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Abstract
We present a degenerate perturbation analysis in the spin–orbit coupled basis for Rydberg atoms
in an optical trap. The perturbation matrix is found to be nearly the same for two states with the
same total angular momentum j, and orbital angular momentum number l differing by 1, The
same perturbation matrices result in the same state-mixing and energy shift. We also study the
dependence of state mixing and energy shift on the periodicity and symmetry of the
ponderomotive potentials induced by different optical traps. State mixing in a one-dimensional
lattice formed with two counterpropagating Gaussian beams is studied and yields a state-
dependent trap depth. We also calculate the state-mixing in an optical trap formed by four
parallel, separated and highly focused Gaussian beams.
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1. Introduction

Laser cooling and trapping of atoms have been important topics
in the past couple decades. Optical trapping originates from the
idea that neutral atoms can be polarized and have dipole energy
in an oscillating electric field causing an energy shift that can be
used to manipulate the atoms [1]. Optical trapping has some
properties different from other atom traps, such as low trap-
induced shifts, highly controllable trap depths. Typical optical
trap induced shifts and trap depths are at the MHz level, and the
effects caused by optical traps on the atomic internal states are
extremely small [2]. These properties make optical trapping a
very attractive system in different sub-fields. Optical trapping
has been widely used in Bose–Einstein condensates [3], quant-
um computing [4], and other systems.

Innovative properties emerge when we use Rydberg atoms
instead of ground state atoms in an optical trap due to the fact
that the size of a Rydberg atom is comparable to the optical
lattice period, which is the wavelength of laser beams. Ponder-
omotive optical traps are based on the fact that an electron
oscillates with the same frequency of a highly oscillating electric
field, and the time averaged kinetic energy acts as the trapping
potential of the atom [5]. Recently, trapping Rydberg atoms
based on the ponderomotive force has beeen studied in several

works [5–7]. Most studies are related to a one-dimensional
ponderomotive optical lattice formed by two counter-propagat-
ing Gaussian beams, since their interference gives a cosine shape
beam intensity and trapping potential. Rydberg atoms in states
with different principal quantum numbers n could feel different
trapping depths, and the trapping depth in different nS states
have been studied in [8].

Moreover, the angular distribution of the electron in a
Rydberg atom also has a significant effect on the ponderomotive
energy shift. Trapping properties of Rydberg atoms in high-l
states in a one-dimensional lattice have been theoretically stu-
died in [9]. Also the dependence of trap depth on the angular
wavefunction has been experimentally studied in [7]. The
dependence of ground-state atoms on magnetic quantum number
m was studied in the late 1980s [10]. However, there has been
no systematic theoretical analysis on the energy shift, trap depth
and state mixing of Rydberg atoms with low-l in a ponder-
omotive potential including the effect of spin–orbit coupling
(SOC). For atoms with small orbital angular momentum l, SOC
can have significant effects on the angular distribution of elec-
trons. These low-l states with SOC could have different trapping
properties compared with nS states.

The state-dependent trap depths of Rydberg atoms pro-
vide a new technique that could be used in different systems.
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The low trap-induced shifts and long coherence times of
Rydberg atoms in a ponderomotive optical trap are advan-
tages in different systems such as Bose–Einstein condensates
of Rydberg atoms [11], high precision spectroscopy [12, 13],
and quantum gate operations [14]. Also, we can change the
parameters of the trap to minimize the difference of trap-
induced shifts between ground and Rydberg states. This
would give a high trapping efficiency when we excite atoms
from ground states to Rydberg states [6].

In this paper, we present a degenerate perturbation analysis
of a one-electron Rydberg atom in ponderomotive potentials
including the effect of spin–orbit interactions. The method we
use here is similar to that in [9]. We show that the energy shift
and state mixing only depend on total angular momentum j, and
there is almost no difference for two states with orbital angular
momentum = l j 1 2. In section 2.1, we present the origin of
ponderomotive optical trapping, and the method we used for
perturbation analysis. In section 2.2, we calculate the perturba-
tion matrix in the degenerate spin–orbit coupled basis with given
j. In sections 2.3 and 2.4, we study the state mixing under special
symmetry and periodicity properties of the potential. In
section 3, we give the numerical result of our analysis in two
specific potentials: a one-dimensional lattice formed by two
counterpropagating beams and an optical trap formed by four
parallel and separated beams.

2. Theoretical analysis of the energy shift and state
mixing

2.1. Introduction of ponderomotive force and ponderomotive
energy

Optical trapping of a Rydberg atom originates from the
ponderomotive force. A free electron in a highly oscillating
electric field with amplitude E and angular frequency ω

oscillates with the frequency of the field. The time averaged
kinetic energy is given by

w
=V

e E

m4
, 1

e

2 2

2
( )

where -e and me are the electron charge and mass,
respectively. Thus, the time averaged kinetic energy of the
electron acts as an effective potential energy for the atom.

