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Abstract
Sufficiently high densities in Bose–Einstein condensates provide favorable conditions for the
production of ultralong-range polyatomic molecules consisting of one Rydberg atom and a
number of neutral ground state atoms. The chemical binding properties and electronic wave
functions of these exotic molecules are investigated analytically via hybridized diatomic states.
The effects of the molecular geometry on the system’s properties are studied through
comparisons of the adiabatic potential curves and electronic structures for both symmetric and
randomly configured molecular geometries. General properties of these molecules with
increasing numbers of constituent atoms and in different geometries are presented. These
polyatomic states have spectral signatures that lead to non-Lorentzian line-profiles.

Keywords: chemical bonds, polyatomic Rydberg molecues, hybridized orbitals, Rydberg
physics, ultracold long-range molecules
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1. Introduction

Exotic dimers consisting of a Rydberg atom bound to a
neutral ground state atom possess many fascinating proper-
ties, such as their oscillatory potential energy curves, extre-
mely large bond lengths, complex nodal wave functions and,
in the polar ‘trilobite’ case, huge permanent electric dipole
moments [1–5]. In recent years, non-polar long-range Ryd-
berg molecules consisting primarily of ns [6], np [7] and nd
[8–10] states have been observed in Rb condensates, and a
polar trilobite molecule exhibiting a kilo-Debye permanent
electric dipole moment has been photoassociated in Cs [11].
Rydberg molecules have been formed in an optical lattice,
providing a non-destructive probe of the Mott transition [12].
Recently, molecular formation in non-alkali atomic species
have been explored [13, 14].

Current experiments can excite very high Rydberg states
in dense condensates so the Rydberg electron’s orbit encloses
more than one ground state atom, increasing the probability of
forming polyatomic molecules [15, 16]. At higher densities

and excitation energies, even the coupling between the
Rydberg electron and the entire condensate [17, 18] can be
studied; in this regime the spectrum no longer exhibits few-
body molecular lines but rather demonstrates a density shift
[19] possibly requiring a mix of few and many-body
approaches [20, 21]. Theoretical efforts in this area have
predicted the formation of Borromean trimers [22] and
investigated the breathing modes of coplanar molecules [23].
These investigations have only included s-wave scattering,
neglecting essential physics particularly relevant at high
density [15, 20]. Very recently a Rydberg trimer including p-
wave scattering and electric field effects was investi-
gated [24].

This present work develops an accurate theoretical fra-
mework incorporating p-wave scattering that robustly gen-
eralizes to any number of constituent atoms in an arbitrary
molecular shape. General formulas are provided for the
electronic wave functions and Born–Oppenheimer adiabatic
potential energy curves (APECs) in terms of linear combi-
nations of the diatomic ‘trilobite’ [1] and ‘butterfly’ [2] wave
functions; construction of these hybridized orbitals is aided by
adapting them to the molecular symmetry point group using
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the projection operator method [25, 26]. A key result of this
study is that the level spacings, degeneracies, and adiabatic/
diabatic level crossing properties of these systems are deter-
mined by hybridized orbitals reflecting the molecular geo-
metry. This represents a necessary step towards an accurate
understanding of experimental spectra in increasingly dense
environments.

This work is organized as follows: section 2.1 describes
the polyatomic Hamiltonian and outlines the full solution via
numerical diagonalization. In section 2.2, the properties of the
diatomic molecular states are studied in detail, so that in
section 2.3 the polyatomic Schrödinger equation can be
solved by construction of linear combinations of these dia-
tomic orbitals. In section 2.4, these results are specialized to
highly symmetric molecules. Section 3 presents results for a
variety of molecular geometries. The reliability and accuracy
of the analytic approximations is demonstrated and the effects
of symmetry on the molecular spectra and properties are
examined in detail. Section 3.4 describes some of the prop-
erties of polyatomic molecules formed from low angular
momentum Rydberg states, which are relevant to current
experimental efforts. Finally, in section 4, the general effects
of increasing the number of atoms are studied for the trilobite
states, and section 5 concludes with a discussion of exper-
imental proposals for controlled formation of highly sym-
metric polyatomic molecules.

2. Theoretical approach

2.1. Pseudopotential and basis diagonalization

The polyatomic system consists of N ground state atoms,
located at ( )


q j=R R , ,i i i i , surrounding a central Rydberg

atom. For tractability, the molecular breathing modes, where
the ground state atoms share a common distance =R Ri to
the Rydberg core, are the primary focus of this study. The
n = 30 states of rubidium are studied to connect with previous
work [1, 23], but the general framework applies to any
Rydberg state of an alkali with a negative scattering length.
Within the Born–Oppenheimer approximation, the nuclei of
all atoms are assumed to be stationary with respect to the
electronic motion. The Rydberg electron interacts with each
neutral atom through the s-wave Fermi pseudopotential along
with the p-wave scattering term due to Omont [27, 28]. Most
of the alkalis, including Rb, possess a shape resonance in the
p-wave channel. The p-wave interaction thus has a substantial
effect on the potential energy curves: in Rb, it causes an
additional potential curve to rapidly descend to the next
lowest manifold. Recent work has demonstrated that the
molecular lifetimes and the spectroscopic lineshape depend
dramatically on the locations of the avoided crossings
between this state and other electronic states [14, 20]; it has
also been shown that this rapid drop contributes to the for-
mation of quasibound states due to internal quantum reflec-
tion [15]. Additionally, this potential curve provides a
reaction pathway between the asymptotic states of low
angular momentum and the hydrogenic manifold through a

