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Abstract
A method for calculating the properties of Rydberg states and Rydberg–Rydberg interaction
between two 87Sr atoms is described. The method is based on a multichannel quantum defect
theory description of the Rydberg states that accounts for the hyperfine splitting of the 87Sr+

ground state. Results are given for the scalar and tensor polarizabilities and the eigenvalues of
the C6 matrix for the 5sns FT=9/2 series. These results illustrate the new features that arise due
to the hyperfine splitting of the thresholds. In particular, there should be several couple Förster
resonances above n=50 unlike the case of 88Sr which has none.
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1. Introduction

The interaction between two Rydberg atoms provides the
possibility for entanglement between the electronic states of
atoms separated by more than a μm. This possibility arises
due to the extreme character of Rydberg states [1]. There is
interest [2, 3] in the alkaline earth atoms due to the long
lifetime of some excited states as well as the flexibility due to
the extra electron. For example, the inner valence electron
could be used to match polarizability of the ground and
Rydberg state [4–6] which would allow for magic trapping of
Rydberg atoms. As another example, the inner electron can be
used to probe the status of the Rydberg electron [7, 8].

The purpose of this paper is to elucidate a theory capable
of accurate calculation of properties of Rydberg atoms for odd
isotopes of Sr. The calculation of Rydberg–Rydberg interac-
tions has progressed from alkali atoms [9, 10] where the core
electrons are 1S to even isotopes of alkaline-earth atoms
[11, 12] where the core has angular momentum 1/2 but not
hyperfine splitting to the most general case where the core has
angular momentum and hyperfine splitting [13]. The odd
isotopes of the alkaline earth atoms have nuclear spin I and
the positive ions have ground states F=I±1/2 with non-
zero hyperfine splitting. The results below for 87Sr were

obtained by applying the theory in [13]. In some cases, we
applied the theory in [11] for I=0 to understand the role of
the hyperfine splitting.

Unlike the alkali atoms, several of the Rydberg series of
Sr have a complicated dependence on n, even without the
hyperfine splitting, due to perturbers attached to the higher
lying 4d and 5p thresholds [12, 14–23]. Because we are
interested in the high-n Rydberg states, much of the compli-
cations of the two electron states can be subsumed within the
machinery of multichannel quantum defect theory (MQDT)
[20]. The main parameters needed in the calculations are the
energy dependent quantum defects for the different channels.
We will use the compilation of quantum defects in [11] and
the recent measurements in [22, 23] in all of the calculations.
The recent measurements in [22, 23] have improved the
quantum defects for some 5sns and 5snd series at higher n but
more accurate values are needed for other series. The biggest
need is for measurements of the 5snp 1,3P quantum defects at
higher n because this would allow accurate calculations of the
polarizability and C6 matrices for the 1,3S series. Because we
use ideas from hyperfine frame transformation [13, 16–18,
24], the quantum defects from the even isotopes of Sr are a
good approximation in the calculations.
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The paper is organized as follows. Section 2 gives a
description of the method used in the calculations. Section 3
gives results for calculations of 87Sr including energy levels
compared to recent measurements [22], scalar and tensor
polarizability, and the eigenvalues of the C6 matrix. Section 4
contains brief conclusions. The units in the different calcu-
lations are specified.

2. Methods

In this section, the method for performing MQDT calculations
[20] of Rydberg–Rydberg interactions is described. The
method is similar to that in [13] but with a different coupling

scheme for the channel functions. The coupling scheme for
87Sr is chosen to take advantage of the angular momenta for
this atom: there are simplifications for 87Sr because the core
electron has total orbital angular momentum Lc=0. The
change in channel coupling leads to different details for the
MQDT equations compared to those in [13].

The MQDT treatment of the bound states attached to the
hyperfine split thresholds is also similar in style to that in
[17, 18, 24] but with a different angular momentum coupling.
Given the quantum defects in table 1 and the hyperfine
splitting, they would obtain the same bound state energies in
tables 2 and 3. The main difference from [17, 18, 24] is that
they did not give a method for calculating the polarizability
and C6 matrices.

Table 1. Quantum defects used in the calculations. See the text for a discussion of uncertainties in these values.

μ0 μ2 μ4 Fitted range References

1S0 3.268 96(2) −0.138(7) 0.9(6) 14�n�34 [11]
3S1 3.370 65 0.443 −0.553 30�n�99 [22]
3S1 3.370 778(4) 0.418(1) −0.3(1)  n15 50 [23]
1P1 2.7295(7) −4.67(4) −157(2) 10�n�29 [11]
3P0 2.8866(1) 0.44(1) −1.9(1)  n8 15 [11]
3P1 2.8824(2) 0.407(5) −1.3(1) 8�n�22 [11]
3P2 2.8719(2) 0.446(5) −1.9(1) 8�n�18 [11]
1D2 2.3807(2) −39.41(6) −1090(20) 20�n�50 [11]
3D1 2.673 −5.4 −8166. 50�n�98 [22]
3D1 2.675 17(20) −13.15(26) −4444(91) 28�n�50 [23]
3D2 2.662 −15.4 −9804. 50�n�98 [22]
3D2 2.661 42(30) −16.77(38) −6656(134) 28�n�50 [23]
3D3 2.612 −41.4 −15363. 50�n�98 [22]
1F3 0.089(1) −2.0(2) 30(2) 10�n�25 [11]
3F2 0.120(1) −2.2(2) 120(20) 10�n�24 [11]
3F2 0.120(1) −2.2(2) 120(20) 10�n�24 [11]
3F2 0.120(1) −2.4(2) 120(20) 10�n�24 [11]