Since a Rydberg electron has a large size distribution and
spends most of its time far away from the atom nucleus, we can
consider it as a quasi-free electron and calculate the spatial
average of the ponderomotive potential. The atom nucleus has a
much larger mass than the electron, so its ponderomotive energy
is far smaller than the electron’s and can be neglected here.
Suppose the atom is in a space-dependent electric field, then the
adiabatic ponderomotive shift can be calculated as [5]

ò y= +V VR r r R rd , 2ad
3 2( ) ( )∣ ( )∣ ( )

where R is the coordinate of nucleus, and r is the electron
coordinate relative to the nucleus. y r( ) is the electron
wavefunction in the Rydberg atom. +V r R( ) is the space-

dependent ponderomotive shift for a free electron, which is
proportional to the square of electric field amplitude as in
equation (1). The electric-field amplitude +E r R( ) is time-
independent as a result of laser-formed standing waves, which
leads to a spatial potential +V r R( ). Thus Vad is the spatial
average of the free electron ponderomotive energy weighted by
the electron distribution in a given state y r( ). This space
dependent potential V Rad ( ) can be used as an optical atom trap.

This ponderomotive energy gives an extra potential in the
Schrödinger equation and it can couple states together. However,
since the energy, Vad, is usually not very large, we need to have
degenerate or nearly degenerate states to have substantial mix-
ing. The method we use is based on the degenerate perturbation
theory, and we expand the perturbing potential in a degenerate
or near degenerate basis. Then we diagonalize the perturbation
matrix to study properties of energy shift and state mixing [9].

Suppose we have an atom in a set of degenerate or near
degenerate states, e.g. y y,1 2. Then the perturbation matrix
can be calculated as

⎛
⎝⎜

⎞
⎠⎟=V

V V

V V
R

R R
R R

, 3ad
ad,11 ad,12

ad,21 ad,22
( )

( ) ( )
( ) ( ) ( )

where

*ò y y= +V VR r r r R rd . 4ij i jad,
3( ) ( ) ( ) ( ) ( )

Therefore, state y y,1 2 can be coupled by the ponderomotive
potential, and their degeneracy could be lifted due to the
perturbation of the potential.

2.2. Perturbation matrices of atoms in different states

We write the Hamiltonian of a one-electron atom as

= + +H H H V , 50 SOC ( )

where H0 is the unperturbed Hamiltonian of the atom, HSOC is
the SOC correction, and V is the ponderomotive potential.
The free electron ponderomotive shift can be obtained at the
MHz level [8], which mainly depends on the power, focal
diameter and wavelength of the laser beams used in
experiments. For the n=50 state of Rb, the spin–orbit
splitting is zero for an s state, 818MHz for a p state,
92.7 MHz for a d state, and 1.27MHz for an f state [12, 13].
For Rb 50 S, P, or D Rydberg states, the ponderomotive shifts
are approximately 10MHz as described in section 3.1, which
is much smaller than the corresponding spin–orbit splitting. In
this case, we should consider the ponderomotive potential as a
perturbation in the spin–orbit coupled basis. If the spin–orbit
splitting is much smaller than the ponderomotive caused
coupling between different lʼs or jʼs, we should consider the
ponderomotive perturbation in the basis of pure orbital states.

We start with the atom in an S1 2 state; this state is
degenerate for = m 1 2j . The angular wavefunctions for these
states are
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Here  ñ∣ and  ñ∣ denote the electron in the spin-up and
spin-down states, respectively. We use the method in
section 2.1 to calculate the perturbation matrix. These matrix
elements can be calculated as
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Here R(r) is the radial wavefunction of the Rydberg electron,
and the q jY ,lm ( ) are spherical harmonics. Note these matrix
elements depend on the position of the nucleus, thus the
perturbation matrix V is also position-dependent. That means the
perturbation matrix has different eigenvalues when the atom is
located at different positions in the potential. In equations (9)
and (10), the ponderomotive potential shifts depend on the shape
of the electric field in V R( ) from equation (1), on the radial
wavefunction R(r), and on the angular distribution of the
electron. Rydberg states with the same n and small difference in
l have similar radial distributions (e.g. nS, nP, and nD) on the
distance scale over which V R( ) varies. The radius of their
maximum radial distribution are approximately m-n2 jl

2( ) .
The quantum defect mjl is small compared with the principal
quantum number n of Rydberg states, and has a small relative
effect on the radial wavefunction.

As a result, the angular part of the integrand of a matrix
element ¢Vm m,j j

will be an important factor in the determination
of the coupling between different states. If two matrix ele-
ments have the same radial wavefunction and angular
integrand, they will have the same integral, which means the
same perturbation matrix element. Also, if an angular inte-
grand vanishes, its corresponding element also vanishes.
Therefore, it is beneficial to investigate the properties of the
angular integrand for different Rydberg states.

