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Abstract
A direct solution of the time-dependent Dirac equation is used to calculate the single and
double photoionization cross sections for Ne8+. Expansion of a two-electron wavefunction in
coupled spin–orbit eigenfunctions yields time-dependent close-coupled equations for
quad-spinor radial wavefunctions. The repulsive interaction between electrons includes both
Coulomb and Gaunt interactions. The fully-correlated ground state radial wavefunction is
obtained by solving a time-independent inhomogeneous set of close-coupled equations instead
of a relaxation of the time-dependent close-coupled equations in imaginary time. A Bessel
function expansion is used to include both dipole and quadrupole effects in the radiation field
interaction for both the ‘velocity’ and ‘length’ gauges. Propagation of the time-dependent
close-coupled equations in real time yields single and double photoionization cross sections
for Ne8+ at energies easily accessible at advanced free electron laser facilities.
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1. Introduction

With the continued development of free electron lasers, double
photoionization processes will begin to be studied for more
highly charged atomic ions where fully relativistic effects will
become important. For example, the Free electron LASer at
Hamburg (FLASH) at DESY in Hamburg, Germany produces
300 eV photons [1], the Linac Coherent Light Source (LCLS)
at SLAC in Menlo Park, California produces 2–10 keV photons
[2], and the X-ray Free Electron Laser (XFEL) at DESY in
Hamburg, Germany will produce up to 25 keV photons [3].

Relativistic many body perturbation theory has been
used for many years to study photon collisions with highly
charged atomic ions [4]. Recently fully relativistic perturbation
theory calculations reported double to single ratios of total
photoionization cross sections for selected He-like atoms up
to La55+ [5]. Relativistic non-perturbative methods have also
been developed to study single photoionization cross sections
for arbitrary atoms and ions. These include the Dirac atomic
R-matrix code method [6], the Dirac B-spline R-matrix method
[7], and the relativistic converged close-coupling method
[8]. The development of the Dirac R-matrix with pseudo-
states method [9] has allowed for future calculations of non-

perturbative double photoionization cross sections for atoms
and their ions.

The one-electron time-dependent Dirac equation may be
directly solved for single photoionization cross sections for
highly charged atomic ions using an eigenstate expansion
method [10] or using a time-dependent close-coupling
(TDCC-3D) method [11]. For the single photoionization of
U91+ it was found that the total cross section increased by
almost 30% when the electromagnetic field potential was
extended to include both dipole and quadrupole effects [11].

The two-electron time-dependent Dirac equation may
also be directly solved using a time-dependent close-
coupling (TDCC-6D) method [12] for both single and double
photoionization cross sections for highly charged atomic
ions. In this paper the TDCC-6D method is extended to
include multipolar electromagnetic field effects for both
electrons and to include electron-electron repulsion effects
beyond the standard Coulomb interaction. Single and double
photoionization cross sections are calculated for Ne8+ over an
energy range easily accessible at advanced free electron laser
facilities.

The rest of the paper is organized as follows. In section 2.1
we present the two-electron time-dependent Dirac equation in
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both the ‘velocity’ and ‘length’ gauges with both Coulomb
and Gaunt two-body interactions. In section 2.2 we present
the TDCC-6D equations in terms of matrix elements between
two electron j jJ coupled states for the electromagnetic field
potentials and the two-body repulsion operators. In section
2.3 and appendix we reduce the matrix elements for the
electromagnetic field and the two-body repulsion operators
to time-dependent radial operators and standard n j symbols.
In section 2.4 we present the two-electron time-dependent
inhomogeneous Dirac equation needed to obtain the fully
correlated ground state wavefunction. In section 2.5 we
present the initial time boundary conditions and the final
time probability scattering amplitudes and cross sections. In
section 3 we present computational details on the numerical
lattice solutions of the TDCC-6D equations and single and
double photoionization cross sections for Ne8+. In section 4
we conclude with a summary and an outlook for future work.
Unless otherwise stated, all quantities are given in atomic units.

2. Theory

2.1. Time-dependent Dirac equation

The time-dependent Dirac equation for a two-electron
atomic ion in a time-varying electromagnetic field is given
by [13, 14]:

i
∂ ��(�r1,�r2, t)

∂t
= H̄(�r1,�r2, t)��(�r1,�r2, t), (1)

where

H̄(�r1,�r2, t)

=

⎛
⎜⎜⎝

H(�r1,�r2, t) c�σ · (�p1 + �A1(t)) c�σ · (�p2 + �A2(t)) G(�r1,�r2)

c�σ · (�p1 + �A1(t)) H(�r1,�r2, t) − 2c2 G(�r1,�r2) c�σ · (�p2 + �A2(t))
c�σ · (�p2 + �A2(t)) G(�r1,�r2) H(�r1,�r2, t) − 2c2 c�σ · (�p1 + �A1(t))