series of avoided crossings that can be traversed diabatically
as the neutral atoms collide [29]. Due to these features it is
essential that this state be included in the study of alkali
Rydberg molecules, but even in non-alkali systems its
inclusion is important to obtain increased accuracy at smaller
internuclear distances.

Since the scale of the Rydberg orbit extends over a far
greater range than any interatomic potentials, the Hamiltonian
only includes the unperturbed atomic Hamiltonian, Ĥ0, and N
pseudopotentials:
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Atomic units are used throughout. The triplet s-wave
scattering length as and p-wave scattering volume ap

3 depend
on R through the semiclassical relationship =k 22

-E R1 ;n the singlet scattering length is an order of
magnitude smaller and is ignored. The bound state energy
En corresponds to the high-l manifold of the Rydberg state of
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The APECs are obtained by diagonalizing equation (1) in a
basis of hydrogenic eigenstates ( ) ( )( )

f q j=r Y ,nlm
u r

r lm
nl of

the unperturbed Hamiltonian Ĥ0,
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where ml is the quantum defect for a given angular momentum
l relative to the Rydberg core. Two significant difficulties
complicate this approach. The p-wave shape resonance
mentioned earlier creates an unphysical divergence in the
APECs. This is remedied by enlarging the basis size to
include additional hydrogenic manifolds adjacent to the
manifold of interest, giving sensible results due to level
repulsion between states of opposite symmetry [2]. This
introduces a more serious problem: the diagonalization of a
delta-function potential formally diverges with increasing
basis size, so the APECs do not converge with the addition of
more adjacent manifolds [31]. This issue has been addressed a
number of ways, typically by varying the number of
manifolds used to obtain agreement with experimental values
within a limited energetic regime [6, 14, 15] or by comparison
with sophisticated Green function techniques that exactly
solve the diatomic Hamiltonian [2, 4], but also via a
renormalized pseudopotential [32]. In the following numer-
ical results the basis consists of the n n, 1 hydrogenic
manifolds, which we have found agrees well with the Green

2
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function method in the diatomic case and adequately
constrains the p-wave divergence.

2.2. N = 1: diatomic molecular features

2.2.1. States of low angular momentum: Two distinct classes
of APECs, characterized by the unperturbed Rydberg electron’s
angular momentum, emerge from the diagonalization. The non-
zero quantum defects of low-l states separate them energetically
from the nearly degenerate high-l ( l 3 for Rb) manifold. The
APECs for low-l states are tens to hundreds of MHz in depth
and support only a few weakly bound molecular states. The
first-order APEC for the ∣ ñnlm state including only the s-wave
interaction is proportional to the Rydberg electron’s wave
function and, due to the symmetry provided by the internuclear
axis, is only non-zero for ml = 0:

( ) [ ( )] ( ) ∣ ( )∣ ( ) p= ⎜ ⎟⎛
⎝

⎞
⎠E R a k R

u R

R
Y2 0,0 . 4l s

nl
l2,0

2

0
2

2.2.2. ‘Trilobite’ and ‘butterfly’ states of mixed high angular
momentum: In contrast, four strongly perturbed high-l
eigenstates form out of the degenerate high-l states: the
‘trilobite’ state, dominated by s-wave scattering, and three
‘butterfly’ states—‘R-butterfly,’ ‘θ-butterfly,’ and ‘j-butterfly
—corresponding to the three directional derivatives in the p-
wave interaction. Their APECs are nearly an order of
magnitude deeper than the low-l states. As will be seen in
the following sections, coherent sums of these diatomic states
fully describe the polyatomic states, and so they are studied in
detail to clearly elucidate their properties.

Due to the particular properties of the s- and p-wave
delta-function potentials in equation (1), the diatomic
eigenstates, eigenenergies, and overlap matrix elements for
these high-l states can be written [22] as elements of a
( ) (´ Ä ´N N4 4 ) ‘trilobite overlap matrix’, ¡ab

pq , where

( )*¡ ¡=ab ba
pq qp . The lower indices p and q label the position

vectors

Rp and


Rq of two neutral atoms; a lower index r

indicates
 

=R rr . Upper indices α and β label the eigenstates:
the normalized ξth eigenstate associated with an internuclear

axis

R is given by ¡ ¡x xx

Rr RR
1 . After defining =x=a as1 and

 =xa a3 p2
3 and ignoring the coupling between these states,

the trilobite (x = 1) and three ( q jR, , )-butterfly APECs
( )x = 2, 3, 4 have the concise form:

( ) [ ( )] ( )p ¡= xxx
x>E R a k R2 . 5l RR3

Before including the coupling between these states to obtain
the full potential energy landscape, the properties of their
eigenstates contained in the trilobite overlap matrix must be
described. The matrix elements are defined as
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where the summation extends over energetically degenerate
states, starting at l = 3 for Rb. Fa

nlm labels the wave function

and components of the gradient in spherical coordinates:
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If the low-l states are included in equation (6), the trilobite
eigenstate can be summed analytically using the Green
function for the Coulomb problem [33]

( ) ( ) ( ) ( )
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where γ is the angle between

R and


r . This expression is a

good approximation for the summation in equation (6) for
energies between the high-l manifold and the low-l states with
non-zero quantum defects. The three butterfly eigenstates can
be found by differentiating equation (8) with respect to qR, R,
and jR:
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The q j, butterfly orbitals can be identified as vectors of
magnitude ( )

( )

p D

+ -t t

t

,

8 3 parallel to the q j, unit vectors; the trilobite

and R-butterfly orbitals are fully symmetric about the
internuclear axis. The diagonal elements ¡xx

pp are obtained

by evaluating equations (8)–(11) in the limit
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The diatomic angular butterfly APECs, ¡RR
33 and ¡RR

44 , are
degenerate P3 molecular states and, in contrast to the S3

trilobite or R-butterfly APECs, do not oscillate as a function

3
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of R. This is due to destructive interference between terms in
the numerator of equation (14).

Finally, accurate potential energy curves including the
couplings between trilobite and butterfly states are given by
assuming a solution for the Hamiltonian of equation (1) that is
a linear combination of the eigenstates in equation (6) [34].
Two additional properties of the overlap matrix are important.
¡ab

pq is the overlap between different diatomic orbitals α and

β associated with different ground state atoms located at

Rp

and

Rq, respectively, and the matrix element of the ξth

interaction term of the Hamiltonian between an orbital α

located at

Rp and an orbital β located at


Rq is ¡ ¡xa bx

ip qi . A
generalized eigenvalue equation for E(R) is then obtained:

( ) ( )å å p
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b x
x

b

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟a k

E

2
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4
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Throughout the rest of this paper the explicit dependence
of k E, , and the eigenvector


W on the ion-neutral distance R is

assumed for brevity.

2.3. N ¼ many: generalization to polyatomic molecular states

The diatomic results described above readily generalize to the
>N 1 case. For the low-l APECs, all ml values are allowed;

therefore = +N l2 1d degenerate ml states mix together. This
causes ( )=N N Nmax 4 ,p d APECs to split away from the
unperturbed electronic states. For the s-wave interaction alone
the APECs are the eigenvalues E(R) given by the matrix
equation
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The trilobite overlap matrix formalism allows for rapid
generalization to the polyatomic system, since the trial
solution used to obtain equation (15) is expanded to include
linear combinations of trilobite and butterfly eigenstates for
each diatomic Rydberg-neutral pair:

( ) ( ) å å ¡Y = W a

a

a

= =

r . 17
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N

p pr
1 1

4
1

This formulation provides key physical insight and also
greatly reduces the calculational effort to the diagonalization
of at most a ´N N4 4 matrix, rather than the full ´n n2 2

basis size needed to diagonalize equation (1). The trilobite
APECs, only including the s-wave interaction, are the
eigenvalues E(R) satisfying

( ) ( )å d
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=
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0. 18
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The p-wave interaction is included analogously to the
diatomic case, yielding a generalized eigenvalue problem

with a ´N N4 4 matrix:

( ) ( )å å åå p
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b x
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1

4

, 1 1

4

1

Equations (16)–(19) accurately reproduce the full diag-
onalization results for arbitrary molecular configurations and
numbers of atoms, particularly for the trilobite states. Due to
the challenges with basis set diagonalization described in
section 2.1, spectroscopic accuracy for the low-l states can
only be achieved through a careful convergence study [20] or
with the Green function method. As a result, equations (4)
and (16) should only be used for qualitative study. For the
n = 30 system studied here, the l = 0 states are about 20%
deeper than these first-order results predict. In contrast, the
high-l APECs are quite accurate. Since only one manifold is
included, these formulas break down at distances smaller than
the location of the p-wave shape resonance, and also do not
describe couplings with low–l states at large detunings. For
investigations in regimes where these inaccuracies are irre-
levant, equation (19) is a valuable computational advance,
particularly for experiments probing high Rydberg states up
to ~n 110 [18, 20] due to the reduced basis size.