Table 2. Energies for the 5sns series. The columns for E are in cm−1 and the columns for ΔE are the energy difference to the 5sns
3S1 FT=11/2 state in GHz.

n Term F Eex ΔEex Eth
a ΔEth

a Eth
b ΔEth

b Eth
c ΔEth

c

40 1S0 9/2 45 850.8762(21) 16.35(8) 45 850.8702 16.22 45 850.8743 16.31 45 850.8743 16.32
60 1S0 9/2 45 898.1444(22) 7.28(9) 45 898.1421 7.26 45 898.1434 7.26 45 898.1433 7.26
82 1S0 9/2 45 914.5606(22) 5.66(9) 45 914.5589 5.67 45 914.5602 5.67 45 914.5602 5.67

40 3S1 7/2 45 850.4974(21) 4.99(8) 45 850.4960 5.0 45 850.4972 5.00 45 850.4967 5.00
60 3S1 7/2 45 898.0688(21) 5.02(9) 45 898.0668 5.0 45 898.0681 5.00 45 898.0680 5.00
82 3S1 7/2 45 914.5380 5.00 45 914.5379 5.00

40 3S1 9/2 45 850.4078(21) 2.31(8) 45 850.4061 2.31 45 850.4074 2.31 45 850.4070 2.31
60 3S1 9/2 45 897.9488 1.42 45 897.9487 1.42
82 3S1 9/2 45 914.3958(21) 0.72(9) 45 914.3935 0.71 45 914.3947 0.71 45 914.3947 0.71

40 3S1 11/2 45 850.3308(15) 0 45 850.3291 0 45 850.304 0 45 850.3299
60 3S1 11/2 45 897.9014(19) 0 45 897.9000 0 45 897.9013 0 45 897.9011
82 3S1 11/2 45 914.3718(22) 0 45 914.3699 0 45 914.3711 0 45 914.3711

a

Theory calculations from [22].
b

MQDT calculations using the 3S quantum defects from [22] and the 1S from [11].
c

MQDT calculations using the 3S quantum defects from [23] and the 1S from [11].
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2.1. 87Sr properties

In the calculations below, we use properties of 87Sr to cal-
culate several Rydberg state energies, polarizabilities, and
C6-matrices. The main properties used are the mass of the
87Sr+, the hyperfine splitting of the 87Sr+ ground state, and
the quantum defects of the different series.

The hyperfine interaction of the ground state was taken to
be

· ( )
 

= V a I s 1hf s5

with p= -a 2 1.000 473 673s5 GHz [25], I=9/2, and
s=1/2. The 87Sr+ ground state has F=5 and F=4 with a
splitting e e- = a5 s5 4 5 . The negative value of a5s means
the ground hyperfine state has F=5 and is approximately
5GHz below the F=4 hyperfine state. The weighted
threshold is 45932.1956cm [22].

The mass of 87Sr+ was taken from [26] to be
= -+M u m86.908 877 50 e87 with u=1.660 539 066

60×10−27 kg and me=9.109 383 7015×10−31 kg taken
from the CODATA values. The Rydberg constant, R87, was
taken to be scaled from the CODATA ¥R value as =R87

109 737.315 681 60cm−1 ( )´ ++ +M M me87 87 .
The MQDT formulas below use the quantum defects of

the different LSJ channels as energy dependent quantities.
This is somewhat different than the definition used in
experimental fits which have the quantum defects taken to be
functions of n, the principal quantum number. The quantum
defect as a function of n is usually written as

( )
( ) ( )

( )m m
m
m

m
m

= +
-

+
-

n
n n

, 20
2

0
2

4

0
4

where the μa are constants. MQDT treats these parameters as
existing as functions of energy with boundary conditions at
 ¥r determining which energies are allowed. To motivate

the conversion, we note that the energy of a Rydberg state n is
written as [ ( )]e e m= - -R n nn thr 87

2 with ε in units
of cm−1 and εthr the threshold energy. We will take the
quantum defects as a function of energy to be

( ) ( ) ( ) ( )m e m h e m h e m= + + , 30 2
2

4

where ( ) ( )h e e eº - Rthr 87. Since these two expressions
for μ are not equivalent, it seems that the μa need to be
converted between the two expressions. However, one can
show that [ ] [ ( )]m m- = -n n n1 10

2 2 plus a term of order
( )m-n1 0

5 which means the μa are the same through the orders
shown. For calculations requiring the highest accuracy, it may be
necessary to refit the values of μa in equation (3) but that level of
accuracy is not appropriate in the calculations below considering
the experimental uncertainty in the μa. To give a numerical
example, the change in energy of the s d5 50 3D3 state, which has
the largest μ2 and μ4, has magnitude 2.3×10−5 cm−1 when
using equation (2) versus (3). Compare this to the uncertainty in
the measured energy which was 2.2×10−3 cm−1 [22].