G(�r1,�r2) c�σ · (�p2 + �A2(t)) c�σ · (�p1 + �A1(t)) H(�r1,�r2, t) − 4c2

⎞
⎟⎟⎠

(2)

and

H(�r1,�r2, t) =
2∑

i=1

(
−Z

ri
− Ui(t)

)
+ C(�r1,�r2). (3)

In equations (1)–(3), Z is the atomic number, �σ is a Pauli
matrix vector, and �p = −i∇ is the momentum operator. In the
‘velocity’ gauge the electromagnetic field potentials are given
by:

U (t) = 0,

�A(t) = E

ω
ẑ sin

(ω

c
y − ωt

)
, (4)

while in the ‘length’ gauge the electromagnetic field potentials
are given by:

U (t) = − Ez cos (ωt),

�A(t) = E

ω
ẑ sin

(ω

c
y − ωt

)
+ E

ω
ẑ sin (ωt), (5)

where E is the radiation field amplitude, ω is the radiation
field frequency, and c is the speed of light (see chapter 13,
complement A) [15]. The two-body Coulomb interaction is
given by:

C(�r1,�r2) = 1

|�r1 − �r2| , (6)

while the two-body Gaunt interaction [16] is given by:

G(�r1,�r2) = − �σ1 · �σ2

|�r1 − �r2| , (7)

(see chapter 6, section 4) [4]. The Gaunt interaction is the
unretarded interaction between two Dirac currents, while an
additional retarded interaction was added by Breit [14]. The
unretarded interaction dominates the correction to the two-
body Coulomb interaction [17].

2.2. Time-dependent close-coupled quad-spinor equations

The two-electron total wavefunction is expanded in coupled
spin–orbit eigenfunctions given by:
��(�r1,�r2, t)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑
j1, j2

PPJM
κ1κ2

(r1,r2,t)

r1r2

∑
m1,m2

C j1 j2J
m1m2M�+κ1,m1 (θ1, φ1)�+κ2,m2 (θ2, φ2)

i
∑

j1, j2

QPJM
κ1κ2

(r1,r2,t)

r1r2

∑
m1,m2

C j1 j2J
m1m2M�−κ1,m1 (θ1, φ1)�+κ2,m2 (θ2, φ2)

i
∑

j1, j2

PQJM
κ1κ2

(r1,r2,t)

r1r2

∑
m1,m2

C j1 j2J
m1m2M�+κ1,m1 (θ1, φ1)�−κ2,m2 (θ2, φ2)∑

j1, j2

QQJM
κ1κ2

(r1,r2,t)

r1r2

∑
m1,m2

C j1 j2J
m1m2M�−κ1,m1 (θ1, φ1)�−κ2,m2 (θ2, φ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

where the spin–orbit eigenfunctions are given by:

�κm(θ, φ) =
∑
ml ,ms

Cls j
ml msmj

Ylml (θ, φ)χms , (9)

κ = −(l + 1) for j = l + 1
2 , κ = +l for j = l − 1

2 ,
s = 1

2 , Cls j
ml msmj and C j1 j2J

m1m2M are Clebsch–Gordan coefficients,
Ylml (θ, φ) is a spherical harmonic, and χms is a two component
spinor. Substitution of equation (8) into the time-dependent
Dirac equation of equation (1) and projection onto j jJ coupled
spin–orbit eigenfunctions yields the following set of time-
dependent close-coupled partial differential equations:

i
∂PPJM

κ1κ2
(r1, r2, t)

∂t
=
(

− Z

r1
− Z

r2

)
PPJM

κ1κ2
(r1, r2, t)

− c

(
∂

∂r1
− κ1

r1

)
QPJM

κ1κ2
(r1, r2, t)

− c

(
∂

∂r2
− κ2

r2

)
PQJM

κ1κ2
(r1, r2, t)

−
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1, κ2)JM|U1(t)

+U2(t)|(κ ′
1, κ

′
2)J

′M′〉PPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

+ ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1, κ2)JM|�σ · �A1(t)

× |(−κ ′
1, κ

′
2)J

′M′〉QPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

+ ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1, κ2)JM|�σ · �A2(t)

× |(κ ′
1,−κ ′

2)J
′M′〉PQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1, κ2)JM|C(�r1,�r2)

× |(κ ′
1, κ

′
2)J

′M′〉PPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1, κ2)JM|G(�r1,�r2)

× |(−κ ′
1,−κ ′

2)J
′M′〉QQJ′M′

κ ′
1κ

′
2
(r1, r2, t) (10)

2
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i
∂QPJM

κ1κ2
(r1, r2, t)

∂t
=
(

− Z

r1
− Z

r2
− 2c2

)
QPJM

κ1κ2
(r1, r2, t)

+ c

(
∂

∂r1
+ κ1

r1

)
PPJM

κ1κ2
(r1, r2, t)