The off-diagonal elements of ¡ab
pq , corresponding to the

overlap between orbitals associated with different Rydberg-
neutral pairs, determine the size of the differences between
the polyatomic states and the N = 1 state. In the absence of
these overlaps equation (19) is diagonal in the lower indices
and all N polyatomic APECs converge to the diatomic APEC.
At large R the overlap between orbitals vanishes, and the
APECs are seen to converge to the diatomic limit. Co-planar
molecules typically exhibit larger splittings than three-
dimensional molecules for this same reason. Additionally, as
N grows the system will deviate more strongly from the N = 1
case; this causes the global minimum of the APECs to deepen
with N. The angular dependence of the trilobite wave func-
tions contributes considerably to the energy landscape of the
system at hand, especially when two ground state atoms are
close in proximity and therefore have a large overlap. More
stable Rydberg molecules can thus be engineered by
exploiting these features.

2.4. Symmetry-adapted orbitals

2.4.1. Molecular symmetry point groups. To fully understand
the structure of these APECs, in particular the appearance of
degeneracies and level crossings in highly symmetric
molecular geometries and the effects of the molecular
symmetry on the coupling between trilobite and butterfly
states, it is mandatory to characterize the symmetry group of
the molecule. The molecular symmetry group is a subgroup of
the complete nuclear permutation inversion group of the
molecule [25, 26], which commutes with the molecular
Hamiltonian in free space. Therefore, the eigenstates of such
a Hamiltonian can be classified in terms of the irreducible
representations (irreps) of the given molecular symmetry
group, called symmetry-adapted orbitals (SAOs). Given a

4
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molecular symmetry group, it is possible to calculate the SAOs
associated with each irrep of the group using the projection
operator method, where the projection operator is [25]

ˆ ( ) åc=
=

l

h
. 20

j j

i

h

ji i
1

The index j labels the different irreps and i denotes the group
elements. These are the familiar symmetry operations:
rotations, reflections, and inversions. i represents the
operator associated with the ith symmetry operation; lj and
cji represent the dimension and character for the ith operation,
respectively. Finally, h stands for the order of the group. The
trace of the projection operator, ̂ = ltr

j
j, determines the

decomposition of the point group into irreps. All irreps with
¹l 0j are contained in the decomposition. SAOs associated

with different irreps have different parity under the molecular
symmetry group, and hence will exhibit real crossings. lj
determines the degeneracy of each irrep.

The projection operator also gives the coefficients ( ) a
p

j,

for the SAO ( )( )  a rj, corresponding to the αth orbital and jth
irrep:

( ) ( )( ) ( ) å¡= aa a

=

r . 21j

p

N

pr p
j,

1

1 ,

The prescription for calculating the projection operator
depends on the orbital in question. The S3 trilobite and R-
butterfly states can be symmetry-adapted independently since
they are non-degenerate. Since these orbitals are symmetric
about the ion-neutral axis the symmetry operations leave the
orbitals unchanged except for an overall transformation of the
atomic positions within the molecule, i.e. a permutation of the
basis of Rydberg-neutral pairs at different positions yp:

( )


y y yY = ¼, , ,A B N
T . The N × N matrix representations of

the symmetry operations can then be identified with a
modicum of effort and the sum in (20) performed. The
orthogonalized rows of ̂ j

provide the coefficients of the
linear combination in equation (21).

Since the θ and j butterfly P3 states are degenerate, these
orbitals can be mixed by symmetry operations, so these orbitals
must be symmetry-adapted together. The basis size is doubled
to allow mixing: ( )


y y y y y yY = ¼ ¼q q q j j j, , , , , , ,A B N A B N

T The
effect of a symmetry operation on the entire molecule
transforms orbitals located at one Rydberg-neutral pair to
another as in the trilobite/R-butterfly case: y yq q

¢i i
and

y yj j
¢i i
. However, the symmetry operation now modifies the

orbitals themselves. The angular butterfly orbitals are vectors in
Cartesian coordinates (see equations (10) and (11))) and the
symmetry operators in the xyz coordinate basis affect them. This
transforms y ay by +q q j

¢ ¢i i i
and y gy dy +j q j

¢ ¢ ;i i i
the

coefficients a b g d, , , must then be solved to identify the
matrix representation of that symmetry operation. An explicit
example of this process is shown in appendix A; the final result
is the full tabulation of the irreps corresponding to each orbital
and the sets of coefficients ( ) a

p
j, providing the correct SAOs.

These coefficients are listed in appendix A for the molecular
symmetries exemplified in section 3.

2.4.2. APECs with symmetry-adapted orbitals. The trilobite
and R-butterfly orbitals always belong to the same irreps as
they have identical decompositions, while the angular
butterflies have different decompositions that may still share
some irreps with the trilobite. As a result each of these
possible cases requires a slightly different calculation: the
APECs are solutions to a generalized eigenvalue problem for
a matrix of 1 × 1 to 3 × 3 dimension. These expressions are
listed below, starting first with the trilobite APECs to allow
for comparison with previous work.

Trilobite: The trilobite APEC for the jth irrep satisfies the
particularly elegant expression

( ) ( )( ) ( ) ( ) åp ¡=
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E a k2 . 22j
s
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p
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pq q
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1, 11 1,

This equation exactly reproduces the results calculated more
laboriously in [23]. In the following equations the explicit
dependence j is dropped for brevity.

