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Abstract

Efficient population transfer by adiabatically chirping through a multiphoton resonance in
microwave driven and kicked Rydberg atoms has recently been reported both experimentally
and theoretically. Here we report on our simulations in which we have exploited this
mechanism to vibrationally excite a diatomic molecule up to |ν = 4, J 〉 from the ground state
by chirping through a four-photon resonance condition. This is an efficient means of
population transfer, which is an alternative to the ladder climbing scheme requiring chirping
through a sequence of states in the correct order. We discuss and compare one-dimensional
quantum and classical models where there is no rotational degree of freedom. This
comparison suggests that for the lowest laser intensity we consider, the process is classically
forbidden and the transition occurs through tunnelling. We show that for larger peak
intensities, the transfer can be looked upon as a classical transition in phase space, similar to
that observed in the atomic case. We extend our simulations to fully three-dimensional
quantum calculations and investigate the effect of coupling between different rotational
pathways. We finally discuss the effect of thermal averaging over the initial J-states using a
temperature for which the first few rotational levels inside the ν = 0 manifold are populated.

1. Introduction

Since femtosecond lasers became available in laboratories,
creation of vibrationally excited molecules has led to important
discoveries and applications. Apart from the fundamental
physics aspect of these studies, steering chemical reactions
emerged as a practical application since unlikely chemical
reaction paths can become favoured by the excitation of
certain rovibrational levels. Particularly, a large body of
work has been devoted to the dissociation of small molecules
using femtosecond lasers (see [1, 2]). Break-up of large
molecules can also be controlled by the excitation of a
particular rovibrational mode, which puts efforts devoted
to the studies of selective vibrational excitation next to
those towards dissociation [3–9]. The main methodology
for exciting the vibrational states of molecules has been
vibrational ladder climbing where the driving laser pulse
is chirped through a series of single-photon resonances in
order to transfer population into a desired final state. Short
durations of femtosecond lasers have provided relatively large

spectral bandwidths, which can potentially contain many
frequencies desired to adapt to the vibrational evolution of the
molecule.

A more recent use of vibrationally excited molecules
is in quantum information science [10]. The possibility
of implementing well-known classical algorithms using the
effects of quantum interference relies on the availability
of Bohr-like non-dispersing wave packets whose unitary
evolution in time is necessary to perform computations. Such
wave packets require near equally spaced energy levels in
order to endure decoherence. One way this has been realized
is by exposing very highly excited Rydberg atoms (n ∼ 300)
to a series of impulsive electric field kicks [11]. The
fact that the difference in energy spacings between adjacent
n-manifolds scales like ∼1/n3 means the energy change is
2/n times the energy spacing itself (given that energy scales
∼ 1/(2n2)). For n = 300, this translates into a change in
energy that is 1/150 of the energy of n = 300. This has been
observed to be small enough for such highly excited Rydberg
wave packets to survive for several Rydberg periods before
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incoherence starts to become important. Short periods of
vibrational oscillations and similarities to a harmonic oscillator
make vibrationally excited molecules a potential candidate to
be used in such studies. For example, a recent study has
utilized vibrationally excited iodine molecules to perform an
ultrafast discrete Fourier transform by tailoring a vibrational
wave packet coupled to an electronic transition [12].

An efficient method of population transfer in a Li
atom between its highly excited Rydberg states has been
experimentally realized [13] by adiabatically chirping a
microwave pulse through a ten-photon resonance condition.
Starting from a state with the principle quantum number n =
72, they experimentally observed ∼80% population transfer
into the n = 82 manifold. The physical mechanism behind
the process has been explained in terms of a quantum ten-
photon transition (multiphoton adiabatic rapid passage) or
equivalently by a classical transition in phase space [14]
through classical and quantum simulations for microwave-
driven [14] and kicked Rydberg atoms [15].