The values for the different quantum defects are given in
table 1. Note, there are 3 series that have two values listed:
3S ,1

3D1, and
3D2. The values in [22] were obtained from fits

to 87Sr Rydberg series while those from [23] were obtained
from fits to 88Sr Rydberg series. We compare the results from
calculations using the quantum defects of [22, 23] below. All
of the other values were taken from the compilation of [11]
which fit the energies found in [15, 27–29]; see [11] for a
discussion of this process. All of the series from [11] arise
from fits to energy levels with n�50 and several for
n=50; thus, using these quantum defects involves an
extrapolation from the fit range and have larger uncertainty
for our calculations than simply from the uncertainty in the
μa. For example, [22] found differences in the 5snd 3D
quantum defects of ∼0.02 from the extrapolated values of
[11]; these are series with large energy variation in the
quantum defects due to perturbers attached to the 4d or 5p
thresholds. However, the 3S1 quantum defect from [11]
matches that from [22, 23] within the stated error bars. Taking
a large μ2, μ4 as a sign of possible problems for extrapolating
the quantum defects, one might suspect that the 1P1 and

1D2

series might have the largest errors in quantum defect for
n>50. The quantum defects from [23] have a fit range that
goes up to n=50 so these quantum defects are probably not
as accurate as the stated uncertainty for n>50.

In addition to the quantum defects, there is a mixing
between channels with the same parity and J quantum num-
ber. The strongest of these mixings is between the 1D2 and

Table 3. Energies for the 5s50d states. The columns for E are in cm−1 and the columns for ΔE are the energy difference to one level within a
scan (the state with ΔE=0) in MHz.

Term F Eex ΔEex Eth
a ΔEth

a Eth
b ΔEth

b Eth
c ΔEth

c

3D1 7/2 45 883.1440(22) −295.60(7) 45 883.1414 −299.01 45 883.1427 −296.94 45 883.1438 −296.83
3D1 9/2 45 883.1538(22) 0 45 883.1514 0 45 883.1526 0 45 883.1537 0
3D2 11/2 45 883.1685(22) 439.39(7) 45 883.1662 443.71 45 883.1673 441.11 45 883.1684 440.75

3D2 7/2 45 883.2882(21) 0 45 883.2855 0 45 883.2866 0 45 883.2876 0
3D2 9/2 45 883.2922(21) 118.91(7) 45 883.2893 114.7 45 883.2904 116.20 45 883.2915 114.75
3D1 11/2 45 883.2972(21) 269.12(7) 45 883.2942 260.55 45 883.2954 263.73 45 883.2963 261.22

3D3 11/2 45 883.3849(22) −890.64(7) 45 883.3814 −890.22 45 883.3828 −888.59 45 883.3830 −887.29
3D3 9/2 45 883.4146(22) 0 45 883.4111 0 45 883.4124 0 45 883.4126 0

3D3 7/2 45 883.4374(22) 45 883.4339 45 883.4351 45 883.4352
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3D2 channels. Above n∼50, we will take the mixing to be
constant:

( )∣
∣

∣
∣

∣
∣

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

q q
q q

á

á
=

-
á

á
º

á

á
R

D

D
cos sin
sin cos

D

D

D

D
, 4

rot

1
2

3
2

1
2

3
2

1
2

3
2

where θ=−0.14 radians; more accurate parameterization
would include an energy dependence for θ. The right-hand
side represents the pure singlet and triplet states. These
channels are relatively strongly mixed due to a perturber near
n=15, but other channels (e.g. 3S1 and 3D1) should be
mixed as well. In our calculations, we only included the
mixing between 1D2 and 3D2. This type of mixing will
probably need to be included for the other channels to obtain
the highest accuracy of the Rydberg series.

2.2. Overview MQDT

Section 2 of [13] gives the details for how to determine the
bound state energies, polarizabilities, C6 matrices, etc for
Rydberg states attached to hyperfine split thresholds. Refer to
this paper for intermediate steps in the formulas given in this
section. For a given K-matrix, the bound states, b, are
determined by finding the energies, εb, that allow for the
solution of

( ( ) ) ( ) ( )å b d
b

n
+ =¢ ¢K Atan

cos
0. 5

i
i b i i i i

i

i
i b, , , 3 2 ,

with ( )b p n= - ℓi b i b i, , and the effective quantum number in
channel i, νi,b, is defined by [ ]e e n= - R2 2b c i i b, 87 ,

2 with
e e-b c i, being the difference between the total energy and the
energy of the ith core state in cm−1. In practice, we solve for
εb by finding when the determinant of the matrix given by

( ) ( )d b b= +¢ ¢ ¢M Ksin cosi i i i i i i i goes through zero. This
determines the bound state energy εb and allows for a solution
of equation (5) for Ai,b. When the quantum defects vary
slowly with energy, the normalization condition is

( )å =A 1 6
i

i b,
2

to a good approximation. With these definitions, the bound
state wave function can be written as

∣ ∣ ( ) ( )åy ñ = F ñ nP r A , 7b
i

i ℓ i b,i i

where the Φi is the channel function which represents all of
the quantum numbers except the radial function of the Ryd-
berg electron which goes to 0 at infinity:

( ) [ ( ) ( ) ] ( )b b n= +nP r f r g rcos sin , 8ℓ i i i i i
3 2

i i

where atomic units are used for r and energy in the f, g radial
Coulomb functions.