Trilobite and R-butterfly: these APECs are given by the
generalized eigenvalues of the 2 × 2 matrix equation
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Angular butterflies: the angular butterfly APEC is the
eigenvalue, E, given by equation (23) after setting
= =a b3, 4 and summing over α from a to b.
All orbitals: when all orbitals correspond to the same

irrep, the APECs are given by a 3 × 3 generalized eigenvalue
problem
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where the following terms have been defined to incorporate
the simultaneously symmetry-adapted θ and j butterflies by
adding the symmetry-adapted j-butterfly (a b =, 4) orbital
to the symmetry-adapted θ-butterfly (a b =, 3) orbital.
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j

qp q
j

qp qp q
j
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j
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j

pq q
j
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pq q
j
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j

pq q
j

p
j

pq q
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,
,3

4 ,4

,
,3

4 ,4

, ,
3

, 4 ,4

3
,4 4 ,

3 3
,4 44 ,4

where dmn is the Kronecker delta.

3. Results

The APECs of a coplanar octagonal molecule and a body-
centered cubic molecule are presented to demonstrate the
accuracy of this general formulation.
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3.1. Co-planar geometry: octagonal configuration

The molecular symmetry group of the octagonal configuration
is the point group C8v, depicted in figure 2(a). The reducible
representation GC v8

decomposes into seven total irreps,

( )G = Å Å Å ÅA B E E E , 25C 1 1 1 2 3v8

for the trilobite, R-butterfly, and θ-butterfly orbitals, and

( )G = Å Å Å Åj A B E E E 26C 2 2 1 2 3
v8

for the j-butterfly orbital. The θ-butterfly orbital is com-
pletely decoupled from the rest due to its node in the
molecular plane; this is a general feature of coplanar
molecules. The j-butterfly has a different decomposition
than the others because of its particular symmetry properties,
as discussed in section 2. It is therefore decoupled for the one-
dimensional symmetries but couples with the trilobite and R-
butterfly orbitals for the doubly-degenerate symmetries,
resulting in avoided crossings between these APECs.

Symmetry-adapted orbitals for the trilobite APECs are
displayed in figures 2(b) and 2(c). The ion-neutral distance is
R = 840 a.u., the location of the deepest potential well in
figure 5(a). These ‘hoodoo’ states, nicknamed for their resem-
blance to the geological formations commonly found in the
American Southwest, explicitly exhibit the allowed symmetries.
The beautiful nodal patterns in these curves are the result of
interference between trilobite orbitals, which, as discussed in
section 2.3, is a clear signature of deviations from the
N = 1 APEC.

The full APEC results are shown in figure 5, where the
exact full diagonalization (black lines) and symmetry-adapted
orbital calculation from equations (23) and (24) (colored
points) are compared. The dispersion between different irreps
is clearly observed, as has been previously predicted for

smaller systems [23]. Excellent agreement between the exact
and the symmetry-adapted orbital approach is apparent.

3.2. Two-dimensional geometry: random configuration

Molecules that are not configured symmetrically can still be
studied via equation (19), and the contrasts between these
results and those of highly symmetric configurations are of

Figure 1. Planar cuts of the probability amplitudes ( )Yr x y z, ,2 2 of
the fundamental diatomic eigenstates. The θ-butterfly lies in the yz
plane; the three others in the xy plane. R = 840 a.u. for the trilobite
and 345 a.u. for the three butterfly states. The Rydberg core is at the
center of each figure and the neutral atom is underneath the most
prominent spikes.

Figure 2. (a) The symmetry operations for C8v symmetry. The sd

reflection planes bisect the lines between ground state atoms and are
not shown for clarity. (b) ‘Hoodoo’ symmetry-adapted orbitals for
trilobite states of an octagonal molecule with Rydberg core-neutral
distance R = 840 a.u. The probability amplitude ∣ ( )∣yr x y, , 02 2 is
plotted in the xy plane. (c) The electron probability corresponding to
the one-dimensional irrep B1 (top) and one of the doubly-degenerate E1
irreps (bottom) are plotted.
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substantial interest. As an example, the hybridized trilobite
orbitals for a coplanar, randomly structured geometry at two
Rydberg core-neutral distances are displayed in figure 3. The
orbitals at the smaller Rydberg core-neutral distance show
substantial interference patterns. Interestingly, for each APEC
the electron probability tends to be localized on a subset of the
neutral atoms. This subset varies between APECs and is
especially clear at the larger Rydberg core-neutral distance
displayed in 3(b). A possible explanation stems from semi-
classical periodic orbit theory, since the trilobite state ¡Rr

11

forms due to interference between the four semiclassical
elliptical trajectories focused on the Rydberg core and inter-
secting at both the neutral atom and at the observation point


r

[35]. Since an ellipse focused on the Rydberg core can lie on at
most two neutral atoms, this mechanism is a plausible expla-
nation for why these hybridized orbitals tend to be most
localized on two neutral atoms. This phenomenon is not seen in
highly symmetric molecules, like the octagon of figure 2, since
the atoms bound by the Rydberg orbit are here determined by
the irrep. An additional feature of these unstructured molecules
is that deepest/shallowest well partners, i.e. I and VIII, II and
VII, etc, are localized on the same atoms but possess different
parity with respect to reflection through the xy plane.