+ c

(
∂

∂r2
− κ2

r2

)
QQJM

κ1κ2
(r1, r2, t)

−
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1, κ2)JM|U1(t)

+U2(t)|(−κ ′
1, κ

′
2)J

′M′〉QPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

− ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1, κ2)JM|�σ · �A1(t)

× |(κ ′
1, κ

′
2)J

′M′〉PPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

− ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1, κ2)JM|�σ · �A2(t)

× |(−κ ′
1,−κ ′

2)J
′M′〉QQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1, κ2)JM|C(�r1,�r2)

× |(−κ ′
1, κ

′
2)J

′M′〉QPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1, κ2)JM|G(�r1,�r2)

× |(κ ′
1,−κ ′

2)J
′M′〉PQJ′M′

κ ′
1κ

′
2
(r1, r2, t) (11)

i
∂PQJM

κ1κ2
(r1, r2, t)

∂t
=
(

− Z

r1
− Z

r2
− 2c2

)
PQJM

κ1κ2
(r1, r2, t)

+ c

(
∂

∂r1
− κ1

r1

)
QQJM

κ1κ2
(r1, r2, t)

+ c

(
∂

∂r2
+ κ2

r2

)
PPJM

κ1κ2
(r1, r2, t)

−
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1,−κ2)JM|U1(t)

+U2(t)|(κ ′
1,−κ ′

2)J
′M′〉PQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

− ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1,−κ2)JM|�σ · �A1(t)

× |(−κ ′
1,−κ ′

2)J
′M′〉QQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

− ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1,−κ2)JM|�σ · �A2(t)

× |(κ ′
1, κ

′
2)J

′M′〉PPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1,−κ2)JM|C(�r1,�r2)

× |(κ ′
1,−κ ′

2)J
′M′〉PQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(κ1,−κ2)JM|G(�r1,�r2)

× |(−κ ′
1, κ

′
2)J

′M′〉QPJ′M′
κ ′

1κ
′
2
(r1, r2, t) (12)

i
∂QQJM

κ1κ2
(r1, r2, t)

∂t
=
(

− Z

r1
− Z

r2
− 4c2

)
QQJM

κ1κ2
(r1, r2, t)

− c

(
∂

∂r1
+ κ1

r1

)
PQJM

κ1κ2
(r1, r2, t)

− c

(
∂

∂r2
+ κ2

r2

)
QPJM

κ1κ2
(r1, r2, t)

−
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1,−κ2)JM|U1(t)

+U2(t)|(−κ ′
1,−κ ′

2)J
′M′〉QQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

+ ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1,−κ2)JM|�σ · �A1(t)

× |(κ ′
1,−κ ′

2)J
′M′〉PQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

+ ic
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1,−κ2)JM|�σ · �A2(t)

× |(−κ ′
1, κ

′
2)J

′M′〉QPJ′M′
κ ′

1κ
′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1,−κ2)JM|C(�r1,�r2)

× |(−κ ′
1,−κ ′

2)J
′M′〉QQJ′M′

κ ′
1κ

′
2
(r1, r2, t)

+
∑
J′,M′

∑
κ ′

1,κ
′
2

〈(−κ1,−κ2)JM|G(�r1,�r2)

× |(κ ′
1, κ

′
2)J

′M′〉PPJ′M′
κ ′

1κ
′
2
(r1, r2, t). (13)

2.3. Matrix elements

The radiation field matrix elements found in the close-coupled
equations may involve the operators: U (t) = −Ez cos (ωt),
�σ · �A(t) = E

ω
sin (ωt), and �σ · �A(t) = E

ω
sin ( ω

c y − ωt),
depending on the choice of gauge found in equations (4) and
(5). Matrix elements involving sin ( ω

c y − ωt) may be obtained
using the spherical Bessel function expansion given by:

sin

(
ω

c
y − ωt

)

= Im

(∑
k,q

ik(2k + 1)Ck∗
q (ŷ) jk

(
ω

c
r

)
Ck

q(r̂) e−iωt

)
, (14)

whereCk
q is a spherical tensor operator and jk(

ω
c r) is a spherical

Bessel function. The first two terms in the operator expansion
are given by:

�σ · �A(t) = −E

ω
sin (ωt)

[
j0

(
ω

c
r

)
σzC

0
0

− 3 j1

(
ω

c
r

)
σz
(
C1

+1 + C1
−1

)]
. (15)

For ease in the evaluation of matrix elements we make use of
the tensor operator V (k)K

Q = (Ck × S1)K
Q such that the first two

terms in the operator expansion are given by:

�σ · �A(t) = −2
E

ω
sin (ωt)

[
j0

(
ω

c
r

)
V (0)1

0

− 3 j1

(
ω

c
r

)
1

2

(
V (1)2

+1 + V (1)2
−1 − V (1)1

+1 + V (1)1
−1

)]
.