2.2.1. Frame transformation. The K-matrix is obtained by
using a frame transformation on the LSJ K-matrix. Adhering
as much as possible to the notation of [13], the coupling when
the Rydberg electron is close to the core is written as

∣ ∣((( ) ) ) ( )ñ º ñin J s Sℓ JI F M , 9c o o T T

where Jc=1/2 is the total core angular momentum,
so=1/2 is the spin of the Rydberg electron, S is the total
spin of the two electrons, ℓo is the orbital angular momentum
of the Rydberg electron, J is the total angular momentum of
the two electrons, =I 9 2 is the spin of the nucleus, and FT,
MT is the total hyperfine angular momentum and its z-
projection. This symbol is read by starting from the innermost
‘( )’ and working out. In words, this ket symbolizes: the total
angular momentum of the core is coupled to the spin of the
Rydberg electron to give total spin S which is coupled to the
orbital angular momentum of the Rydberg electron to give
total electronic angular momentum J which is coupled to the
spin of the nucleus to give the total hyperfine angular
momentum FT and projection MT. An example case is
∣((( ) ) ) ñ1 2, 1 2 1, 2 3, 9 2 13 2, 5 2 meaning a 5snd 3D3

coupled with =I 9 2 to give FT=13/2, MT=5/2. As
with [13], we obtain the final channel functions using two
recouplings. The first is

∣ ( ) ∣((( ) ) ¯ ) ( )ñ = ñout J s SI Fℓ F M1 , 10c o o T T

where F̄ is a dummy angular momentum arising from coupling
the total spin of the electrons to the spin of the nucleus. As with
the previous ket, this symbol is read by starting from the
innermost ‘( )’ and working out. The second is

∣ ( ) ∣((( ) ) ¯ ) ( )ñ = ñout J I F s Fℓ F M2 , 11c c o o T T

where Fc is the hyperfine quantum number of the core. The
recoupling matrix arises from projecting the different couplings
onto each other. The first recoupling matrix is

∣ ( ) ( ) [ ¯ ] ¯ ( )
⎧⎨⎩

⎫⎬⎭á ñ = - Lin out J F
ℓ S J

I F F
1 1 , , 12o

T

io

where { }... is the 6-j symbol, ¯L = + - - -ℓ F J I F2io o T

and [ ] ( )( )¼ = + +a b a b, , 2 1 2 1 ... . The second recoupling
matrix is

( )∣ ( ) ( ) [ ] ¯ ( )
⎧⎨⎩

⎫⎬⎭á ñ = - Lout out S F
s J S

I F F
1 2 1 , , 13c

o c

c

oo

where ¯L = + - - -s F S I F2oo o c . Equations (3.5.14) and
(6.1.5) of [30] were used in both projections.

The K matrix is obtained by a series of rotations. For
example

( )∣ ∣ ( ) ( )( ) ( ) å= á ñ á ¢ ¢ñ¢
¢

¢K out in K in out1 1 . 14out out
in in

in in1 , 1
,

,

A similar rotation is performed to obtain the K-matrix in the
∣ ( )ñout 2 coupling scheme. The channel rotation in equation (4)
can be taken into account by using the rotated transform

( ) ∣ ( )
( ) ∣ ( )

( )∣ ( )
( )∣ ( )

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

á ñ

á ñ
=

á ñ

á ñ

in D out

in D out
R

in D out

in D out

1

1

1

1
. 15

rot

rot

1
2

3
2

1
2

3
2

By including this rotation, the K-matrix in equation (14)
simplifies to a diagonal matrix:

( )∣ ∣ ( ) ( )( ) ( ) å= á ñ á ¢ñ¢K out in K in out1 1 16out out
in

in1 , 1

with pm=K tanin in.
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2.2.2. Matrix elements. In [13] equation (17), the one
electron matrix elements, ( )

¢Qb b
kq
, , determine the polarizability,

C5 matrix, and C6 matrix [10, 31–33]. These properties
require the calculation of matrix elements between bound
states ¢b b, . For these parameters, the operator mainly acts on
the Rydberg electron. These cases have an operator of the
form ˆ ( )( ) = WQ r Y

kq k
k q, which has a contribution of size ~n k2

when it acts on the Rydberg electron and of size ∼1 when it
acts on the core electron. In the following, we only account
for the contribution to the matrix element from the Rydberg
electron. For this approximation, the matrix element is