For convenience, we can write the angular part of the
integrand from the wavefunctions as the matrix element of a
new matrix, the angular matrix r̃. Extract the angular inte-
grands from the wavefunctions in equations (9) and (10), the
angular matrix elements r ¢m m,j j

˜ of S1 2 state can be written as

*r =  Y Y , 11, 00 001
2

1
2

˜ ( )

*r r= =- - 0, 12, ,1
2

1
2

1
2

1
2
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which can be written in the more compact form

⎛
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⎞
⎠
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*

*
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Y Y

Y Y

0

0
. 1300 00

00 00
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We call this matrix the angular matrix of a one-electron
system in Rydberg S1 2 state.

Similar to the case for an S1 2 state, if we consider the
atom in a Rydberg P1 2 state, we can use Clebsch–Gordan
cofficients to convert the spin–orbit coupled basis into an
orbital basis (angular part), which is
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Matrix elements of the angular matrix of a P1 2 state can be
written as

* * *r = + =  Y Y Y Y Y Y
1

3

2

3
, 16, 10 10 11 11 00 001

2
1
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3
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2
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2
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2
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2
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which means all matrix elements of the angular matrix of P1 2
state are exactly the same as for the S1 2 state.

If we have the atom in a Rydberg P1 2 state, no matter
what shape the ponderomotive potential is, the two states

=  ñm 1 2j∣ are never mixed just as for the S1 2 case. Each of
them is an eigenstate of this system. They also have the same
energy shift, which means the ponderomotive potential can-
not split the P1 2 state.

Similarly, we find that the angular matrix of the P3 2, and
D3 2 states are the same:
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Since equation (18) is an Hermitian matrix, we can use the
fact that * = - -Y Y1lm

m
l m,( ) , and the product of two spherical

harmonics can be expanded as a linear combination of
spherical harmonics. Then we can re-write the matrix

3
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equation (18) as
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With our definition of the angular matrix element rij˜ , we
may now calculate the perturbation matrix element in
equation (4) in another way:

ò ò
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We first do the radial part integral with the free electron
ponderomotive potential +V R r( ) and the radial wavefunc-
tion R(r). We have

ò r q j q j= W V VR Rd , , , , 21ij ij( ) ˜ ( ) ( ) ( )

where

òq j = +V r r R r VR R r, , d . 222 2( ) ( ) ( ) ( )

Then we can expand rij˜ and V in the spherical harmonic basis
and its complex conjugate basis. We have

åq j q j=V a YR R, , , , 23
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Thus equation (21) can be simplified as

*ò åå q j q j= W
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lm l m
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The last step is based on the orthonormality of the spherical
harmonics. In equation (22), V is the radial averaged free
electron ponderomotive potential using the radial wavefunction.
Thus V is an angular function and it is nearly independent of
quantum number l, m, or mj. We can find the expression of alm
in equation (23) using Fourier analysis. We have

*ò q j q j= W a V YR Rd , , , , 27lm lm( ) ( ) ( ) ( )

*ò òq j= W +Y r r R r V R rd , d . 28lm
2 2[ ( ) ] ( ) ( ) ( )

We name alm the multipole expansion value of a free electron
ponderomotive potential V R( ) on the spherical haromonics
Ylm in the given radial wavefunction R(r).

For a given potential, we can study its expansion values
on different spherical harmonics to study the energy shift and
state mixing for an electron in states with different l, m, or mj.
Usually the monopole term a00 is several times larger than the
other higher order terms because spherical harmonics Y00 is

always positive in θ and j, thus there tends to be little can-
celation in the integral for the matrix elements. Conversely,
higher order spherical harmonics change sign in the integral
region, and spherical harmonics with higher l, m flip sign
more frequently than those with smaller l, m. Since positive
and negative values are somewhat canceled, the higher order
expansion values are usually smaller than the lower order
expansion values. Because a00 only exists in the diagonal
terms with = ¢m mj j , the diagonal elements are usually several
times larger than the off-diagonal elements. We will study the
properties of alm in potentials with symmetric properties in
section 2.3.

For an electron in a spin–orbit coupled basis with given
j and = -l j 1 2, the general expression for the element in
the angular matrix, after tracing over the spin, can be written
as

*
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The element for = +j l j, 1 2 can be written as
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These ¢C C,i i symbols are Clebash–Gordan coefficients. We
can expand the product of two spherical harmonics into a
linear combination of spherical harmonics, and simplify
equations (29) and (30). They generate the same expansion
result (see appendix for the derivation):
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The brackets in equation (32) are Wigner 3j-symbol. We name
this ¢b m m L, ,j j( ) the expansion coefficient of an angular matrix

element on spherical harmonics * - ¢YL m m, j j
. Note that all of the

anti-diagonal matrix elements with + ¢ =m m 0j j vanish
because of the parity in spherical haromonics. Also note that,
according to equation (32), if = ¢m mj j and L=0, the
coefficient multiplying the Y00 in the diagonal elements are all

p1 4 . We will use this result for state mixing analysis in
section 2.4. In equation (31), the summation index L is in the
range  - ¢ -m m L j2 1j j∣ ∣ and L must be an even integer
for the expansion coefficient to be non-zero. That means only
Y00, Y2m, Y4m, etc terms exist in the angular matrices, and only
monopole, quadrupole, hexadecapole, etc expansion values of
the potential have an effect on the ponderomotive shift.
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For example, we can use this analysis for the D5 2 state to
study the properties of its angular matrix. This is a 6×6
matrix, and we obtain the result in figure 1, where only
diagonal elements contain summation of YL0 terms. The first
two off-diagonal lines have YL, 1 terms, while the second two
off-diagonal lines have YL, 2 terms, etc. The dashed line in the
matrix contains anti-diagonal elements, which are always
zero. We will use this figure for symmetry analysis in
section 2.3.