In this work, we utilize the same multiphoton adiabatic
rapid passage mechanism [13, 14] to excite a ground-state
diatomic molecule into a rovibrational excited state. Using HF
as an example, we are able to simulate complete population
transfer from the ground vibrational state |ν = 0, J 〉 into the
|ν = 4, J 〉 manifold by chirping an IR laser through a four-
photon resonance condition. The previously studied atomic
cases and the molecular case studied in this work differ in the
sense that the molecule starts in the ground vibrational state
with the smallest possible classical action, while the Rydberg
atom started in a highly excited state. It is reasonable to
suspect that this can potentially lead to different mechanisms
for the excitation process in both cases: the Rydberg atom has
a very large number of states below and an infinite number
of states above the initial state, whereas the molecule has no
bound states below and a finite number of states above the
initial state. The chirp range we needed to use is much smaller
than that which would be needed when transferring population
through ladder climbing, which requires chirping the laser
through many single-photon transitions to reach the desired
final state. The chirping of the laser removes the necessity
to know the exact multiphoton resonance frequency, and the
excitation process itself is not strongly dependent on the size
of the chirp. The laser intensities we needed for exciting
the population up to the ν = 4 manifold from the ground
state are of the order of ∼1013 W cm−2, which is typical for
multiphoton excitations in HF as reported previously in [16].

In section 2, we employ one-dimensional quantum and
classical models to demonstrate that for a low-enough peak
intensity for which the transition is classically forbidden,
complete population transfer can be achieved quantum
mechanically. For peak intensities high enough such that
the transition is classically allowed, we observe the same
classical separatrix crossing mechanism as discussed in [14,
15] leading to efficient population transfer. The effect of
rotational coupling is taken into account in section 3 by
extending the one-dimensional quantum model to full three
dimensions. Particularly, we drive a four-photon resonance
condition from |ν = 0, J = 1〉 to |ν = 4, J 〉 in HF, and

find that after the pulse is turned off, the entire population
still resides in J = 1. The only rotational modes that get
excited during the pulse are J = 0 and J = 2 that are
adjacent to the initial J = 0 mode. This is very different than
the behaviour observed in microwave-driven Rydberg atoms,
where virtual transitions mix states up to very high-� inside
the final n manifold. Finally, in section 4, we consider what
would happen if we were to start from a thermal distribution
of initial states over rotational modes instead of a vibrational
eigenstate of HF.

We use atomic units throughout the paper unless specified
otherwise.

2. One-dimensional models

2.1. Quantum calculations in one dimension

One-dimensional quantum calculations involved solving the
time-dependent Schrödinger equation using a Morse potential
to model the vibrational potential of HF. We use a lowest order
implicit scheme for the time propagation of the Schrödinger
equation and employ a radial mesh in space that extends
out to 40 au using sufficient number of mesh points to
obtain the molecular eigenenergies to less than a percent
accuracy. In one dimension, the total molecular Hamiltonian
is H = −(1/2m)(d2/dr2) + VM(r) with the Morse potential
VM(r) given by

VM(r) = D
[
e−2α(r−r0) − 2e−α(r−r0)

]
. (1)

For HF, D = 5.716 eV is the dissociation energy, r0 = 1.75
au is the equilibrium bond length, α = 1.22 au and m = 0.95
amu is the reduced mass. Here the radial coordinate is
restricted in the region r � 0, and the model resembles an
s-wave model. Analytical solution for the time-independent
Schrödinger equation exists for the one-dimensional case, and
the energy Eν is [17]

Eν = −D

[
1 − α√

2mD

(
ν +

1

2

)]2

, (2)

and the number of bound states can be deduced from

ν <

√
2mD

α
− 1/2. (3)

For these sets of parameters, we have found that ν < 21.7
meaning that 21 bound states exist in the vibrational spectrum
of HF in the absence of any external field.

The interaction Hamiltonian describing the effect of the
applied driving pulse is −F(t)μ, where we use a Gaussian
carrier envelope as opposed to a flat-top envelope as in [15]:

F(t) = FIR exp

[
−

(
t

�t

)2
]

cos[ωt + ω̇t2/2]. (4)

The peak field strength FIR is proportional to the square-root
of the laser intensity ∼√

I . The central frequency ω of the
transition is �E/Nphot, where �E is the energy difference
between the ground state of HF and that of the targeted final
state, and Nphot is the number of photons needed for the
resonance condition. For the four-photon resonance condition
we study below, ω = 0.0168 au, which falls into the far
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Figure 1. Time-dependent evolution of the probability P to find the
HF molecule in vibrational states with ν = 0–4 for the four-photon
resonance excitation from the ground state ν = 0 to ν = 4. The IR
pulse has a peak intensity of 5 × 1013 W cm−2 and the carrier
envelope centred at t = 0 ps has a width of 1.38 ps at FHWM.

infrared region of the electromagnetic spectrum. The chirp
range for the laser field is ω̇ = 2s ω/tf with s = 0.02 − 0.04
resulting in a change in central frequency by 2–4%. Time steps
taken during the propagation of the Schrödinger equation are
chosen such that there are roughly 44 time points in each
cycle of the infrared pulse. Time runs from −tf to tf which
centres the peak of the carrier envelope at t = 0. We use
the dipole function μ(r) for HF from [18] having the form
μ(r) = A r exp(−Br4) with A = 0.4541 and B = 0.0064.