3.3. Three-dimensional geometry: cubic and asymmetric
molecules

The exemplary three-dimensional molecule here is a body-
centered cubic, which has the highly symmetric point group

Oh, which decomposes into eight total irreps:

( )G = Å Å ÅA A F F 27O g u u g
trilobite

1 2 2 1h

for the trilobite and R-butterfly, and

( )G = Å Å Å Å ÅE E F F F F 28O g u g u
butterflies

1 2 1 1 2 2h

for the angular butterflies. Figure 4 displays a series of wave-
function images highlighting the three-dimensional structure
of these states.

The full set of polyatomic APECs between the n = 29
and n = 30 manifolds is displayed in figure 7. Compared to
the diatomic case, the oscillations in the butterfly states are
greatly enhanced, especially near crossings with the low-l
states where large wells form, strengthening the binding
energies of molecules formed in these wells. The impact of
the p-wave interaction is seen dramatically here, as well as in
the octagonal two-dimensional case, as it leads to many more
APECs extending down to the -n 1 manifold. It also
introduces many avoided crossings with the trilobite state as

Figure 3. (a) Hybridized trilobite orbitals for a randomly oriented
molecular configuration. The Rydberg atom is located at the blue
point in the middle of each panel and the neutral atoms are placed at
the black points. The Rydberg core-neutral distance R is 1115 a.u. at a
local minimum in the lowest energy potential curve. The eigenstates
depicted here correspond to APECs that increase in energy from left to
right, top to bottom. (b) The same as (a), but in the well the farthest
distance from the Rydberg atom at R = 1537 a.u.

Figure 4. Probability amplitudes cuts in the xy and yz planes for the
A1g symmetry species of the trilobite-dominated hybridized orbitals,
showing the intricate interference patterns for (a) the octagon and (b)
the cube (the yz plane here passes through the diagonal of a face). (c)
A polar plot of the A1g cubic hybridized trilobite state: the
probability amplitude, scaled to highlight the nodal structure, is
plotted as the distance from the center as a function of θ and j.
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seen in figure 5(b); these limit the stability of these molecules.
Despite their visual complexity, these crossings and their
associated APECs can be disentangled and interpreted with
the aid of the decompositions in equations (27) and (28).

When the neutral atoms are displaced slightly the
degeneracy imposed by the Oh group is broken, as shown in
figure 5(c) and similarly in figure 5(d) for randomly placed
atoms on a sphere. Only the trilobite state is shown for clarity.
In addition to the destruction of the degeneracy and the
appearance of avoided crossings, the huge splitting between
orbitals of different symmetry seen at  R500 1000 is
reduced.

3.4. Low-l states

Most experimental probes of these exotic molecules thus far
have focused on low-l states. It is increasingly evident [18–
20] that trimers, tetramers, and even pentamers are routinely
formed in these experiments, and the results studied here may
be relevant in explaining the non-Lorentzian line-shapes of
these spectra. Although a full application of these methods to
the lineshape would require investigation of the full potential
energy surfaces beyond the breathing mode cuts, some con-
clusions can be made. The l = 0 results shown in figure 6(a)
are nearly independent of geometry due to the isotropy of the

Figure 5. Adiabatic potential energy curves for the breathing mode of a polyatomic molecule plotted as a function of the Rydberg core-
neutral spacing R. In panel (a) the neutral atoms (red spheres in the inset) are restricted to a plane and placed in an octagon; in (b) they are
placed in a cube. In (c) the Oh symmetry is broken by perturbing the atomic positions randomly by a ten percent deviation, and in (d) it is
completely broken by uniformly randomly distributing the ground state atoms in a spherical shell around the Rydberg atom. The p-wave
interaction is neglected for simplicity in (c) and (d), as its inclusion in these cases introduces 3N (24) additional curves and many mutually
avoided crossings that obscure the key features of this figure, namely the elimination of degeneracies with increasing disorder. The colored
points in (a) and (b) are the results of equation (24) and in (c) and (d) of equation (19), while the black curves are the result of diagonalization.
Disagreements between the analytic and full diagonalization methods are apparent for energies between the f state, with its small but non-zero
quantum defect, and the hydrogenic manifold; however, for larger detunings the agreement is excellent.
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unperturbed state, and their depths scale linearly with N.
According to the first-order theory in equation (16) the well
depth for an N-atomic molecule is exactly N times the dia-
tomic depth, but due to the couplings with higher-l states the
depth of the largest well scales as N0.65 times the diatomic
well depth for the n = 30 cases studied here. This scaling
holds for arbitrary number of atoms and geometries. As such,
the appearance of spectral lines at integer multiples of fun-
damental diatomic lines signifies the production of polya-
tomic molecules [19]. In contrast, the l = 1 and l = 2 states
are more complicated as they depend strongly on N and the
molecule’s geometry. The spectral signatures of these
polyatomic molecules will not be present as individual states,
but will instead contribute to line broadening of the diatomic
spectrum, and experiments with these states at high densities

will need to carefully consider these effects to accurately
identify spectral features. The crossover into a density shift
[19, 21] will be particularly relevant for these states.