Angular matrices always have the same form for the two
spin–orbit coupled states with the same j, and l differing by 1.
In this case, if the energy shift induced by the ponderomotive
potential is much smaller than that caused by the SOC, the
total angular momentum number j determines the eigenvalues
and eigenstates of the electron in a ponderomotive potential.

If we consider the atomic Hamiltonian without the SOC
term, or if the spin–orbit splitting is much smaller than pon-
deromotive shift, the cross terms between different jʼs or lʼs will
be important for obtaining the correct states and energies. If
these cross terms are comparable to or larger than the spin–orbit
splitting, states between different jʼs or lʼs have significant
mixing. This usually happens for Rydberg states with l 3.
For example, the natural energy spliting between 50 F5 2 and
50 F7 2 states is 1.27MHz [13], which is smaller than the cross
terms between them (about 5–10 MHz) caused by two Gaussian
beams with power 1 W as described in section 3.1. For elec-
trons in these states, we need to calculate the perturbation
matrix in a larger basis including = j l 1 2 and other near
degenerate states. This is equivalent to a pure orbital basis since
electron spin has no explicit effect on ponderomotive potential.
Properties of high-l atoms in ponderomotive potential have been
studied in [9].

2.3. Symmetry analysis of the potential shape

We study those special potentials with rotational symmetry
properties, and the effect of periodicity on the ponderomotive
energy shift. Consider a potential with periodicity in j,

q j q j p= +V r V r s, , , , 2( ) ( ), s is a positive integer, and
s 2. We use the conversion relation that * = - -Y Y1lm

m
l m,( ) .

Then we calculate the integral in equation (27):
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When the common ratio pm sexp 2 i( ) is not 1 in the
geometric summation in equation (33), m is not a multiple
of s, and the integral vanishes. This gives the result that the
expansion value alm in equation (27) is zero. Based on the fact
that * = - -Y Y1lm

m
l m,( ) , both values al m, are zero. Con-

versely, for those mʼs which are multiples of s, the expansion
values on these spherical harmonics do not vanish (zero is a
multiple of any integer s).

For example, if a potential has j-periodicity that j =V ( )
j p+V 2( ), we have s=4. Multipole expansions of the

potential with =M 1, 2, 3, 5, 6, 7 ,... vanish, while =M
0, 4, 8 ,... terms are non-zero. Suppose we have an atom in the
P3 2 or D3 2 state. These two states have 4×4 angular matrices
which can be found in equation (19), and the matrix elements
consist of YLM with M 2∣ ∣ . Based on our analysis here, all of
these off-diagonal matrix elements vanish for these two states,
and only the diagonal elements are non-zero. As a result, P3 2
and D3 2 states would not mix in this periodic potential at this
symmetric position.

Furthermore, suppose we have an atom in the D5 2 state
with the same periodic potential. In the angular matrix, only
diagonal elements and YL, 4 elements are non-zero, and all
other elements vanish. Refer to figure 1, only the elements in
the diagonal line and YL, 4 lines have non-zero values. We
will analyze state mixing in this kind of potential in
section 2.4. Numerical results can be found in section 3.3.

There is an intersting limit when  ¥s , and it means
that this potential is cylindrically symmetric and j-indepen-
dent. In this case, only the m=0 terms do not vanish. This
means, in the angular matrix, only the diagonal terms are non-
zero, and the spin–orbit coupled or orbital eigenstates are
never mixed in this potential. We can also get this result
directly from the fact that cylindrically symmetric potential
conserves the magnetic quantum number m. In this kind of
potential, we may get the ponderomotive energy shifts
directly from calculating the expectation value of the potential
in the unperturbed states [7].

Similarly, we study potentials satisfying symmetric
properties q p q= -V V( ) ( ), which corresponds to poten-
tials having a mirror symmetry with respect to the x–y plane.

Figure 1. Angular matrix of D5 2 state.
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We can calculate the integral (let q p q¢ = - )

ò

ò
ò

q q q q

q q q q

q q q q

= - ¢ ¢ ¢ - ¢

= ¢ ¢ ¢ ¢ -

p

p
p

-

V P

V P

V P

d sin cos ,

d sin cos ,

d sin cos 1 . 34

l
m

l
m

l
m l m

0
0

0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

Here qP cosl
m ( ) is the associated Legendre polynomial. Only

even l are allowed in the matrix element expansion, so if m is an
odd number, this integral vanishes. Therefore, only expansion
values aLM with both L M, even numbers are non-zero.