We evaluate the probability for finding the molecule
in a given vibrational state by projecting the field-free
eigenstates of HF onto the time-dependent wavefunction.
These eigenstates are generated on the same radial mesh used
for the time propagation by integrating the time-independent
Schrödinger equation.

Figure 1 shows the time-dependent probabilities to find
the HF molecule in vibrational manifolds ν = 0–4 when it
starts out in the ν = 0 state and is driven up to ν = 4 through
the four-photon resonance condition. The driving intensity
is 5 × 1013 W cm−2 and the carrier envelope is ∼1.38 ps
at FWHM. The laser pulse is chirped from 2% of the four-
photon resonance frequency below to 2% above the field-free
resonance condition. The initial state ν = 0 is completely
depleted and the entire population ends up in ν = 4. Although
the intermediate states get populated during the transition at
roughly 20−40% level, they all transition up to ν = 4 after
the pulse is turned off. For instance, at around 1 ps, the entire
population is essentially in either ν = 3 or ν = 4 state, and
ν = 3 transitions into ν = 4 at ∼2 ps. This is a direct
consequence of the fact that the vibrational period changes
little with energy and the anharmonicity of the vibrational
energy levels is engrossed inside the chirp plus the bandwidth
of the carrier envelope.

Instead of chirping through a multiphoton transition, if we
wanted to transfer the population via a ladder climbing scheme
like the one used in [4], we would have to induce a series of
single-photon transitions: 0 → 1, 1 → 2, 2 → 3, and finally
1 → 4 starting from ν = 0. The resonance frequency of the
0 → 1 transition would be needed to be decreased to keep

Table 1. Probabilities P to find HF in vibrational states with ν = 0
and ν = 4 for various intensities I (W cm−2), chirp ranges and
widths of the carrier envelope (tW ) in units of classical oscillation
period τM of ν = 0 for the one-dimensional quantum model
discussed in the text.

I (W cm−2) Chirp tW (τM ) Pν=0 Pν=4

5 × 1013 2% 168 0.00 1.00
1 × 1013 2% 168 0.93 0.07
1 × 1013 2% 336 0.87 0.13
1 × 1013 2% 672 0.75 0.25
5 × 1012 2% 672 0.99 0.01
5 × 1012 2% 1344 0.97 0.02
5 × 1012 4% 672 0.97 0.006

up with the evolving vibrational distribution. In this scenario
involving HF, we would have to chirp the 0 → 1 transition
frequency down by more than ∼14% of its initial value to
reach up to ν = 4. Compared to the 2% chirp we needed as
shown in figure 1, this is a relatively large chirp.

The peak intensity used in figure 1 is the lowest intensity at
which we could get the system to transfer with 100% efficiency
for the aforementioned pulse duration and chirp. Table 1
lists the final probabilities to find the system in ν = 0 and ν

states for various peak intensities I, chirp ranges and carrier
envelope widths in units of classical vibrational periods τM

corresponding to that of ν = 0. Decreasing the peak intensity
used in figure 1 by a factor of 5 down to 1 × 1013 W cm−2

results in only ∼4% transition probability into ν = 4, and
rest of the population stays in the initial ν = 0 state. Note
that this only corresponds to a decrease in the peak field
strength by a factor of ∼2.2. At this point, doubling the carrier
envelope width roughly doubles the final yield in ν = 4,

and the entire population still resides in states with ν = 0
and 4. Further doubling the pulse width gives another factor
of ∼2 in the final population inside the ν = 4 state. Having
quadrupled the carrier envelope width up to 672τM , decreasing
the peak field intensity by a factor of 2 again reduced the final
population inside ν = 4 by roughly a factor of 25 down to
∼1%. Lengthening the pulse width to 1344τM only gives a
factor of 2 boost. In the case of the 672τM pulse, doubling
the chirp range from 2% to 4% also gives a factor of 2 drop in
the final yield. In this very last case shown in table 1 where the
chirp range is twice the size compared to a previous case with
the same intensity and pulse width, ∼2% of the population
goes up to ν = 3 after the pulse intensity drops down by about
4 orders of magnitude towards the end of the pulse. This is a
three-photon transition which is swept through during chirping
over a larger frequency range close to the end of the pulse. In
all the other cases in table 1, the entire population resides either
in ν = 0 or in ν = 4.