( ) ∣ ∣ ( )( ) ( )å= áF F ñ¢
¢

¢ ¢ ¢ ¢ ¢Q A Y R A , 17b b
kq

i i

T
b i i kq i ib i b

k
i b,

,
, , ,

where the radial integral is

( ) ( )( ) ò= n n¢ ¢

¥

¢ ¢ ¢R drr P r P , 18ib i b
k k

ℓ ℓ,
0

i b i i b i, ,

with the radial function defined in equation (8).
For the results below, we are only interested in the dipole

matrix elements, k=1. The angular matrix element, equation
(19) and (20) of [13], is changed due to the difference in
recoupling. Using the channel coupling of equation (11), the
angular part of the matrix element is

∣ ∣ (( ) ¯ ) ∣ ∣(( ) ¯ )
( )

áF F ñ = á ¢ ¢ ¢ ¢ ¢ñ¢Y F s Fℓ F M Y F s F ℓ F M ,

19
i kq i c o o T T kq c o o T T

where = ¢J Jc c and = ¢I I automatically hold for 87Sr. The
angular matrix element can be evaluated using equations
(5.4.1), (5.4.5), and (7.1.8) of [30] to obtain

∣ ∣ ( ) [ ]

¯
( )

¯ ¯

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

d d
p

áF F ñ= -
¢ ¢

¢

- ¢
¢

¢ ¢

¢
L ¢ ¢Y

F F ℓ ℓ k

F k F

M q M
ℓ k ℓ

ℓ F F

F ℓ k

1
, , , ,

4

0 0 0

, 20

i kq i F F FF
T T o o

T T

T T

o o

o T

T o

c c

where (...) is the 3-j symbol and L = - +F M2 T T
¯ + + ¢ +F ℓ ℓ ko o . The first 3-j symbol restricts = ¢ +M MT T

q and ∣ ∣- ¢ F F kT T . The second 3-j symbol restricts
∣ ∣- ¢ ℓ ℓ ko o and + ¢ +ℓ ℓ ko o to be an even integer.

These expressions can be used in equations from [13] to
obtain the C5 matrix (equation (40)), the C6 matrix (equations
(42) and (43)), and the polarizability matrix.

2.2.3. Approximations. This section discusses some of the
approximations that arise from the MQDT method and our
implementation of it.

The uncertainty in the threshold splitting and Rydberg
constant are too small to be important. The average threshold
energy affects where the states appear in a spectrum but does
not affect any of the other properties (e.g. polarizability or
C6).

The actual values of the quantum defects are important
and uncertainty in the experimental values was discussed
above, but an important aspect was not discussed. Except for

[22], the quantum defects were measured in isotopes that were
not 87Sr. There should be an isotope shift to the quantum
defects which will lead to errors in the calculation of
properties of the 87Sr Rydberg states. There has not been a
discussion of how the quantum defects change with small
changes in the mass of the ion. It is reasonable to assume the
change in quantum defect is proportional to the change in
reduced mass. Thus, measurements in 86,88Sr will have
differences of magnitude ∼1/(87×1836)=6.3×10−6 but
opposite sign from 87Sr. Averaging the quantum defects from
86,88Sr will cancel the first order error and give errors of
roughly the square of this quantity. Using the data from
table 1, the s s5 50 3S1 state has quantum defect of 3.370 85 for
87Sr [22] and 3.370 97 for 88Sr [23] which is a difference of
magnitude 1.2×10−4. It is not clear to us that this difference
is real because the 3S1 energies in table 2 agree to all digits
measured in [22].

The frame transformation method is an approximation
when the quantum defects have energy dependence. The error
enters through the change in quantum defect over an energy
range ∼1/2 that of the threshold splitting. For 87Sr, this
energy is 3.8×10−7 a.u. Taking the most rapidly varying
quantum defects, it would be like an error of ∼3×10−5 in
the μ0 for the nd series and a factor of 100 smaller for the 3S
series.

In the calculation of matrix elements, there should
be terms containing the derivative of the quantum defect
with respect to energy [20]. The relative size of the error
is roughly ( )m n m=d dE d dE d dn. This is roughly

( ) ( )m m m m- + -n n2 42 0
3

4 0
5. The worst cases would

be the nd series. Taking n=50 would give an error of
∼0.1% for 1D and 3D3 which are the largest.

Lastly, while ( )nP rℓ is finite and well defined outside of
the core region, this form does not hold all of the way to
r=0. How to treat the radial dependence at small r
introduces uncertainty in the calculation. However, the small
r part of the radial function contributes very little to the matrix
elements of Rydberg properties like polarizability, C5 matrix,
and C6 matrix. We tried two methods for extending the radial
function to r=0 and found they resulted in the same value of
the matrix element to better than 0.1%. In both methods, we
solved the radial Schrödinger equation from large r to 0 using
a Numerov algorithm. In one method, we used a model radial
potential developed for Rb and in the other we used a pure
−1/r. We stopped the Numerov algorithm at a small r when
the semiclassical turning point, rp, was reached; the
semiclassical turning point used ( )+ℓ r1 2 22 2. For
r<rp, the ( ) ( ) [ ( ) ( )]= + ´ -+P r r r P r C r r1p

ℓ
p p

1 which
automatically gives a continuous P(r). The C was chosen to
give a continuous derivative as well. We believe the method
that used the Rb model potential was more accurate.