4. The role of density

General scaling laws are useful to describe the properties of
this system when the perturbers are configured randomly. The
dependence of the binding energies on N, and thereby density,
is of key importance. As described previously, first-order
perturbation theory predicts that the binding energies of nS
Rydberg molecules deepen linearly with N, and indeed this
has been verified in multiple experiments. This linear scaling
is independent of the configuration of perturbers and is due to
the isotropy of the nS wave function. For high-l trilobite and
butterfly states, equation (19) and the results shown in

Figure 6. (a) l = 0, (b) l = 1, and (c) l = 2 low angular momentum potential energy curves for N = 1 (blue curve) and N = 8, arranged in both
a coplanar octagonal geometry (black curves) and a cubic geometry (red curves).

Figure 7. APECs for Rydberg states between the n = 29 and 30
manifolds for the cubic molecular geometry. The diatomic potential
curves are plotted for comparison in red. Large potential wells deep
in the butterfly potential curves form, in stark contrast to the
diatomic case.

Figure 8. Ground state potential curves, averaged over five-hundred
random configurations, for the diatomic N = 1 molecule (red) and
polyatomic =N 3, 8, 12 molecules (thick black lines; N increases
with decreasing detuning). The standard deviations are represented
by overlapping color shades to indicate the range of accessible
energies. The configuration-averaged shape scales linearly with N
from the diatomic case.
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figures 5 and 7 reveal that the addition of additional perturbers
to this system has highly non-additive effects. Each perturber
causes another APEC to descend from the degenerate mani-
fold. These APECs spread in energy about the diatomic
curve, which they converge to at large values of R where the
orbital overlaps decrease exponentially. Rather than getting
increasingly deeper with N, half of the potential curves lie
above, and half below, the diatomic curve. Despite the highly
non-additive and configuration dependent behavior of the full
system, a scaling law for the lowest APEC can be identified.

Polyatomic molecules with =N 3, 8, and 12 atoms
placed on the surface of a sphere of radius R are studied via a
Monte Carlo simulation of 500 random geometries. Once
again only the trilobite state is studied for clarity. The sta-
tistical average of the ground state APEC, =E

({ })


å = E Ri 1
500

min , and standard deviation of these realizations
are presented in figure 8. E resembles the diatomic trilobite
curve and deepens linearly with N. In this sense, where many
ground state configurations have been averaged, a scaling law
typical of the nS state molecules appears.

5. Conclusions

Calculations elucidating the role of symmetry and geometry
in the formation of polyatomic Rydberg molecules at high
densities have been presented and provide a robust framework
for studying hybridized trilobite-like molecules. The metho-
dology developed in the present work applies to any geo-
metrical configuration and to high Rydberg states. These
represent a significant advance towards understanding spec-
troscopic results in current experiments that the spectroscopic
signatures of polyatomic formation will be challenging to
interpret as the results are strongly determined by the mole-
cular geometry and the presence of any symmetries in the
atomic orientation. nS Rydberg states are nearly independent
of the system’s geometry and scale linearly with N, but higher
angular momenta depend non-trivially on the geometry and
number of atoms. These dependencies have profound impacts
on the density shifts and line broadening interpretations.

The most significant limitation of the current work is that
only the breathing modes are studied where the ground state
atoms are all equidistant from the Rydberg core. Although the
general principles gleaned from this study will likely apply to
other vibrational modes, this is still a highly simplified sce-
nario when contrasted to an ultracold gas where atoms are
randomly arrayed at different distances from the Rydberg
core. However, this seemingly unrealistic scenario may be
achieved by merging the current technology in optical lattices
with Rydberg spectroscopy techniques. In particular, tilted
optical lattices [36] can be used to generate triply occupied
Mott-insulator states; the usual techniques developed in
Rydberg spectroscopy will then lead to the controlled for-
mation of Rydberg trimers, although the position of the atoms
in each lattice site will still be random. This randomness can
be overcome by employing a rotational optical lattice [37],

where the centrifugal force can be used to tailor a more
controlled geometry. Indeed, by comparing these results with
those from trimers formed in a non-rotating lattice, this
method can be applied to further study the influence of the
geometry. Another possibility is to use current hexagonal and
triangular optical lattice technology [38] with lattice spacing
on the order of 400 nm in order to have superior control over
the geometry of the Rydberg molecules. To form molecules
with this ion-neutral spacing would require higher Rydberg
states on the order of n = 70, and thus might compromise the
spectroscopy of the molecular state; optical lattices with
smaller lattice spacings are therefore desirable. Finally, the
possibility of optical micro traps [39, 40] has to be taken into
account, since these provide opportunities to design very
specific arrays of single-atom traps. These traps could be
designed to avoid some of the problems caused by the line
broadening, and also to emulate the same molecule under
very different geometrical considerations.
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Appendix A. Symmetry-adapted orbitals