(16)

Additional terms involving higher order spherical Bessel
functions in either equation (15) or equation (16) may be easily
obtained.
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Using σz = 2S1
0, in lowest order for the ‘velocity’ gauge:

U (t) = 0 and

�σ · �A(t) = −2
E

ω
sin (ωt) j0

(ω

c
r
)

S1
0. (17)

Using z = rC1
0 , in lowest order for the ‘length’ gauge:

U (t) = −Er cos (ωt)C1
0 and

�σ · �A(t) = −2
E

ω
sin (ωt)

(
j0
(ω

c
r
)

− 1
)

S1
0. (18)

We note that j0(
ω
c r) ≈ 1 for low frequencies.

Matrix elements may be evaluated by standard algebraic
reduction of the tensor operators S1

0, C1
0 , and V (k)K

Q between
|(κ1, κ2)JM >= |(l1 1

2 j1, l2
1
2 j2)JM > coupled states (see

chapter 11) [18], as found in the appendix (equations (A.1)–
(A.6)).

The two-body Coulomb and Gaunt interactions may be
expanded in terms of tensor operators given by:

C(�r1,�r2) =
∑

λ

rλ
<

rλ+1
>

Cλ(1) · Cλ(2) (19)

and

G(�r1,�r2) = 4
∑
λ,K

(−1)λ+K rλ
<

rλ+1
>

V (λ)K (1) · V (λ)K (2), (20)

where r< = min(r1, r2) and r> = max(r1, r2). Matrix
elements may be evaluated by standard algebraic reduction
of the tensor operators Cλ and V (λ)K between coupled states
(see chapter 11) [18], as found in the appendix (equations (A.7)
and (A.8)).

2.4. Correlated initial state wavefunction

The fully correlated ground state wavefunction cannot
be obtained by relaxation of the close-coupled equations
associated with the Dirac equation in imaginary time given
by:

−∂ ��(�r1,�r2, τ )

∂τ
= H̄(�r1,�r2)��(�r1,�r2, τ ), (21)

where H̄(�r1,�r2) is found from equation (2) with Ui(t) = 0
and �Ai(t) = 0, due to the underlying Dirac sea of negative
energy solutions. An approximate method, that we have
used previously [12], is to relax the close-coupled equations
associated with the ‘squared’ Dirac equation in imaginary time
given by:

−∂ ��(�r1,�r2, τ )

∂τ
= H̄(�r1,�r2)H̄(�r1,�r2)��(�r1,�r2, τ ). (22)

Although fairly accurate, relaxation of the ‘squared’ Dirac
equation yields an initial state solution that produces
unphysical flow patterns in the time propagation of
equations (10)–(13). However, the overall effect on the final
total cross sections is fairly small.

An exact method is to solve the close-coupled equations
associated with an inhomogeneous Dirac equation in real time
given by:

i
∂ ��(�r1,�r2, t)

∂t
= (H̄(�r1,�r2) − E0)��(�r1,�r2, t)

+ sin2

(
πt

T0

)
��0(�r1,�r2), (23)

where ��(�r1,�r2, t = 0) = 0, ��0(�r1,�r2) is an approximate
ground state solution with energy E0, the homing time
T0 > 10/�E, and �E is the energy difference between the
ground and first excited state. The method has been used
before to home in on specific Rydberg state solutions of
the Schrodinger equation near the ionization limit [19]. The
homing of the Dirac equation yields a solution that produces
completely clean flow patterns in the time propagation of
equations (10)–(13), in keeping with the attainment of an exact
solution on the chosen numerical lattice. We also note that
the homing method is easier to implement than the iterative
damping relaxation method used for many years in relativistic
heavy ion collision calculations [20].

2.5. Initial conditions and cross sections

The initial condition for the solution of the time-dependent
close-coupled equations (10)– (13) for the photoionization of
the fully correlated ground state (J = 0, M = 0) is given by:

PPJM
κ1κ2

(r1, r2, t = 0) =
∑

κ

PP00
κκ (r1, r2)δκ1,κδκ2,κδJ,0δM,0

(24)

QPJM
κ1κ2

(r1, r2, t = 0) =
∑

κ

QP00
κκ (r1, r2)δκ1,κδκ2,κδJ,0δM,0

(25)

PQJM
κ1κ2

(r1, r2, t = 0) =
∑

κ

PQ00
κκ (r1, r2)δκ1,κδκ2,κδJ,0δM,0

(26)

QQJM
κ1κ2

(r1, r2, t = 0) =
∑

κ

QQ00
κκ (r1, r2)δκ1,κδκ2,κδJ,0δM,0,

(27)

where the radial wavefunctions, PP00
κκ (r1, r2), QP00

κκ (r1, r2),
PQ00

κκ (r1, r2), and QQ00
κκ (r1, r2) are obtained using the close-

coupled equations associated with the inhomogeneous Dirac
equation.