2.4. State mixing analysis based on symmetric potential

Some matrix elements vanish due to the symmetry properties
of the potential and parity of the angular wavefunction. That
leads to a simpler form of the perturbation matrix, and a
simpler result for the state mixing. Generally, if a given
potential does not have any special symmetry properties, most
angular matrix elements are non-zero. In this case, expansion
values aL1 exist, which would make state mixing between two
adjacent spin–orbit coupled states with D =m 1j , and finally
leads to complicated state mixing between almost all states.

We can review the following properties of matrix diag-
onalization in linear algebra. Suppose we have a diagonal
matrix H with diagonal elements ~h hnn11 . The eigenstates of
this matrix are just n unit vectors. Then we add a perturbation
to this matrix by setting *= =h h pij ji , and let all the other off-
diagonal elements remain zero. We can find that only the state
i j, are mixed in the new eigenstates. Also, if the off-diagonal
term is much smaller than the difference between two
corresponding diagonal terms, which means -p h hii jj∣ ∣ ∣ ∣,
the coupling between state i j, is small. Conversely, if p∣ ∣ is
comparable to -h hii jj∣ ∣, the coupling between state i j, gets
much stronger.

In the perturbation matrix of =j 3 2 states in
equation (19), all coefficients multiplying the *Y00 terms in the
diagonal elements are p1 4 . This is also a general result for
the perturbation matrix in all states, and it can be derived from
equation (32). Thus the a00 terms are the overall energy shifts
for all states, and have no effect on state mixing. Refer to
equation (19), the differences between diagonal terms origi-
nate in Y20. Off-diagonal terms consist of Y2, 1 and Y2, 2. As
we discussed in the last paragraph, if expansion values a2, 1

or a2, 2 are comparable to a20, the coupling between states
withD =m 1j , or 2 would be much stronger. Since a00 has no
effect on the state mixing, the state mixing of a =j 3 2 state
in a ponderomotive potential turns into analysis and com-
parison of the quadrupole expansions of the potential.

In our perturbation matrix, if a potential has symmetry
properties and results in all aLM with odd M vanishes, state
mixing only exists between states with D =m 2j , and finally
leads to state mixing among all states where Dmj are even.
Consider the 6×6 angular matrix for D5 2 state in figure 1.
If all aLM with odd M vanish, the eigenstates would be states
that mixed only within the two sets = -m 5 2, 1 2, 3 2j ,
and = - -m 3 2, 1 2, 5 2j . Each set has 3 different methods

of mixing. If we flip all signs of mj in one mixing, we would
get a corresponding mixed eigenstate in the other set with the
same energy shift. As an example, both states f ñ1∣ , f ñ2∣ in
equations (35) and (36) are eigenstates in the ponderomotive
potential, and they have the same energy shifts

f ñ = = + = + = -c m c m c m
5

2

1

2

3

2
,

35

j j j1 1 2 3∣

( )

*

* *

f ñ = = -

+ = - + =

c m

c m c m

5

2
1

2

3

2
. 36

j

j j

2 1

2 3

∣

( )

Since the angular momentum jz of these two states have equal
magnitudes but opposite signs, they would be split if we
apply a small magnetic field Bz. We will study the properties
of f ñ1∣ instead of f ñ2∣ or their linear combinations.

Furthermore, if we consider a potential with only aL0 and
aL, 4 expansion values, non-zero state mixing only exists

between D =m 4j such as the staes with = -m 5 2, 3 2j ,
and = -m 3 2, 5 2j . States = m 1 2j are not mixed with
any other states in this symmetric potential, and are, thus,
eigenstates in the optical trap.

State mixing of an atom in a potential with these sym-
metry properties can be found in section 3.2.

3. Specific calculations for two traps

3.1. Counter-propagating beams as one-dimensional optical
lattice

For an optical trap using two counter-propagating Gaussian
beams in the experiment [6], the free electron ponderomotive
potential can be written as

w
= ´ + -V z

e

m
E E

4
e e , 37

e

kz kz
2

2 0
i

0
i 2( ) ( ) ( )

= ´
e E

m k c
kzcos 38

e

2
0
2

2 2
2 ( ) ( )

on the beam axis. The beam has a maximum intensity at
z=0, and a minimum at l=z 4. We put an atom on the
axis of the beam, and let the z-axis of the atom be the same
with the beam axis. The atom would feel a cylindrically
symmetric potential, which means it is j-independent. Based
on our analysis in section 2.3, spin–orbit coupled states will
not mix in this potential.

We calculate the eigenvalues of a D3 2 state when the
atom locates on the different positions on the axis. Plot of
eigenvalues versus z-position of the atom can be found in
figure 2. Before perturbed by the ponderomotive potential,
D3 2 has 4 degenerate states which are =  m 3 2, 1 2j .
After perturbation, we found two different eigenvalues when

l¹z 8. The ponderomotive energy partially lifts the
degenerace for D3 2 states. States with the same absolute
value of mj are still degenerate. We also find that these two
eigenvalues are the same at l=z 8, which means a20 is zero
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at this point by comparing with the diagonal elements in
equation (19). Therefore, the degeneracy of D3 2 is not lifted
at this point, and the state is still four-fold degenerate.