3. Results

This section presents various results for the hyperfine Rydberg
states of 87Sr. We have calculated the energies, polarizabilities,
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and C6 matrices for several different series. In this section, we
compare the calculated energies to those measured in [22]. We
also present examples of the polarizability for the 5sns FT=9/2
series. In the last section, we present C6 coefficients for the pair
states [( ) ( )]= =sns F sns F5 , 9 2 , 5 , 9 2T T .

3.1. One atom energies and mixings

This section discusses properties of the Rydberg states of a
single atom for different n. Reference [22] measured several
energies for 5sns and 5snd states. From these energies, they fit
the quantum defects for the 3S1 and 3D series. They also
performed calculations using a two electron model of the
Hamiltonian. Tables 2 and 3 show a representative compar-
ison of their measured and their calculated energies (marked
by superscript ‘a’ in the tables) for a few of the Rydberg states
they measured. Also shown are the energies calculated using
the MQDT quantization condition, equation (5), using two
sets of quantum defects: columns marked with superscript ‘b’
are the quantum defects from [11, 22] and columns marked
with superscript ‘c’ use the 3D3 from [22], the (3S ,1

3D ,1
3D2)

from [23], and the rest from [11]. In table 2, the ΔE is the
energy difference from the corresponding 5sns 3S1 F=11/2
state in GHz. In table 3, the ΔE is simply the energy differ-
ence between the close states in each group.

For all of the lines, the MQDT calculations are in better
agreement with the experiment than the calculations in [22].
There are only two lines where one of the MQDT calculations
is outside of the experimental error bars ( s d5 50 3D3 F=7/2
using the [11, 22] quantum defects and s s5 40 3S1 F=11/2
using [23] quantum defects) whereas the [22] calculations are
outside of the error bars for ∼1/2 the levels in the tables and
substantially outside of the error bars for a couple of lines.

The extrapolated values for the 1S series agrees with the
measured lines indicating the quantum defects for this series
are accurate outside of the fit range. The quantum defects
from [23] tend to give 5snd energies in better agreement with
the measured lines of [22] than the quantum defects from
[22]. It is not clear whether this observation is significant
because both sets of quantum defects give energies within the
experimental uncertainties.

Finally, the splittings of the s d5 50 states suggests there is
some room for improvement of the quantum defects. While
the MQDT calculations reproduce the main splitting there are
errors at the few MHz level whereas the experimental
uncertainty is ∼70 kHz.

3.2. One atom perturbations in the even series

One of the interesting aspects of the hyperfine split thresholds
is that there can be interesting perturbations between the
different Rydberg series of one atom with the same parity and
FT. This can arise when the Rydberg states attached to the
F=4 threshold become nearly degenerate with those
attached to the F=5 threshold. As an example of this, the
two 5sns FT=9/2 series are shown in figure 1. The y-axis is
proportional to a simulated absorption oscillator strength
where only transition into the 3S character is allowed. The

largest oscillator strength has been normalized to ∼1. Near
n=50, the state mainly composed of 3S character and that
mainly composed of 1S character are clearly identified by the
size of the oscillator strength. As n increases, there is an
overall decrease in oscillator strength proportional to 1/n3.
However, because of the interaction between the two series,
there is an interesting trend where the oscillator strength of
the ‘

1S’ series actually increases to n∼60 because of the
increased interaction between the series. Near n;110, there
is a nearly complete cancellation in the oscillator strength of
one of the series. This near zero arises because the difference
in ν between the two channels is 1 at that energy; when this
condition occurs, the channels behave as pure 1S and 3S
channels and the 1S channel has 0 oscillator strength in the
calculation.

This suggests that there is strong mixing within the series
below n=110. As an estimate, one can set the condition that
the ν state attached to the upper threshold to be equal in
energy to the ν+1/2 state attached to the lower threshold as
the condition for strong interaction:

( )
( )e

n n n
D = -

+
1

2

1

2 1 2

1

2
21

2 2 3

which gives ν∼87. This condition comes from a classical
argument: when the Rydberg period is 1/2 that of the core
state, the Rydberg electron interacts with a different Fc each
time it returns to small r. (Oddly, when the Rydberg period
matches that of the core state, the Rydberg electron interacts
with the same Fc each time it returns to small r which is like
having no hyperfine splitting at all!) This estimate does not
take into account the difference in quantum defects of the
different series. This is roughly where the oscillator strength

Figure 1. A simulated absorption oscillator strength for the two 5sns
FT=9/2 series where only transition into the 3S character is
allowed. Each * represents a Rydberg state. The range shown is
from n;50 to ; 120. For small n, there are two states for each n.
At the highest energies shown, it is more useful to think of one
Rydberg series attached to each hyperfine threshold.
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in the two channels are equal, n;81, which is the condition
for the states to have equal mixture of 3S and 1S character.