For the transitioning depicted in figure 1, the magnitudes
of the one-dimensional wavefunction in space at different
points in time along the IR pulse envelope are plotted in
fig 2. At half the peak intensity 2.5 × 1013 W cm−2 before
the transition (figure 2(a)), the system is entirely in the initial
ν = 0 state. This roughly corresponds to t = −1.12 ps
in figure 1 when ∼5% of the population is in the ν = 1
state and the remaining ∼95% is in the initial state. At the
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Figure 2. One-dimensional wavefunction amplitudes in space
before (a), on (b) and after (c) the peak of the IR pulse for the same
set of parameters used for figure 1. The spatial distribution in (a) is
entirely that of the field-free ν = 0 eigenstate of the HF molecule,
and the one in (c) is almost entirely that of the ν = 4 eigenstate.

peak of the pulse in figure 2(b), the system is clearly in a
transitory state with nodes starting to form. At this point the
wavefunction is a superposition of the states with ν = 0–4
with mixing coefficients

√
Pν seen in figure 1 at t = 0 ps. It

can be speculated that since the wavefunction has nodes that
do not go to zero, it is likely that it cannot be expressed as an
eigenstate of some complicated Hamiltonian. In other words,
it has a larger spread in momentum space than that would be
covered by a superposition of the field-free eigenstates with
real mixing coefficients. At half the peak intensity in figure
2(c), after the transition takes place, the molecule is mostly
in the ν = 4 state. This corresponds to about t = 1.12 ps in
figure 1 when ∼15% of the population is in the ν = 3 state
with the remaining in ν = 4.

2.2. Classical calculations in one dimension

The classical mechanism behind the population transfer
using microwaves has been explained in [14] using a one-
dimensional classical model. Since the transition is induced
by chirping through a multiphoton resonance in the quantum
picture, it is natural to expect that a well-defined sharp final
state distribution would not result in the classical picture which
lacks resonance concept. Surprisingly, authors observed that
well-defined final state distributions also result from classical
simulations. Tracing the classical trajectories in phase space,
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Figure 3. Final ν-distributions from our one-dimensional classical
model for the same pulse duration and chirp range used in the
one-dimensional quantum calculation presented in figure 1 for
various peak laser intensities. (�) I = 5 × 1013 W cm−2, (∗)
I = 9 × 1013 W cm−2, (©) I = 13.5 × 1013 W cm−2, and (�)
I = 18 × 1013 W cm−2. In contrast with the one-dimensional
quantum model, no transfer occurs for the peak intensity of 5 ×
1013 W cm−2. We bin ν by taking its nearest integer value.

they investigated the classical mechanism responsible for the
transition. Although there are no resonances in the classical
picture, they found that microwave driving creates a stable
island centred at roughly halfway between the initial and
final states in classical action, which corresponds to n for
the Coulomb problem. The initial state just below the island
and the final state above it form a separatrix at the right
field strength. Driving the system a little harder destroys the
separatrix and creates a chaotic sea, mixing the trajectories that
were initially on the initial stable surface (i.e. initial state) into
the chaotic sea. This narrow chaotic sea also borders the stable
surface above the island of stability. During the falling edge of
the driving pulse, the field strength becomes small enough so
that the stable surfaces again form the separatrix and the initial
final stable surfaces, which trap the trajectories that were mixed
into the chaotic sea. By chirping the microwave frequency a
small amount, most of the trajectories can be made to end
up on the stable surface above the island of stability. In this
section, we will demonstrate that the same separatrix crossing
mechanism is also responsible for the vibrational population
transfer observed in section 2.1.