For the atom located at =z z0, the potential can be
simplified as

= -V z z V k z z, cos , 390 0
2

0( ) [ ( )] ( )

= + -
V

k z z
2

1 cos 2 , 400
0{ [ ( )]} ( )

= + +
V

kz kz kz kz
2

1 cos 2 cos 2 sin 2 sin 2 .

41

0
0 0( )

( )

In this expression, the ponderomotive potential consists of
three parts. The first part V 20 is a constant shift, and its
expansion in equation (28) only consists of monopole terms.
It is the overall energy shift for all states. The third term

kzsin 2 has odd parity, and it vanishes in the integral with all
YLM with even L. In the second term, kzcos 2 0 is the atom
position dependent coefficient, and it describes a cosine shape
for the energy shift versus atom position z0. Also, the spatial
average of =V kzcos 22 in a specific eigenstate determines the
trap depth in that state.

In figure 2, states with larger mj∣ ∣ have larger trap depth.
In those experiments with the atom in a DC electric field
polarized perpendicular to the beam axis [7], atoms are in the
Stark effect eigenstates with z-axis of the atom perpendicular
to the beam axis. We can do similar analysis for the trap depth
of atoms in these states with different mj∣ ∣, and principal
quantum number n. The analytic result is consistent with the
experimental observation in [6].

3.2. Symmetric case in a system with four parallel Gaussian
beams

A model for trapping atoms using four parallel Gaussian
beams has been introduced in [15]. Each beam is centered at
one corner of the square. Two diagonal beams have parallel

polarization, and two adjacent beams have perpendicular
polarizations. The setup of this system can be found in
figure 3 and figure 2 in [15]. This potential has good sym-
metries along the z-axis, y=0 line, y=x line, etc. It also has
a mirror symmetry with respect to the z=0 plane as
described in section 2.3. We study the properties of an atom
located at these symmetric positions in this section, and
located at asymmetric positions in the next section.

Suppose the center of a cartesian frame is located at the
center of the beam’s square, and the z-axis is parallel with the
beam axis. The free electron ponderomotive potential has the
form

⎜ ⎟

⎜ ⎟ ⎜

⎟ ⎜ ⎟

⎡
⎣⎢

⎤
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2
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2
,

2
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2
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2
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2
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e

2
0
2

2
0

2

2

2
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where

⎡
⎣⎢

⎤
⎦⎥ j= -

+
-u x y z

x y

w z
x y z, , exp exp i , , , 43

2 2

2
( )

( )
[ · ( )] ( )

= +w z w 1 , 44z

z0

2

R
( )( ) ( )

j h= +
+

-x y z kz k
x y

R z
z, ,

2
, 45

2 2
( )

( )
( ) ( )

Figure 2. Eigenvalues of an atom in 50 D3 2 state located on the
beam axis in a ponderomotive optical lattice. Parameters used in our
calculation are: P=1.0 W, λ=1064nm, w0=6.5 μm. These
paremeters correspond to a free electron ponderomotive shift
19.3 MHz at z=0.

Figure 3. Setup of four parallel Gaussian beams system. Red arrows
indicate the polarizations of beams. Parameters used in the
calculation: P=5 mW, w0=1.5 μm, d=4 μm, λ=780 nm,
where P is the power of one laser beam, w0 is the waist of a beam, d
is the distance between two adjacent beams, and λ is the wavelength.
A free electron has a ponderomotive shift of 12.7 kHz at the center
of the square, and 1.94 MHz at the center of one beam.
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⎡
⎣⎢

⎛
⎝⎜

⎞
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⎤
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1 , 46R
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⎞
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. 48R
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The beam is highly focused so that the distance d is much
larger than the beam waist w0. This can reduce the effect of
interference near z=0 plane. As z increases, the waist size
w(z) increases, which increases the interference among these
four beams.

We can investigate the properties of an atom in the 100
D3 2 state and located on the y=0 line in the z=0 plane.
The radius of this atom is approximately m»n a2 1 m2

0 , and it
is comparable to d. Thus the energy shift and state mixing of
this atom could have different properties when it is located at
different positions in the potential. We can find from figure 3
that the potential has good symmetries when the atom is
located on the y=0 line in the z=0 plane. When this atom
is in the z=0 plane, it feels a potential with = -V z V z( ) ( ).
Based on our previous symmetry analysis in equation (34), all
expansion values aLM with odd M vanish. In addition, the
atom feels the potential with a mirror symmetry j =V ( )

j-V ( ). This kind of symmetric potential guarantees all of the
perturbation matrix elements to be real, which leads to a real
probability amplitude of the eigenstate in each spin–orbit
coupled state. We plot the eigenvalues of the perturbation
matrix in figure 4, and the probability of the corresponding
eigenstate in each spin–orbit coupled state in figure 5.