A.1. Example

We first present an example of how to calculate the matrix
representation of a symmetry operation. The example mole-
cule will have four atoms arranged in a tetrahedron, belonging
to the point group Td. The atoms are placed equidistant from
the Rydberg core at the origin and, in order from A to D, at
( )q j, values ( ) ( ) ( ) ( )p pb b b0, 0 , , 0 , , 2 3 , , 4 3 , where

( )= -b arccos 1 3 . According to equations (10) and (11) the
q j, butterfly orbitals are thus parallel to the unit vectors

ˆ ˆ ˆq q j q j- -z x ysin cos cos cos sin and ˆ ˆj j-x ysin cos ,
respectively. Plugging in the actual values for these angles
gives the four unit vectors for both orbitals:

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

q

j

- + - + +

- - +

- - + - +

x
x

z
x y

z

x y
z

y y x
y

x
y

: ,
3

2 2

3
,

6 2 3

2 2

3
,

6 2 3

2 2

3
.

: , ,
3

2 2
,

3

2 2
.

As the example symmetry operation we choose one of the C3

operations corresponding to a rotation about the z axis by p2

3
radians. This cyclically rotates the three atomic labels not
along the z axis, so that the symmetry operation for the
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trilobite orbital is

y
y
y
y

y
y
y
y

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

.

A

C

D

B

A

B

C

D

The rotation matrix in coordinate space corresponding to this
symmetry operation is

( )
- -

-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

0

0

0 0 1

A.1

1

2

3

2

3

2

1

2

which then must act on the orbitals. For example the θ orbital
originally at ˆ-A x, , is rotated to become:

( )=

- -

-

-
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

0

0

0

0 0 1

1
0
0

. A.2

1

2

3

2

1

2

3

2

3

2

1

2

The linear combination of θ and j butterfly orbitals at A that

equals ( )-, , 0
T1

2

3

2
are then solved, giving

( ) ( )y y y¢ = - +q q j1

2

3

2
. A.3A A B

Likewise, the rotation matrix acting on the orbital yq
B rotates it

to:

( )

-

=

- -

-

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

0

0

0 0 1

0 . A.4

1

6
1

2 3

2 2

3

1

2

3

2

3

2

1

2

1

3

2 2

3

The resultant vector is identified as the θ orbital at C, so the
permutation of labels was sufficient here and there is no
mixing of angular butterfly orbitals. In the end, the enlarged
symmetry operation matrix is

( )

-

- -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

. A.5

1

2

3

2

3

2

1

2

The presence of negative or fractional values on the diagonals
is what contributes to the trace of P̂ j, giving different
decompositions.

A.2. SAO coefficients

The coefficients ( ) a
p
j, are given here for the example sym-

metries. The rows of each matrix correspond to a given irrep j
labeled in the first column; each column thereafter corre-
sponds to a diatomic orbital at


Rp. For the octagon the

labeling simply proceeds around the octagon; the first four
columns of the cube correspond to the upper layer ordered
counter-clockwise viewed from above; the final four corre-
spond to the bottom layer ordered identically.

A.3. Octagon

 =

- - - -
- - -

- - -
- -

- -
- - -
- - -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

A
B
E a a
E a a
E
E
E a a
E a a

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 1 1 0
1 0 1 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 1 1 0
1 0 1 1 0 1

C
1,2,3

1

2

1

1

2

2

3

3

v8

 =

- - - -
- - -

- - -
- -

- -
- - -
- - -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

A
B
E a a
E a a
E
E
E a a
E a a

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 1 0 1

1 1 0 1 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 0 1 1 0 1
1 1 0 1 1 0

,C
4

2

1

1

1

2

2

3

3

v8

=a 2 . As described in section 3.1 the θ-butterfly is
decoupled for all coplanar molecules.

A.4. Cube

=

- - - -
- - - -

- -
- -

- - - -
- -

- -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

A

A
F
F
F
F

F

F

A

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

g

u

u

u

u

g

g

g

O
1,2

1

2

1

1

1

2

2

2

h

=

- - - -

- - - -

- -
- -

- -
- -

- - - -
- -

- -
- -

- -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

E
E
E
E
F b b b b

F b b b b

F

F
F
F
F

F

F

F b b b b
F b b b b
F

A

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
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0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0

g

g

g

u

u

u

g

g

g

u

u

u

O
3

1

1

2

2

1

1

1
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2
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2

2

2
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=

- - - -

- - - -
- -

- -
- -

- -
- -

- -
- -

- -
- - -

- - - -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

E
E
E
E
F

F

F

F
F b b b b
F b b b b
F

F b b b b

F b b b b

F
F
F

A

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

,

g

g

g

u

u

u

g

g

g

u

u

u

O
4

1

1

2

2

1

1

1

1

1

1

2

2

2

2

2

2

h

=b 3 .
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