3.3. One atom polarizability of the 5sns FT=9/2 series

The polarizability of a Rydberg state determines the coeffi-
cient of the quadratic shift of the energy with the strength of a
static electric field,  . The shift arises from second order
perturbation theory and, for states with non-zero angular
momentum, has the form

( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟a aD = - +

- +
-

E
M F F

F F

1

2

3 1

2 1
, 220

2

2
2

where α0, α2 are the scalar and tensor polarizabilities, F is the
total angular momentum of the state andM is its projection on
the z-direction. For simple series, the α0, α2 scale like n7

because the dipole matrix elements scale like ν2 and the
energy difference scales like 1/ν3: there is the product of two

dipole matrix elements in the numerator and the energy dif-
ference in the denominator.

We calculated the scalar and tensor polarizability for the
5sns FT=9/2 series with the results shown in figure 2. To
avoid the difficulty of two thresholds, the ν is defined relative
to the weighted average of the thresholds. The results are
plotted versus n≡ν+3.32 which is approximately the
principal quantum number of the Rydberg states; the 3.32 was
obtained by averaging the μ0 for the 1S and 3S series. For
n∼50, the states have dominant 3S or 1S character and have
been labeled for the scalar polarizability.

There are a few interesting features worth noting. For
almost the full range shown, the scalar polarizability is roughly
100×larger than the tensor polarizability. This is because the
electric field mainly acts on the spatial dependence of the
Rydberg electron which has S-character. For n 65, 105, and
117, the scalar polarizability smoothly changes sign which leads
to one of the states having its scalar polarizability much smaller
than expected; a small scalar polarizability means the state is
relatively insensitive to static electric fields. Finally, there are a
few states near n=90 that have especially large polariz-
abilities. This arises through the near degeneracy with 5snp
states which allows for strong mixing and shifts with small
electric fields. All of these n-dependent features arise due to the
hyperfine splitting of the thresholds. We did a calculation where
the hyperfine splitting was artificially reduced by a factor of
100. We found that the polarizability of both series smoothly
evolved with n. For example, α0/ν

7 for the 1S series smoothly
changes from −0.43 at n=50 to −0.51 at n=120 (when the
hyperfine splitting is reduced by a factor of 100, the 1S polar-
izability is reproduced to better than 1% by the expression
a n n= - +0.57 6.50

7 over the range from n=50 to 120).
Because the quantum defects for the 5snp states are not

known as well as for the 5sns, the actual values of the
polarizabilities near n=90 are probably not very accurate.
However, the way the energy differences change with n will
be similar. Thus, the results in figure 2 should have the same
general features of real 87Sr.

3.4. Two atom C6 eigenvalues: identical 5sns FT=9/2 states

This section discusses the Rydberg–Rydberg interaction
between a pair of 87Sr atoms. For Rydberg states with outer s-
electron, the C5 matrix is identically zero. The first non-zero
long range interaction is from the C6 matrix. The eigenvalues
of the C6 matrix scale like n11 when the states are part of a
simple Rydberg series. There is a product of 4 dipole matrix
elements in the numerator (giving ν8) divided by an energy
difference (giving a factor of ν3).

Reference [11] found that the 88Sr C6 coefficient for the
5sns 1S series was negative and smoothly varying between
n=30 and 70 while that for the 3S series was somewhat
larger in magnitude, positive, and smoothly varying as well.
We do find that the C6 coefficient for the 5sns 1S series was
negative near n=50 while that for the 5sns 3S series was
positive near n=50 and somewhat larger in magnitude.
However, at larger n, the 87Sr 5sns series are complicated by

Figure 2. The scalar, α0, and tensor, α2, polarizability for the 5sns
FT=9/2 states as a function of nº +n 3.32. The ν is calculated
from the hyperfine averaged threshold. The solid (red) line
shows α0=0.

7

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 244001 F Robicheaux



the threshold splitting and by the non-zero angular momen-
tum of the states due to ¹I 0.

We define = + =F F F F2T T T T1 2 1 since the calculations
are only for identical states. In our calculations, we take the
atoms to be separated along a line in the z-direction which
means the total z-component of the angular momentum,

= +M M MT T T1 2, is conserved. Because we are only treating
identical states with identical atoms, there are even states and
odd states upon swap between the atoms. Also, the symmetry
of these states means the eigenvalues for MT are the same as
for -MT . For a given MT, the number of even states is

( ∣ ∣ )+ -F M1 mod , 2T T while the number of odd states
is ( ∣ ∣ )- +F Mmod 1, 2T T .

Results are presented for the C6 matrix for identical states
with 5sns character and = =F F 9 2T T1 2 . These are the
mixed 3S and 1S series. The case where MT=FT=9 is the
stretched state and only has one eigenvalue. The scaled C6

coefficient for this case is plotted in figure 3. The strong
increases in the C6 near ~n 64 and 105 is due to near
degeneracy with [( ) ( )]¢snp sn p5 , 5 pair states which arises
from the hyperfine splitting of the thresholds: when we
decreased the threshold splitting by a factor of 100, the scaled
C6 coefficient was slowly varying over this range. The
smooth C6 for tiny hyperfine splitting reproduces the trends in
[11]: they found smoothly varying C6 for the 5sns series in
this range of n. The only Förster resonance they showed was
for the 5snp 3P1 series near n=30 due to interaction with the
5sns 3S series which arises because of the energy dependence
of the quantum defects.

