete gamma functions are
defined as

Γ(s, x) =
∫ ∞

x
ts−1 e−t dt (26)

while the possibility for t− < 0 leads to the generalized
definition

γ̃(1/ν, t− > 0) =
∫ t−

0
t(1/ν)−1 e−t dt = Γ(1/ν) − Γ(1/ν, t−)

γ̃(1/ν, t− < 0) = ν

∫ t
1/ν
−

0
e−uν du

= νt1/ν
−

∞∑
n=0

(−t−)n

n!(nν + 1)
, (27)

where the 1/(βμBν − ( f ν/φ))1/ν in equation (25) from the τ−
cancels the same term in the t1/ν

− from equation (27) when
t− < 0.

5.1.2. Energy dependent distribution: power law potential and
shift. In this section, we examine the case where there is a
flat distribution in vx , vy, vz, z with the condition that E < Em.
This is similar to the condition in section 4.1.2 but account-
ing for the potential energy along z. For this case, we can
use the result in equation (18) that analytically includes the
averaging over impact parameter and 
v in the z-convolution,

7
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Figure 4. Similar to figure 2 except for equation (20) which includes the frequency shifts due to a magnetic field of the form
B(z) = B0 + B6z6. The red solid line does not include the AC Stark shift and was computed using equation (24). The other line types match
the laser powers in figure 2. The B0 = 1.0 T are plotted in (a) and (b) while the 0.1 T are in (c) and (d). The T = 10 mK are in (a) and (c)
while the 50 mK are in (b) and (d). All calculations include the AC Stark shift.

equation (20). In this case, the vm depends on z: Mv2
m(z)/2 =

Em − μ[B(z) − B0]. The probability distribution is

Pm(z) = v3
m(z)

[∫ z f

z0

v3
m(z′)dz′

]−1

for z0 < z < z f , (28)

where the vm(z0) = vm(z f ) = 0. Using the simplified B(z) from
above gives z f = −z0 = [Em/(μBν)]1/ν and

Pm(z) =
1

2z f 2F1

(
− 3

2 , 1
ν ; 1 + 1

ν ; 1
)[

1 − (z/z f )ν
]3/2

=
2Γ

(
5
2 + 1

ν

)
3
√
πΓ

(
1 + 1

ν

)
z f

[
1 − (z/z f )ν

]3/2
. (29)

Unfortunately, we have not found an analytic expression for
the convolution

Jm = 2
∫ z f

0
Gm( f L − f 0(z), z)Pm(z)dz. (30)

However, the average rate can be easily evaluated numerically
because it is a one dimensional integral.

5.2. Optical Bloch result

As with section 4.2, the full calculation of the line shape uses
the Gob from equation (19) in the convolution of equation (20).
The AC Stark shift is included in all of the calculations in
this section. For all calculations, we use equation (21) with
B0 = 0.1 or 1 T and ν = 6 with B6 = 0.5/0.126 T m−6. This
gives a variation in z very similar to that in the ALPHA trap
along the beam axis. To date, the ALPHA experiments have
B0 ≈ 1 T.

5.2.1. Thermal distribution. We present results, in figure 4,
from numerically solving the optical Bloch equations for
different H̄ temperatures and laser powers. In addition, we
changed the value of B0 from 1.0 T in figures 4(a) and (b) to
0.1 T in (c) and (d). These calculations illustrated a few trends
that will be important for future measurements.

The frequency shift from the magnetic field breaks the sym-
metry of the line so that the decrease with positive detuning is
slower than for negative detuning. This effect increases with B0

because the frequency shift with magnetic field, equation (6),
increases with B0. This leads to larger width for larger B0. The
increase of dΔE/dB with B is due to the diamagnetic term in
the Hamiltonian for the 1Sd–2Sd transition. The dΔE/dB is
roughly four times larger for 1.0 T compared to 0.1 T. Decreas-
ing the magnetic field further gives some decrease in dΔE/dB,
but the effect is not so large: only ∼30% change going from
0.1 T to 0 T. As with the calculations in figure 2, satura-
tion of the transition and AC Stark shift plays an increasing
role in going from 0.1 W to 1.0 W. The saturation causes a
suppression in the region of the peak which leads to a more
rounded maximum for the line shape at higher power. The
AC Stark shift moves the peak position by a somewhat larger
amount, � 1.9 kHz, possibly due to the slower decrease for
positive detuning. Lastly, the f 2ν term in the frequency shift,
equation (23), did not contribute a noticeable effect to the line
shape because the largest effect is for large z where the detun-
ing is large and the transition rate varies slowly withΔ f . Thus,
the approximation equation (25) works well for these cases at
small power.