Following time propagation of the close-coupled
equations (10)–(13) with the initial conditions of
equations (24)–(27), the single photoionization probability,
leaving the ion in state n1κ1 is given by:

Ps(n1κ1) = 2
∑

M

∑
ε2κ2

|
∫ ∞

0
dr1

∫ ∞

0
dr2Pn1κ1 (r1)

× Pε2κ2 (r2)PP1M
κ1κ2

(r1, r2, t → ∞)

+
∫ ∞

0
dr1

∫ ∞

0
dr2Qn1κ1 (r1)

× Pε2κ2 (r2)QP1M
κ1κ2

(r1, r2, t → ∞)

+
∫ ∞

0
dr1

∫ ∞

0
dr2Pn1κ1 (r1)

× Qε2κ2 (r2)PQ1M
κ1κ2

(r1, r2, t → ∞)

+
∫ ∞

0
dr1

∫ ∞

0
dr2Qn1κ1 (r1)

× Qε2κ2 (r2)QQ1M
κ1κ2

(r1, r2, t → ∞)|2, (28)

where Pnκ (r) and Qnκ (r) are bound states and Pεκ (r) and
Qεκ (r) are continuum states of the positive energy solutions
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obtained by diagonalization of the one-electron radial Dirac
equation given by:( − Z

r − 2c2 c( ∂
∂r + κ

r )

−c( ∂
∂r − κ

r ) − Z
r

)(
Qεκ (r)
Pεκ (r)

)
= ε

(
Qεκ (r)
Pεκ (r)

)
. (29)

The single photoionization cross section leaving the ion in
state n1κ1 is given by:

σsingle (n1κ1) = ω

IT
Ps (n1κ1) , (30)

where I is the field intensity and T is the total elapsed time
for a constant intensity pulse. The total single photoionization
cross section is given by:

σsingle =
∑
n1κ1

σsingle (n1κ1) . (31)

The double photoionization probability is given by:

Pd =
∑

M

∑
ε1κ1

∑
ε2κ2

∣∣∣∣
∫ ∞

0
dr1

∫ ∞

0
dr2Pε1κ1 (r1)

× Pε2κ2 (r2)PP1M
κ1κ2

(r1, r2, t → ∞)

+
∫ ∞

0
dr1

∫ ∞

0
dr2Qε1κ1 (r1)

× Pε2κ2 (r2)QP1M
κ1κ2

(r1, r2, t → ∞)

+
∫ ∞

0
dr1

∫ ∞

0
dr2Pε1κ1 (r1)

× Qε2κ2 (r2)PQ1M
κ1κ2

(r1, r2, t → ∞)

+
∫ ∞

0
dr1

∫ ∞

0
dr2Qε1κ1 (r1)

× Qε2κ2 (r2)QQ1M
κ1κ2

(r1, r2, t → ∞)

∣∣∣∣
2

. (32)

The double photoionization cross section is given by:

σdouble = ω

IT
Pd . (33)

3. Results

To obtain a complete set of positive and negative energy
solutions for Ne9+, we first diagonalized the Hamiltonian
of equation (29) with κ = −1,+1,−2,+2,−3,+3. With
Z = 10 we used a 480 point radial mesh with �r = 0.01.
To avoid the Fermi doubling pathology [21] we used a fifth
order forward differencing scheme for ∂Q(r)

∂r and a fifth order
backward differencing scheme for ∂P(r)

∂r . The 480 negative
energy eigenfunctions for κ = −1 are found to have energies
ranging from −1.63 MeV to −1.02 MeV. The 480 positive
energy eigenfunctions for κ = −1 are found to have energies
ranging from −1.3 keV to +0.61 MeV.

For the fully correlated ground state of Ne8+, we solved
the close-coupled equations associated with equation (23)
using the 6 coupled channels found in table 1 for J = 0, M = 0.
We used a 480 × 480 point numerical lattice with �r1 =
�r2 = 0.01, with each radial mesh partitioned over 48 core
processors on a massively parallel supercomputer. The radial
wavefunction associated with ��0(�r1,�r2) is taken as the quad-
spinor given by:

�0(r1, r2) =

⎛
⎜⎜⎜⎝

P1s 1
2
(r1)P1s 1

2
(r2)

Q1rms 1
2
(r1)P1s 1

2
(r2)

P1s 1
2
(r1)Q1s 1

2
(r2)

Q1s 1
2
(r1)Q1s 1

2
(r2)

⎞
⎟⎟⎟⎠ , (34)

Table 1. Initial state coupled channels (J = 0).