In our classical simulations, we solve Hamilton’s
equations in one dimension using a fourth-order adaptive step-
size Runga–Kutta method. We use the same Hamiltonian
used in the one-dimensional quantum simulations except that
we now use the x-coordinate instead of the radial coordinate
with the same numerical parameters x0 and α. The interaction
Hamiltonian is again −F(t)μ, where μ(x) = A x exp(−Bx4)

with A = 0.4541 and B = 0.0064 as before, and the IR laser
is polarized along the x-direction. The corresponding classical
force from the Morse potential is

− dVM(x)/dx = 2Dα
[
e−2α(x−x0) − 2e−α(x−x0)

]
. (5)

Figure 3 shows the final ν-distribution of the transition
probabilities for the four-photon resonance condition starting
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from the ground state. An IR pulse with a carrier envelope
of ∼1.38 ps at FHWM is used with a chirp range of 2% for
various peak field intensities. We use 500 trajectories for each
peak intensity and bin the final energy of the trajectories in
ν after the IR pulse is turned off. We bin the population in
ν according to equation 2 such that it is rounded off to the
nearest integer. The squares in figure 3 are for I = 5 × 1013

W cm−2, the stars are for I = 9 × 1013 W cm−2, the circles
are for I = 13.5 × 1013 W cm−2, and the triangles are for
I = 18 × 1013 W cm−2. The square with 5 × 1013 W cm−2

peak intensity corresponds exactly to the one-dimensional
quantum case presented in figure 1 and surprisingly shows
that no vibrational transition has taken place. This is in stark
contrast with the quantum result seen in figure 1 which displays
entire population transitioning into the ν = 4 state after the
pulse is turned off. This suggests that the transition occurs as
the wavefunction tunnels into the classically forbidden region
and is a purely quantum effect at this field strength. We had
to increase the peak intensity to 9 × 1013 W cm−2 (stars in
figure 3), which is a factor of ∼1.3 increase in the peak field
strength, to classically have ∼83% of the population to end up
with ν = 4 and ∼13% with ν = 0. In this case, there is no
spread in the final ν-distribution, a behaviour also displayed
classically using Rydberg atoms in our previous work [14].
Increasing the peak intensity to 13.5 × 1013 W cm−2 (circles)
results in a final ν spread that covers from ν = 3 to 7 with
about half the population residing in ν = 4. Further increase
in the peak intensity to 18 × 1013 W cm−2 (triangles) widens
the spread of final ν and results in roughly 10% dissociation
(final E > 0). In this case, ∼34% of the population ends up
in ν = 4 and ∼19% stays in the initial state.

In order to probe the classical process taking place during
the transition, we looked at one-dimensional surfaces of
section plots in classical phase space as described in our
previous work with microwave-driven and kicked Rydberg
atoms [14, 15]. We use the action-angle variables I and θ to
picture the classical phase space. They are derived in [19] for
the field-free Morse potential and are given by

I = 2π(ν + 1/2)
(6)

θ = 1

2π
sgn(p) cos−1

[
z + E/D

z
√

1 + E/D

]
,

where z = exp[−α(r − r0)]. Here p is the momentum, sgn(p)

is the sign of the momentum, and θ is the angle variable which
runs from −1/2 to 1/2. The classical action I corresponds
to the quantum number ν, and tracking it in the phase space
gives a clear picture of the evolution of the effective quantum
number ν as the pulse is swept through. Since the energy is a
function of ν + 1/2 (equation 2), the smallest action is −1/2
and we use ν instead of action in our plots for clarity. The
angle coordinate θ is a measure of the phase of the classical
orbit.

Figure 4 shows the surfaces of section plots for the peak
IR intensities of 9 × 1013 W cm−2 (column 1) and 18 ×
1013 W cm−2 (column 2) before (panels A1 and A2), on
(panels B1 and B2), and after (panels C1 and C2) the peaks
of the carrier envelopes. These intensities correspond to stars
and triangles seen in figure 3 except that in figure 4 we do

not chirp the frequencies in order to simplify the classical
picture. On top of each surface of section, we plot the phase
space positions of the trajectories at corresponding instances
during the IR pulse (large filled circles). Before the transition,
trajectories reside on the initial stable surface of ν = 0 (panels
A1 and A2). These correspond to intensities 5×1013 W cm−2