The eigenvalue versus position curves have similar
shapes with the free electron potential, which can be directly
calculated from figure 3 and equation (42). They have the
maximum energy shift at =x d0.5 point. We also do the
quadratic fit for this potential near the center = = =x y z 0,
and the oscillating frequency of an Rb atom is of the order of
3–10 kHz in the x–y plane. The exact frequency depends on
the wavefunction and the oscillating angle of the atom [15].

In figure 5, when the atom in a 100 D3 2 state is located
at the center = = =x y z 0 position, four mj states are not
mixed, which is because the potential has a p 2 angle rota-
tional symmetry on j at the center of the system. This figure
shows the probability of the new eigenstates with = -m 3 2j

character at x=0 in each SOC state. It gives the state cou-
pling only between = -m 3 2j and =m 1 2j states. Note
that states = -m 1 2, 3 2j have no contribution to this state
mixing because expansion values al, 1 and al, 3 vanish due to
the property of a mirror symmetric potential described in
equation (34). State mixing only exists between D =m 2j .
The state mixing gets stronger with the x-position of the atom,
and reaches the maximum mixing at =x d0.5 which is the
closest position to the center of two adjacent Gaussian beams
on this line.

Based on our analysis in equations (35) and (36), we can
flip the sign of all mjʼs in the first eigenstate, use the complex
conjugate of their probability amplidutes as new amplitudes,
and then we can get the second eigenstate for this system with
the same energy (for convenience, we call the eigenstate in
equation (5) the first eigenstate). There are also two other
degenerate eigenstates with different energies from the first
and second eigenstates. We can diagonalize a 4×4 pertur-
bation matrix with aLM vanishing for odd M, and get the
analytic result for the other two eigenstates. If we write the
first eigenstate as ñ + - ñc c1 2 3 21 2∣ ∣ , the third eigenstate
can be written as ñ - - ñc c3 2 1 21 2∣ ∣ , and the fourth
eigenstate can be written as * *- ñ + - ñc c1 2 3 22 1∣ ∣ . Note
here the first and the fourth eigenstates have their probabilities
of ñ1 2∣ and - ñ3 2∣ exchanged, so does other two eigenstates.

Similarly, we can investigate the properties of an atom in
100 D3 2 state and located on the =y x2 line in the z=0
plane. The potential still has z-symmetric properties, and only
states with even Dmj can mix in the eigenstates. Since the
atom is no longer located on the y=0 line, most of the
perturbation matrix elements are no longer real numbers. The
probability amplitudes of the eigenstates in the spin–orbit
coupled states could be complex numbers. We plot eigenva-
lues in figure 6, and the probability of the eigenstates in each
spin–orbit coupled state is shown in figure 7.

Figure 4. Energy shifts of an atom in 100 D3 2 state located on the
y=0 line in the z=0 plane. ‘Was =m 3 2j∣ ∣ ’ means that when
x=0, the curve corresponds to the unmixed states =m 3 2j∣ ∣ .

Figure 5. State mixing of an atom in 100 D3 2 state located on the
y=0 line in the z=0 plane. The vertical axis is the probability of
the eigenstate in each SOC state mj.
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We can find from figure 6 that the eigenvalues reach the
maximum when the atom is located at =x y d d, 0.3 , 0.6( ) ( ),
which is the closest position to the center of d d2, 2( )
Gaussian beam on this line. The strongest state mixing of
these two states appears at the same position in figure 7.

3.3. Asymmetric case in a system with four parallel Gaussian
beams

As another example, we consider an atom in the state of 100
D5 2, but let the atom locate on the line of =y x2 in the

m=z 5 m plane. All other parameters of the optical trap
remain the same with section 3.2.

Since the atom is no longer in the z=0 plane, it does not
have the mirror symmetry that exists for the z=0 plane.
Then the expansion values on YLM with odd M terms become
non-zero on the line of =y x2 . Based on our analysis in
section 2.4, the state coupling with D =m 1j exists. As

m=z 5 m plane is close to the z=0 plane, these odd M
expansion values aLM are small compared to the even M
expansion values. As a result, the state mixing is mainly
between D =m 2j states, and only has small corrections for
the other three states. Our calculated results of the eigenvalues
versus the position of the atom can be found in figure 8, and
three plots of the six eigenstates after mixing can be found in
figure 9.

We find that wavefunctions of different eigenstates have
substantial difference at different positions in this potential,
though their energy shifts are similiar between each other.

4. Conclusions

In this paper, we investigated the effect of the ponderomotive
force on a one-electron Rydberg atom. Using the wavefunc-
tion of a Rydberg electron, the spatial averaged ponder-
omotive energy of the Rydberg electron in an oscillating
electric field acts as an effective potential energy of the
Rydberg atom. This ponderomotive potential can couple

degenerate or nearly degenerate states. Under the condition
that the ponderomotive shift is much smaller than the SOC
energy when l 3, the effect of a ponderomotive potential
can be analyzed using the degenerate perturbation theory in a
spin–orbit coupled basis. We studied the energy shift and
state mixing of a one-electron Rydberg atom with given
orbital angular momentum l and total angular momentum j in
different ponderomotive potentials.