Channel l1 j1 κ1 l2 j2 κ2

1 s 1
2 −1 s 1

2 −1

2 p 1
2 +1 p 1

2 +1

3 p 3
2 −2 p 3

2 −2

4 d 3
2 +2 d 3

2 +2

5 d 5
2 −3 d 5

2 −3

6 f 5
2 +3 f 5

2 +3

Table 2. Final state coupled channels (J = 1).

Channel l1 j1 κ1 l2 j2 κ2

1 s 1
2 −1 p 1

2 +1

2 p 1
2 +1 s 1

2 −1

3 s 1
2 −1 p 3

2 −2

4 p 3
2 −2 s 1

2 −1

5 p 1
2 +1 d 3

2 +2

6 d 3
2 +2 p 1

2 +1

7 p 3
2 −2 d 3

2 +2

8 d 3
2 +2 p 3

2 −2

9 p 3
2 −2 d 5

2 −3

10 d 5
2 −3 p 3

2 −2

11 d 3
2 +2 f 5

2 +3

12 f 5
2 +3 d 3

2 +2

13 d 5
2 −3 f 5

2 +3

14 f 5
2 +3 d 5

2 −3

where P1s 1
2
(r) and Q1s 1

2
(r) are obtained from the

diagonalization of equation (29) with κ = −1. The
approximate ground state energy in equation (23) is given
by:

E0 = 〈��0(�r1,�r2)|H̄(�r1,�r2)|��0(�r1,�r2〉, (35)

where H̄(�r1,�r2) is again found from equation (2) with Ui(t) =
0 and �Ai(t) = 0.

In solving the inhomogeneous Dirac equation for Ne8+,
we used a uniform time mesh of �t = 1.0×10−5 and a homing
time of T0 = 1.00. After 100 000 time steps the ground state
energy for Ne8+ was found to be −2.4604 keV when only the
Coulomb interaction was included, and −2.4600 keV when
both the Coulomb and Gaunt interactions were included. The
slight change in total energy due to the Gaunt interaction is in
good agreement with GRASP calculations (see chapter 7) [4]
for a Breit interaction contribution of +0.33 eV. For a homing
time of T0 = 1.50 and 150 000 time steps, the ground state
energies for Ne8+ remained the same. We note that by reducing
the radial mesh spacings �r1 and �r2 we obtain absolute
ground state energies that approach the experimental value.
Fortunately, the fine mesh is not needed to obtain accurate
photoionization cross sections.

To obtain photoionization cross sections we solved the
TDCC-6D equations given by equations (10)– (13). For dipole
only interactions we used the 20 coupled channels found in
table 1 for J = 0, M = 0 and in table 2 for J = 1, M = 0. For
dipole and quadrupole interactions we used the 42 coupled

5
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Table 3. Final state coupled channels (J = 2).

Channel l1 j1 κ1 l2 j2 κ2

1 s 1
2 −1 d 3

2 +2

2 d 3
2 +2 s 1

2 −1

3 s 1
2 −1 d 5

2 −3

4 d 5
2 −3 s 1

2 −1

5 p 1
2 +1 p 3

2 −2

6 p 3
2 −2 p 1

2 +1

7 p 3
2 −2 p 3

2 −2

8 p 1
2 +1 f 5

2 +3

9 f 5
2 +3 p 1

2 +1

10 p 3
2 −2 f 5

2 +3

11 f 5
2 +3 p 3

2 −2

Table 4. Photoionization cross sections for Ne8+ including only
dipole and Coulomb interactions. (1.0 Kb = 1.0 × 10−21 cm2 and 1.0
b = 1.0 × 10−24 cm2.)

Photon energy (eV) σsingle (Kb) σdouble (b)

2500.0 21.91 2.73
2750.0 16.63 9.43
3000.0 13.02 11.90
3500.0 8.39 11.09
4000.0 5.67 8.67
5000.0 2.97 4.89
6000.0 1.70 2.81
7000.0 1.09 1.71
8000.0 0.74 1.09
9000.0 0.52 0.73

10 000.0 0.38 0.51

channels found in table 1 for J = 0, M = 0, in table 2
for J = 1, M = 0, and in table 3 for J = 2, M = ±1.
We again used a 480 × 480 point numerical lattice with
�r1 = �r2 = 0.01, with each radial mesh partitioned over 48
core processors on a massively parallel supercomputer. Single
and double photoionization probabilities were calculated using
equations (28) and (32), which involve integrals over the time
propagated coupled channel radial functions, all the bound
single particle positive energy solutions, and the lowest 40
continuum single particle positive energy solutions. Single and
double photoionization cross sections were calculated using
equations (31) and (33).