5.2.2. Energy dependent distribution. Similar to the previous
section, we present results, in figure 5, from numerically solv-
ing the optical Bloch equations for different H̄ cutoff energies

8
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Figure 5. Similar to figure 3 except for equation (20) which includes the frequency shifts due to a magnetic field of the form
B(z) = B0 + B6z6. The red solid line does not include the AC Stark shift and was computed using equation (30). The other line types match
the powers in figure 2. The B0 = 1.0 T are plotted in (a) and (b) while the 0.1 T are in (c) and (d). The Em = 100 mK are in (a) and (c) while
the Em = 500 mK are in (b) and (d). All calculations include the AC Stark shift.

and laser powers. In addition, we changed the value of B0 from
1.0 T in figures 5(a) and (b) to 0.1 T in (c) and (d).

The results in this section hold similar lessons as the previ-
ous sections. For example, the magnetic field leads to an asym-
metry in the line with the asymmetry increasing with increas-
ing B0. The AC Stark shift is somewhat larger than the case
for no shift with B-field: ∼ 2 kHz for 1 W of power. Also, a
larger cutoff energy leads to a broader linewidth with the effect
somewhat smaller for a thermal distribution at the temperature.

5.2.3. More complex cases. For the ALPHA experiment, the
magnetic field does not have the simple power law dependence
of the previous sections. Thus, there are not simple analytic
formulas that can be developed for ALPHA. However, the
results in the previous sections point to the possibility that the
extensive numerical simulations used in previous studies [1, 2]
are not necessary. When three conditions are satisfied, the line
shape can be determined by integration: (1) the distribution
of trajectories is approximately known, (2) the laser is suffi-
ciently weak that AC Stark shifts and depletion of atoms are
negligible, and (3) the detection of H̄’s do not depend on the
frequency, Δ f . The equations (16) and (20) are used with the
known spatial dependence of the magnetic field to obtain the
line shape. If the AC Stark shifts are non-negligible but there
is little depletion of atoms, then the optical Bloch equation can
be used so that equations (19) and (20) will give the line shape.

In fact, the figure 5(b) is for similar parameters for the
ALPHA experiment [1, 2]. A comparison with the figures from
these papers shows a strong similarity with the 1 W example.

We carried out a calculation for a 50 mK thermal distribu-
tion of H̄s in the actual ALPHA magnetic fields. We simulated
their motion as in references [1, 2] and their transition using
the optical Bloch equations. The only difference with the usual
calculation was artificially setting the detection efficiency to be

independent of the H̄ position and velocity. We also assumed
the H̄ population was not depleted which is not the case in
the experiments. We compared this result to that using the Gob

from equation (19) in the convolution of equation (20). We
found perfect agreement in this case. This comparison shows
our results can be extended to more complex magnetic fields.

6. Optimum parameters

In this section, we discuss how various parameters affect the
accuracy of the 1Sd–2Sd frequency measurement. We will first
address some of the more obvious parameters (e.g. laser power
and waist, uniform B-field value, etc) by discussing the trends
in the line width. We will then show that the predicted χ2 is
useful for assessing less obvious parameters (e.g. the number
of frequencies and their values in a measurement).

To orient the discussion, note the current uncertainty of the
H̄ 1Sd–2Sd measurement is at the few kHz level. Clearly, the
immediate goal is to improve this to the few 100 Hz level with
a long term goal to reach the few Hz level.

Laser power: in H̄ experiments, the AC Stark shift for
243 nm laser at ∼ 1 W is 1–2 kHz and is not currently the con-
trolling factor in the uncertainty. To reach uncertainties that are
at the few 100 Hz level, the laser power should be decreased
by at least an order of magnitude since the AC Stark shift
is proportional to the laser power. Also important, high laser
power leads to a large fraction of the atoms transitioning to
the 2Sd state. Because the transition is detected by H̄ that are
ejected from the trap, the characteristics of the H̄ population
(i.e. position and velocity distribution) changes when there is
a large probability for a transition. This is problematic because
detailed modeling of the population becomes necessary when
a substantial fraction of the atoms are ejected.