First, we did multipole expansion of a ponderomotive
potential. Then we studied matrix elements of a general
spherical harmonics in a spin–orbit coupled basis to study the
effect of spin–orbit coupled states’ wavefunctions on the
perturbation matrix. Our derivations showed that the eigen-
values and eigenstates mainly depend on j and n but hardly
depend on l. As a result, the =  ñm 1 2j∣ states for =j 1 2
are never mixed in a ponderomotive potential.

Figure 6. Energy shifts of an atom in 100 D3 2 state located on the
=y x2 line in the z=0 plane. ‘Was =m 3 2j∣ ∣ ’ means that when

x=0, the curve corresponds to the unmixed states =m 3 2j∣ ∣ .

Figure 7. State mixing of an atom in 100 D3 2 state located on the
=y x2 line in the z=0 plane. The vertical axis is the probability of

the eigenstates in each SOC state mj.

Figure 8. Energy shifts of an atom in 100 D5 2 state located on the
=y x2 line in the m=z 5 m plane. ‘Was =m 5 2j∣ ∣ ’ means that

when x=0, the curve corresponds to the eigenstate mixed between
= m 5 2j and 3 2, where 5 2 is the main component of this

state. ‘Was =m 3 2j∣ ∣ ’ means the eigenstate mixed between 3 2
and 5 2, where 3 2 is the main component. ‘Was =m 1 2j∣ ∣ ’

means the eigenstate of 1 2, and it was not mixed when x=0.
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Some potentials have periodicity or symmetry properties.
Under special symmetries, expansion values of some sphe-
rical harmonics in a given potential vanish. These zero matrix
elements are usually on off-diagonal lines of the perturbation
matrix, and lead to a simpler ponderomotive energy shift and
state mixing. If the expansion value of a ponderomotive
potential in YLM is zero, there is usually no state mixing
between D =m Mj states. This gives a method to study the
state mixing between two states by directly calculating the
expansion value of the given potential in spherical harmonics.
State mixing in this symmetric situation is still valid
approximately if the atom is only slightly deviated from the
symmetric or periodic position, because the expansion values

of the potential in YLM remain very small even if they are not
exactly zero.

We also calculated state mixing and energy shift in a one-
dimensional optical lattice formed by two parallel Gaussian
beams. Since this potential is cylindrically symmetric, there is
no state mixing in this potential. Our result shows that energy
shifts of different states are cosine functions versus the atom
position on the beam axis. We also analyze the trap depth for
states with different angular momentum in this potential,
which mainly depends on the polarization direction, m∣ ∣ or
mj∣ ∣, and the principal quantum number of the state.
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Appendix. Proving the equivalence of two angular
matrices for ðl ¼ j � 1=2Þj and ðl ¼ j + 1=2Þj states

Based on our definition of angular matrices in equation (13),
each element is the angular part of the integrand of corresp-
onding perturbation matrix element integral. In our derivation
in equation (24), we expand the angular matrix element r ¢m m,j j

˜
on a basis of complex conjugate of spherical harmonics:

*år q j q f= ¢¢ b m m Y, , , . A.1m m
kq

kq j j kq,j j
˜ ( ) ( ) ( ) ( )

Then we can calculate the matrix element of Ykq in the

spin–orbit coupled basis =  =l j s j m, , , j
1

2

1

2
to get the

coefficient ¢b m m,kq j j( ), which is

ò q j r q j¢ = W ¢b m m Y, d , , , A.2kq j j kq m m,j j
( ) ( ) ˜ ( ) ( )

= ¢l s j m Y l s j m, , , , , , . A.3j kq j ( )

Using the Wigner–Eckart theorem [16], we have
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Figure 9. State mixing of an atom in 100 D5 2 state located on the
=y x2 line in the m=z 5 m plane. The vertical axis is the

probability of the eigenstates in each SOC state mj. These graphs
show the state mixing mainly among the states
with = - -m , ,j
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Here we used the fact that =s 1 2, = l j 1 2. We must
have some restrictions so that the matrix element is non-zero,
which are

= - ¢q m m , A.8j j ( )

 - ¢m m k j2 , A.9j j∣ ∣ ( )

k must be an even number, A.10( )
  - ¢ -m m k j2 1. A.11j j∣ ∣ ( )

The explicitly l-dependent terms of equation (A.7) are as
follows

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

= +c l l
l j

j l k

l k l2 1
1

2 0 0 0
, A.12( )( ) ( ) ( )

which can be shown to be the same for = l j 1 2 [17]. The
final form of equation (A.7) can be written as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

¢ = - + + -

´ - -
- ¢ - ¢

p
+ +b m m j k j k

j j k j j k

m m m m

, 1 2 1 2

0 0 0
A.13

kq j j
m k

j j j j

1 2 2 1

4

1

2

1

2

j( ) ( ) ( )( )
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for = l j 1 2, where = - ¢q m mj j . ¢b m m,kq j j( ) are non-
zero only when k satisfies the restrictions in equations (A.10)
and (A.11).
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