For Ne8+ we used an intensity of 1015 Watts cm−2 while
propagating the TDCC-6D equations for ten radiation field
periods with a uniform time mesh of �t = 1.0 × 10−5.
Since the ‘length’ gauge emphasizes larger distances from the
nuclear charge, it is more accurate for uniform mesh lattice
calculations and is thus used for all the Ne8+ calculations.
Including only dipole and Coulomb interactions, single and
double photoionization cross sections over a range of photon
energies from near threshold to 10 000 eV are presented in
table 4. Including dipole, quadrupole, Coulomb, and Gaunt
interactions, single and double photoionization cross sections
are presented in table 5. For the relatively low charged Ne8+

atomic ion, the quadrupole and Gaunt interactions yield only a
slight increase in the single and double photoionization cross
sections.

Table 5. Photoionization cross sections for Ne8+ including dipole,
quadrupole, Coulomb, and Gaunt interactions. (1.0 Kb = 1.0 ×
10−21 cm2 and 1.0 b = 1.0 × 10−24 cm2.)

Photon energy (eV) σsingle (Kb) σdouble (b)

2500.0 22.01 2.78
2750.0 16.71 9.55
3000.0 13.10 12.07
3500.0 8.46 11.28
4000.0 5.72 8.86
5000.0 3.01 5.04
6000.0 1.73 2.93
7000.0 1.11 1.80
8000.0 0.76 1.16
9000.0 0.54 0.79

10 000.0 0.39 0.56

Figure 1. Photon-impact double to single ionization cross section
ratios for Ne8+. The scaled cross section ratio is 100 σsingle(1s 1

2 )/
σdouble and the scaled photon energy ratio is ω/2460 for ω in eV.
Connected solid (red) squares: TDCC-6D calculations, solid (blue)
curve: fully-relativistic perturbation theory calculations [5].

The TDCC-6D calculations including dipole, quadrupole,
Coulomb, and Gaunt interactions are compared with fully
relativistic perturbation theory calculations [5] for the scaled
cross section ratio:

R = Z2σsingle(1s 1
2 )

σdouble
(36)

versus photon energy ratio (ω/ωt) with Z = 10 and ωt =
2460 eV in figure 1. The TDCC-6D cross section ratios
are found to be 10% to 15% below the perturbation theory
ratios, but follow the same trend with photon energy ratio. We
note that the accurate calculation of double ionization cross
sections is difficult using perturbation theory. The TDCC-
6D calculations including dipole, quadrupole, Coulomb, and
Gaunt interactions are compared with recent intermediate
energy R-matrix (IERM) calculations [22] for the double
ionization cross section in figure 2. Overall there is good
agreement between the two non-perturbative calculations.
For the relatively low charged Ne8+ atomic ion, the IERM
results for the double ionization cross sections should be quite
accurate.

6



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 085002 M S Pindzola et al

Figure 2. Photon-impact double ionization of Ne8+. Solid (red)
curve with squares: TDCC-6D calculations, solid (blue) curve :
IERM calculations [22] (1.0 barn = 1.0 × 10−24 cm2).

4. Summary

Using the Dirac equation with a full electromagnetic field
potential in both the ‘velocity’ and ‘length’ gauges, relativistic
time-dependent close-coupled equations were derived for the
single and double photoionization of two active electron
atomic ions. Key steps in the derivation are the introduction
of an expansion in spherical Bessel functions for the
electromagnetic field operators and algebraic reduction of the
j jJ coupled state matrix elements of the associated tensor
operators. Algebraic reduction of the j jJ coupled state matrix
elements was also made for the tensor operators associated
with the Coulomb and Gaunt two-body interactions. A key
step in obtaining a well-behaved time evolution of a two
electron system interacting with an electromagnetic field is
the introduction of an inhomogeneous Dirac equation method
for calculation of the fully correlated initial ground state. The
single and double photoionization cross sections for Ne8+ were
calculated over an energy range easily accessible at advanced
free electron facilities and were found to be in reasonably
good agreement with fully-relativistic distorted-wave and non-
perturbative IERM results.

In the future, we plan to apply the fully-relativistic TDCC-
6D method to look at double photoionization energy and angle
differential cross sections. Perturbation theory breaks down
completely for two electrons moving in the same direction
at close to the same energies. We also plan to look for exotic
effects of the underlying Dirac sea of negative energy solutions
on the double photoionization cross sections as we move to
more highly charged atomic ions.
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Appendix

Matrix elements involving the radiation field for coordinate �r1

are given by:

〈(κ1, κ2)JM|S1
0|(κ ′

1, κ
′
2)J

′M′〉
= δl2,l′2δ j2, j′2δl1,l′1 (−1)J+J′−M+2 j1+ j2+l1+ 1

2

×
√

3/2
√

(2J + 1)(2J′ + 1)(2 j1 + 1)(2 j′1 + 1)

×
(

J 1 J′

−M 0 M′

){
j1 j2 J

J′ 1 j′1

}{
l1

1
2 j1

1 j′1
1
2

}
, (A.1)

〈(κ1, κ2)JM|C1
0 |(κ ′

1, κ
′
2)J

′M′〉 = δl2,l′2δ j2, j′2

×(−1)J+J′−M+ j1+ j′1+ j2+ 1
2

×
√

(2l1 + 1)(2l′1 + 1)