and 1014 W cm−2 respectively. As the peak intensities of 9 ×
1013 W cm−2 and 18 × 1013 W cm−2 are reached in B1 and
B2, this stable surface is destroyed and the trajectories that
were on this surface are mixed into the chaotic sea. Note
that for the smaller peak intensity in B1, trajectories stay
almost perfectly along the lines that are used to made up
the separatrix, even after these surfaces are destroyed by the
driving field. More than half of the trajectories mixed into the
chaotic sea have swung around the main island of stability. In
B2, where the driving field is stronger by a factor of ∼1.4,
the trajectories drift and disperse inside the chaotic sea more
rapidly compared with A2, resulting in a final wider spread
in ν than in A1, as depicted by the triangles in figure 3. The
fact that ν initially has the lowest possible value at −1/2
results in the formation of a stable island centred at ∼ −0.3π

rad (seen more prominently in B1). This island is destroyed
in B2 due to the stronger driving field. During the falling
edges of the IR pulses with I = 5 × 1013 W cm−2 and
I = 10 × 1013 W cm−2 (C1 and C2 respectively), stable
surfaces are formed again and the trajectories are captured
onto final stable ν-manifolds. In C1, this means that about
half the trajectories end up on the ν = 4 surface and the
other half stay on the initial ν = 0 stable surface. A large
spread of final ν is seen in C2 in agreement with the triangles
in figure 3.

3. Quantum calculations in three dimensions

A detailed account of our fully three-dimensional quantum
calculations has been given in [14] for the case of a microwave-
driven Rydberg atom. The difference in the molecular case
is only in the radial part of the Hamiltonian describing the
vibrational potential and in the dipole coupling as a function
of r. The details of the Morse potential and the proper dipole
function used in the interaction Hamiltonian for HF were
described in section 2.2 for the one-dimensional treatment of
the problem. The interaction Hamiltonian itself now couples
J to J ± 1 since it is now −F(t)μ cos(θ). In this way, the
three-dimensional calculations take into account the role of
the rotational levels as they are coupled with the vibrational
degree of freedom as a result of the interaction with the IR
laser pulse.

Figure 5 shows time-dependent probabilities in
vibrational states with ν = 0 through ν = 4 (panel (a)),
along with the probabilities in the rotational modes J = 0
through J = 4 (panel (b)). The peak IR laser intensity,
chirp range and carrier envelope width are identical to those
used in the one-dimensional quantum simulations presented in
figure 1. The molecule starts in the initial rovibrational state of
|ν = 0, J = 1〉 and is driven up to |ν = 4, J = 1〉 through the
four-photon resonance condition. The time evolution and the
final distributions of the vibrational manifolds are very similar
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(A1) (A2)

(B1) (B2)

(C1) (C1)

Figure 4. Phase space positions of the trajectories from the one-dimensional classical model without chirp before (A1 and B1), on (A2 and
B2), and after (C1 and C2) the peak of the laser pulse. The right column is for the peak intensity of 9 × 1013 W cm−2 and the left column is
for 18 × 1013 W cm−2. The large points on top of the surfaces of section are the actual phase space positions of trajectories that started on
the ν = 0 stable surface. Note that for the lower peak intensity in B1, the trajectories stay near the positions of the former stable surfaces
that made up the separatrix whereas in B2 higher laser intensity dispersed the trajectories inside the phase space.

to those seen in the one-dimensional quantum simulations with
the entire population transitioning into the ν = 4 manifold
after the IR pulse is turned off. This suggests that the coupling
into different rotational pathways is not significantly important
for the transition to occur. The probabilities for the rotational
quantum numbers evolving in time seen in figure 5(b) suggest
that the final rotational mode of the molecule is the one that
it started out with i.e. J = 1. Only J = 0 and J = 2, i.e.
the adjacent rotational modes get significantly excited during
the transition, which transition back into J = 1 by the end
of the IR pulse. Recall that the transition at this peak intensity
stems from tunnelling as we inferred by comparing the one-
dimensional quantum and classical simulations.