9
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Laser waist: the line width is mainly from the finite time for
an H̄ to cross the laser beam, i.e. transit broadening. By dou-
bling the waist, this contribution to the line width will decrease
by a factor of 2. This leads to a more accurate determination
of the transition frequency.

H̄ temperature: at lower temperature, the H̄ requires more
time to cross the laser beam leading to smaller contribution to
the line width from transit broadening. Also, at lower temper-
ature, the H̄ cannot reach as large B-field which also decreases
that contribution to the line width. Finally, shifts from the
v × B effective electric field, are proportional to the temper-
ature. Laser cooling of H̄ has been demonstrated [6] as well
as the effect on the line width. After laser cooling, trap depths
of ∼ 1/2 K are not necessary. This would allow for a con-
trolled decrease in the depth of the trap. A slowly decreased
trap depth leads to adiabatic cooling which further improves
the measurements.

Uniform B-field: the size of B0 affects the line width through
the diamagnetic term in the 1S and 2S energies. For larger B0,
the change in frequency with changing B-field is larger which
leads to a larger line width. The current experiments typically
occur with B0 ∼ 1 T because the plasmas used to make H̄ are
colder, more stable, and easier to diagnose at large B0. It is
possible to form H̄ at ∼ 1 T and later ramp B0 to lower values.
The difficulty with ramping the magnetic field is to precisely
know the final value due to persistent currents. Thus, there is
incentive to keep B0 ∼ 1 T. Fortunately, from figures 4 and
5, although there is a change in the line width in going from
B0 = 1 to 0.1 T, the change is less than a factor of 2. Thus,
from the perspective of line width, there may not be enough
gained by decreasing B0.

χ2 treatment: there are other parameters that affect the accu-
racy of the measured 1Sd–2Sd transition frequency but are not
as obvious. For example, given 9 frequencies to measure the
transition, which frequencies should be chosen? Or, would it
be better to use 9 or 17 frequencies to measure the line? How
does the presence of background atoms affect the accuracy of
the frequency determination? In these cases, we propose to use
the χ2 of a calculated line shape to guide these choices.

For this discussion, we will use the form in equation (25)
with the parameters of figure 4(b) as the exact transition and
will briefly investigate the role played by the frequencies cho-
sen in the measurement. We will have n f frequencies with
Δ f j. We will also include the possibility that all transitions are
shifted by δ f . We can compute a synthetic line by using Monte
Carlo to randomly determine the number of atoms, N j(δ f ), to
make a transition at frequencyΔ f j for a fixed total number N.
On average, this leads to N̄ j(δ f ) atoms making the transition
with

N̄ j(δ f ) = NJth(Δ f j + δ f )/
∑

j

Jth(Δ f j + δ f ) (31)

with N the total number of atoms making the transition. We
computed a χ2 by averaging over many different realizations
of the Monte Carlo simulation

Figure 6. Calculations with 9 frequencies are (red solid) for spacing
1 and (blue dashed) for spacing 1/2. Calculations with 17
frequencies are (orange short dash) for spacing 1 and (green dotted)
for spacing 1/2. All calculations were for N = 1000 transitions.

χ2 = 〈
∑

j

[N̄ j(0) − Nj(δ f )]2〉/N̄ j(0)

� n f − 1 +
∑

j

[N̄ j(0) − N̄ j(δ f )]2/N̄ j(0), (32)

where the 〈. . .〉 on the first line means to average over the dif-
ferent realizations and the second line is from Poisson statis-
tics. Because we fix N, the number of degrees of freedom is
n f − 1.

In figure 6, we use the χ2 to see how choices for the fre-
quencies can affect the accuracy for which the transition is
determined. Instead of allowing all detunings to be freely var-
ied, we started with a symmetric choice similar to that used
in an ALPHA experiment. We did four choices for the fre-
quencies. Spacing 1 for n f = 9 were the frequencies Δ f j =
0,±5,±10,±20,±50 kHz while spacing 1/2 divided every
frequency by 1/2. Spacing 1 and 1/2 for n f = 17 also used
the frequencies halfway between those for n f = 9, i.e. Δ f j =

0,±2.5,±5,±7.5, . . .kHz. For 8 degrees of freedom,χ2 � 20
corresponds to a p-value of 0.01 while this corresponds to
χ2 � 32 for 16 degrees of freedom. Visually, it is clear that
the spacing 1 calculations give slightly greater curvature and
therefore modestly better bounds on the uncertainty in the fre-
quency. To compare 9 versus 17 points, the p-value of � 0.01
corresponds to δ f � −1.5, 1.6 for n f = 9 and δ f � −1.8, 1.8
for n f = 17 which means the n f = 9 will give a somewhat bet-
ter bound on the transition frequency. More importantly, this
suggests using χ2 as a metric for choosing the number and
values for the frequency.