(
l1 1 l′1
0 0 0

)

×
√

(2J + 1)(2J′ + 1)(2 j1 + 1)(2 j′1 + 1)

×
(

J 1 J′

−M 0 M′

){
j1 j2 J

J′ 1 j′1

}{
l1

1
2 j1

j′1 1 l′1

}
, (A.2)

and
〈(κ1, κ2)JM|V (k)K

Q|(κ ′
1, κ

′
2)J

′M′〉 = δl2,l′2δ j2, j′2

×(−1)J+J′−M+ j1+ j2+l1+K
√

3/2(2K + 1)

×
√

(2l1 + 1)(2l′1 + 1)

(
l1 k l′1
0 0 0

)

×
√

(2J + 1)(2J′ + 1)(2 j1 + 1)(2 j′1 + 1)

×
(

J K J′

−M Q M′

){
j1 j2 J

J′ K j′1

}⎧⎪⎨
⎪⎩

l1
1
2 j1

l′1
1
2 j′1

k 1 K

⎫⎪⎬
⎪⎭ . (A.3)

Matrix elements involving the radiation field for
coordinate �r2 are given by:

〈(κ1, κ2)JM|S1
0|(κ ′

1, κ
′
2)J

′M′〉 = δl1,l′1δ j1, j′1δl2,l′2

×(−1)2J−M+ j1+ j2+ j′2+l2+ 1
2

×
√

3/2
√

(2J + 1)(2J′ + 1)(2 j2 + 1)(2 j′2 + 1)

×
(

J 1 J′

−M 0 M′

){
j1 j2 J

1 J′ j′2

}{
l2

1
2 j2

1 j′2
1
2

}
, (A.4)

〈(κ1, κ2)JM|C1
0 |(κ ′

1, κ
′
2)J

′M′〉 = δl1,l′1δ j1, j′1

×(−1)2J−M+ j1+ j2+2 j′2+ 1
2

×
√

(2l2 + 1)(2l′2 + 1)

(
l2 1 l′2
0 0 0

)

×
√

(2J + 1)(2J′ + 1)(2 j2 + 1)(2 j′2 + 1)(
J 1 J′

−M 0 M′

){
j1 j2 J

1 J′ j′2

}{
l2

1
2 j2

j′2 1 l′2

}
, (A.5)

and

〈(κ1, κ2)JM|V (k)K
Q|(κ ′

1, κ
′
2)J

′M′〉 = δl1,l′1δ j1, j′1

×(−1)2J−M+ j1+ j′2+l2+K
√

3/2(2K + 1)

×
√

(2l2 + 1)(2l′2 + 1)

(
l2 k l′2
0 0 0

)
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×
√

(2J + 1)(2J′ + 1)(2 j2 + 1)(2 j′2 + 1)

×
(

J K J′

−M Q M′

){
j1 j2 J

K J′ j′2

}⎧⎨
⎩

l2
1
2 j2

l′2
1
2 j′2

k 1 K

⎫⎬
⎭ . (A.6)

Matrix elements involving the two-body Coulomb
interaction are given by:

〈(κ1, κ2)JM|C(�r1,�r2)|(κ ′
1, κ

′
2)J

′M′〉
= (−1)2 j′1+ j2+ j′2+J+1δJ,J′δM,M′

×
√

(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)

×
√

(2 j1 + 1)(2 j′1 + 1)(2 j2 + 1)(2 j′2 + 1)

×
∑

λ

rλ
<

rλ+1
>

(
l1 λ l′1
0 0 0

)(
l2 λ l′2
0 0 0

)

×
{

l1
1
2 j1

j′1 λ l′1

}{
l2

1
2 j2

j′2 λ l′2

}{
j1 j2 J
j′2 j′1 λ

}
. (A.7)

Matrix elements involving the two-body Gaunt interaction
are given by:

〈(κ1, κ2)JM|G(�r1,�r2)|(κ ′
1, κ

′
2)J

′M′〉
= (−1) j′1+ j2+J+l1+l2 4(3/2)δJ,J′δM,M′

×
√

(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)

×
√

(2 j1 + 1)(2 j′1 + 1)(2 j2 + 1)(2 j′2 + 1)

×
∑
λ,K

(−1)λ+K (2K + 1)
rλ
<

rλ+1
>

(
l1 λ l′1
0 0 0

)(
l2 λ l′2
0 0 0

)

×
{

j1 j2 J
j′2 j′1 K

}⎧⎨
⎩

l1
1
2 j1

l′1
1
2 j′1

λ 1 K

⎫⎬
⎭
⎧⎨
⎩

l2
1
2 j2

l′2
1
2 j′2

λ 1 K

⎫⎬
⎭ . (A.8)
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