Population distributions in quantum numbers ν and J
before, on and after the peak of the carrier envelope are seen
in figure 6. These snapshots are taken at the same instances
during the IR pulse as the one-dimensional wavefunction plots
seen in figure 2. At half the peak intensity (leftmost panel), the
entire population is in the initial |ν = 0, J = 1〉 state, similar
to the one-dimensional wavefunction plot in figure 2(a). At
the peak of the laser pulse (middle panel), the population has

spread out and now spans J up to 3 and ν up to 5. It is
confined mostly in ν = 0, 3 and 4 which can also be seen from
figure 5(a). The probabilities display a checkerboard pattern
for J � 2; for J = 2, ν = 0, 2 and 4, and for J = 3, ν = 1,
3 and 5 being populated. This comes from the fact that each
absorbed photon can change the angular momentum by one
unit and successive ν are roughly separated by one photon.
This is different than the atomic case where the four-photon
frequency would correspond to roughly the energy of the state
that lies approximately half way between the initial and final
states [14, 15]. After field intensity drops back to half the peak
value again (rightmost panel), the entire population settles into
the final |ν = 4, J = 1〉 state.

The conservation of the initial rotational quantum number
J after the transitioning can potentially make this method
appealing over the ladder climbing scheme in research
involving self-imaging of molecules in strong laser fields (see
[20] for a detailed account). In this context, self-imaging of a
molecule by its own ionized rescattering electron in a strong
laser field requires a fair level of alignment of the molecule
itself in order for structural information to be recoverable
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Figure 5. (a) Same as figure 1 but from a full three-dimensional
simulation with the same set of parameters as those used in the
one-dimensional simulations of section 2.2. The HF molecule starts
from the |ν = 0, J = 1〉 state and is driven up to |ν = 4, J = 1〉
through the four-photon resonance condition. (b) Time-dependent
evolution of P for J up to 4. (J = 4 is the dot-dashed curve at the
bottom which we did not label to prevent cluttering.) Although
J = 0 and J = 2 are significantly populated during the pulse, the
molecule stays entirely in J = 1 after the IR pulse is turned off.
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Figure 6. (ν,J)-distributions for the run presented in figure 5 before
(left panel), during (middle panel) and after (right panel) the
transition takes place. P is multiplied by 5 in the middle panel for
better visibility of smaller structures in the distribution. During the
transition, ν < 6 and J remains less than 4.

from the ionization spectrum. Having molecules in excited
vibrational states may be desirable for this type of research

since the main aim is to watch and steer chemical reactions
in real time. Once aligned, vibrational excitation through
ladder climbing would destroy the alignment since it would
smear the J-distribution of the aligned population. This can
be circumvented if the multiphoton adiabatic rapid passage
scheme is used to vibrationally excite the molecule after it is
aligned, preserving the alignment.

4. Thermal distribution of rotational levels

The three-dimensional quantum simulations in figure 5 show
complete population transfer into the final |ν = 4, J = 1〉
state from the ground |ν = 0, J = 1〉 state by chirping
through a four-photon resonance condition. This would
be experimentally challenging to achieve. In the previous
section, we have started from a well-defined specific eigenstate
|ν = 4, J = 1〉 and drove the transition up to another specific
final eigenstate. In real-world experiments, the initial state
would be smeared over a spectrum of rotational eigenstates as
a result of non-zero temperature. In this section, we take into
account the effect of this thermal mixing of the initial states
on the population transfer. We perform the same calculations
as those in section 3 for a series of initial states |ν = 0, J 〉 for
J up to 5 and drive the same four-photon resonance condition
using the same chirp range as before. We then average the
time-dependent probabilities PJ as

P =
∑

J (2J + 1) e−εJ /kBT PJ∑
J (2J + 1) e−εJ /kBT

. (7)

Here εJ is the energy of the eigenstate |ν = 0, J 〉 relative to
the ground state |ν = 0, J = 0〉, kB is the Boltzman constant
and T is the temperature. We pick 150 K as the temperature,
which gives substantial rotational population up to J = 4 for
HF. Much lower but still experimentally feasible temperatures
as low as ∼14 K leave the entire ensemble in the J = 0
ground state for HF. The initial spread in J at 150 K can
be seen from the time-dependent probability distribution in
figure 7(b) at t = −3 ps. It is also plotted as the open squares
in figure 8.

Similar to figure 6, figure 7 shows the time evolutions
of probabilities for ν (panel (a)) and J (panel (b)) quantum
numbers. Compared with figure 6(a), figure 7(a) shows that
∼10% of the population stays in ν = 0 and the remaining
∼90% transitions into ν = 4 by the end of the pulse. In this
case, ν = 3 lingers around a little longer compared to the
pure eigenstate case in figure 6(a). Figure 7(b) shows that
states with J = 1, 3 and 4 stay roughly at the same level of
occupation as they started out with, and states with J = 0 and
J = 2 end up with same probabilities after the the pulse is
turned off. In other words, roughly 10% of the population in
J = 2 transitions into states with J = 0. The change in the
overall J-distribution as a result of the transition can be seen in
figure 8. The triangles depict the population distribution over
the rotational quantum number J, and the squares represent the
initial thermal distribution inside the ν = 0 manifold.