The C6 for the MT=FT=9 s s5 63 3S state is
4.23×1022. All of the contributions are from 5snp
FT=7/2, 9/2, or 11/2 states Of the 4.23, 1.31 is from two
9/2 states, 1.06 is from a 9/2 and a 11/2 state, and 0.65 is
from two 11/2 states. The rest of the contribution is from
many other pairs. Second order perturbation theory, which
leads to the C6, is only relevant when the coupling is smaller

than the energy difference. For this state, the coupling equals
the energy difference at a separation of 6.4μm. At a
separation of 10μm, the shift from the C6 would be 6.1MHz
and the coupling would be 1/4 of the splitting.

The C6 eigenvalues for all MT are shown in figure 4 for a
pair of s s5 50 1S states, a pair of s s5 50 3S states, and a pair of
s s5 63 3S states. The s s5 63 3S states correspond to the point
enclosed by the (red) square in figure 3. The C6 for the s s5 64
and 653S states are larger but probably less accurate due to
the smaller energy difference with the np states. Because the
atoms are identical there are even states and odd states upon
swap between the atoms. There are some interesting features
worth noting. The first is that the spread in eigenvalues of the
C6 matrix is smallest for the pair of s s5 50 1S states. Perhaps,
this is not surprising because the 1S states are only in the

=F 9 2T series and their isotropic nature is preserved for
n∼50. Another interesting feature, that was also found in
[13], is that some of the even and odd states become nearly
degenerate when M 0T . For the s s5 50 1S states, all of the
odd states are nearly degenerate with an even state for
MT�7. For the s s5 50 3S states, only the lowest two odd
states become nearly degenerate with even states as M 0T .
This effect is not present at all for the s s5 63 3S states which
may be due to the near Föster resonance for this state. Also,
the relative spread in C6 coefficients is much larger for the
s s5 63 3S states which probably reflects the importance for the
hyperfine splitting to obtain such large C6. Using the values of
ν given in the caption, the eigenvalues in the figures can be
converted to SI units: the s s5 50 1S states have  -C 10.96

GHzμm6, the s s5 50 3S states have C6; 30 GHzμm6, and
the s s5 63 3S states have ~ -C 6 206 THzμm6. As with the
polarizability calculations, we do not expect high accuracy for
the s s5 63 state but we do expect there to be large C6 matrices
in the neighborhood of this state.

As a test of the C6 calculations, we computed the C6

coefficient for the s s5 50 1S state when setting the threshold
splitting to 0 and compared that value to the tabulated results
in [11] supplementary material. Our value was −6.792×
1019 and [11] reported −6.820×1019: a difference of 0.4%.
We do not know the origin of this difference since we use the
same quantum defects as [11] for both s-series and all of the
p-series. We tried two different methods for calculating the
radial matrix elements and found a difference more than a
factor of 10 smaller than 0.4%. We also tried different
convergence criteria in our sum over intermediate states, but,
again, the change in our calculated value was too small to
explain this difference.

4. Conclusions

We have calculated various energies, polarizabilities, and C6

matrices of 87Sr Rydberg states using a variation of the theory
described in [13]. Because the quantum defects of Sr are
known to much higher accuracy than the Ho example in [13]
and the threshold structure is much simpler, we expect that
the polarizabilities and C6 coefficients of 87Sr to be much
more accurate than those for Ho. For example, the 5sns and

Figure 3. For = =F F 9 2T T1 2 , the scaled C6 coefficient as a
function of nº +n 3.32 for MT=9, i.e. the stretched state. The
value enclosed by a (red) square is for the s s5 63 3S state. To convert
to GHzμm6, multiply by 1.44×10−19.
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5snp series are approaching the level of accuracy needed for
quantitative predictions. In order to predict the C6 matrix for
the 5sns series more accurately, the most pressing measure-
ment is of the 5snp quantum defects above n=50. The
values from [11] are obtained by a fit to levels 10�n�29
for 1P while the 3P series has 8�n�15, 22, and 18 for
J=0, 1, and 2 respectively.

Most importantly, the perturbations and energy shifts that
arise due to the hyperfine splitting of the thresholds lead to
strong enhancement of the polarizability and the C6 coefficients
that might not be present without the threshold splittings. This
property is shared with the calculations in Ho which also has
hyperfine split thresholds. Therefore, it should be possible to
find many cases where the interactions between a pair of atoms
is relatively strong. The relatively large C6 interaction term
could be useful for quantum simulators or computers.

In the case of the polarizability, the strong energy
dependence leads to the polarizability changing sign with
increasing n. This might be a useful feature because a state
will have a small polarizability near the sign change. The
smallest polarizability in figure 2 is at n=64.91 with the value
a n= - ´ = - ´-1.26 10 4.23 100

3 7 9, much smaller than
the n=50 value of 9.13×1010. States with anomalously small
polarizabilities are somewhat protected from stray electric fields
which might be useful for quantum simulators or computers.

Although the hyperfine split thresholds lead to more
complicated Rydberg series, there appears to be possible
advantages that make continued investigations worthwhile.
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