As a simple extension, we use the ideas of this section to
estimate parameters needed to get to few 100 Hz accuracy. If
the laser waist is increased from 200 to 400μm, the uncertainty
decreases by a factor of 2. Increasing the number of detected
H̄’s from 1000 to 4000 decreases the uncertainty by another
factor of 2. These two improvements with the estimate from
the previous paragraph leads to a few 100 Hz accuracy.

This example is somewhat artificial because the H̄ tem-
perature may not be well known even if the distribution is
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approximately thermal. In this case, the χ2 can be calculated
versus T and δ f . We have done this for the n f = 9, spacing
1 case and found that the χ2 gave 30 < T < 80 mK (com-
pared to 50 mK of the actual distribution) with the range of
δ f similar to that found above. This showed that a simulta-
neous fit could give reasonable results. The example is also
artificial in that we did not include the effect of frequency
independent background atoms; the background atoms will
somewhat increase the uncertainty in the frequency but should
not skew the results. Finally, in the real experiment, the detec-
tion efficiency could depend on the frequency of excitation,
Δ f j, which would skew the results. We have not treated the
change in line shape due to detection efficiency but it can be
incorporated into our treatment if it is known. These artificial
conditions can be easily removed in the numerical implemen-
tation of theχ2 method. We have not done so here because they
depend on specific aspects of future experiments.

7. Summary

We have examined some of the physics that determines the
line shape of the 1Sd–2Sd transition in magnetically trapped
H̄. Under three assumptions (the distribution of trajectories is
approximately known, the laser is sufficiently weak that AC
Stark shifts and depletion of atoms are negligible, and the
detection of H̄’s do not depend on the frequency,Δ f ), the line
shape can be calculated as an integral over a few degrees of
freedom. If the AC Stark shift is not negligible, solutions from
optical Bloch equations can be used in these integrals. In either
case, large scale, detailed simulations of the trajectories would
not be needed to obtain the line shape. We presented analytic
expressions for the transition rates for special cases of the H̄
distribution and magnetic field.

We discussed several of the trends that control the accu-
racy with which the transition frequency can be determined.
These include parameters such as H̄ distribution, laser waist
and intensity, uniform B-field, number and choice of frequen-
cies sampled, and others. We also propose the use of a χ2 test
to optimize the choices for these parameters. From the discus-
sions above, it seems that modest improvements in the ALPHA
experiment could increase the accuracy of the 1S–2S transition
by an order of magnitude.

Further exploration is needed to project the best path to
reach accuracy comparable to that in experiments on normal
matter H. Table 3 of reference [2] gives the sizes of various
sources of uncertainties in the 1S–2S transition frequency.
Statistical uncertainties (Poisson errors and curve fitting)
and modeling uncertainties were the largest sources at 3.8
and 3 kHz respectively; these were addressed above. The next
largest uncertainty was laser frequency stability at 2 kHz;
this can be decreased to the several Hz level by using a dif-
ferent stabilization method. The next largest uncertainty was
the absolute magnetic field measurement at 0.6 kHz; this can

be decreased by decreasing the size of the magnetic field,
equation (6), or through a more accurate determination of B.
The next largest uncertainty is from the discrete choice of fre-
quencies at 0.36 kHz; this was addressed in section 6. The next
largest uncertainties were DC-Stark shift, at 0.15 kHz, and sec-
ond order Doppler shift at 0.08 kHz; these can be decreased
by using colder H̄s since they both are proportional to the
kinetic energy, in fact, using reference [6] we estimate these
will decrease by a factor of ∼ 10 with already demonstrated
laser cooling. Of these, the most problematic uncertainty could
be from Poisson errors because it will require a couple order
of magnitude increase in the number of H̄s to decrease the
Poisson errors to the several Hz level.
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