Another issue of concern in experiments would be the
spatial profile of an actual IR laser pulse. Since the laser
intensities of interest are in the strong field regime, most
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Figure 7. Same as figure 5 but starting from a thermal J-distribution
of states with ν = 0 at 150 K. The initial weights for each
J-eigenstate of HF at this temperature can be seen at t = −3 ps
in (b). The total population ended up in the ν = 4 manifold is
roughly 12% less than that when the molecule started in an
eigenstate in figure 5.
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Figure 8. Thermal distribution of population over J in the initial
ν = 0 manifold (�) and the J-distribution after the IR pulse is
turned off (�) for 150 K. The peak laser intensity and the pulse
duration are the same as those used in figure 5.

likely the laser would need to be focused, resulting in a
Gaussian beam profile, for instance. As table 1 indicates, the
transition is sensitive to the peak laser intensity. For instance,
while 1 × 1013 W cm−2 results in essentially no transfer at
all, twice that would yield complete population transfer into
ν = 4. This suggests that in a Gaussian beam, only a small
region around the focus would contribute to the transfer, other
regions resulting in no transitioning at all. The final averaged

picture would qualitatively look like figure 5(a) given that
rotational pathways do not play a significant role in how much
transfer is attained in each ν-manifold. The amount that
transitions into ν = 4 would only weakly depend on how
sharply the laser is focused since the transition occurs quite
suddenly when a particular laser intensity is reached, as seen
from table 1.

5. Conclusions

We have presented results of our simulations that show
complete population transfer between the ground vibrational
state of HF and its ν = 4 excited state by adiabatically
chirping through a four-photon resonance condition. This is
a demonstration of efficient and robust population transfer in
a diatomic molecule which is different from the conventional
ladder climbing scheme which has been previously studied.
The current method is different than ladder climbing in the
sense that it does not involve chirping through a series of
intermediate states in a correct order in order to transfer
population [4]. The mechanism behind the population transfer
is physically identical to that seen in microwave-driven and
kicked atoms in the context of population transfer between
Rydberg states [13–15].

One-dimensional quantum and classical models show that
entire population can be excited up to ν = 4 from the ground
state by chirping through a four-photon resonance condition.
The chirp required for this is not essential to the physical
mechanism, but rather it serves to increase the efficiency of
the population transfer. Surprisingly, we also observed that
although a peak intensity of 5 × 1013 W cm−2 results in
complete transfer into ν = 4 in the quantum mechanical
model, classical model requires at least a peak intensity of
∼9 × 1013 W cm−2 for any transition to occur. This suggests
that the complete population transfer in the quantum case with
5×1013 W cm−2 is classically forbidden and happens through
tunnelling. For peak laser intensities of 9 × 1013 W cm−2 and
higher, we observe the same separatrix crossing mechanism
observed in Rydberg atoms for the multiphoton population
transfer. Although I = 9 × 1013 W cm−2 results in perfect
final-state resolution, intensities up to twice as high result in
substantial final state spreads and even dissociation.

By extending our simulations to fully three-dimensional
quantum calculations, we introduced the effect of rotational
coupling in the excitation process for the four-photon
transitioning from the |ν = 0; J = 1〉 to |ν = 4; J = 1〉 state
of HF. Again, we observed complete transfer of population into
the final ν = 4 manifold, but this time we also demonstrated
that the transferred population entirely retained J = 1
character after the IR pulse is turned off. The J-states that
played a significant role during the transition are only the
adjacent J = 0 and J = 2 states. In order to simulate a
more realistic experimental condition, we considered a case
where the initial state is not a single rovibrational eigenstate
of the field-free HF molecule, but rather a thermal distribution
of initial states. We have particularly chosen 150 K as our
temperature since this gives a sizable spread in J up to J = 4
inside the ν = 0 manifold of HF. For the same set of IR
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pulses and chirp ranges used in the one-dimensional and three-
dimensional simulations, we have seen that the total fraction
of the population transferred into ν = 4 decreased by only
∼10%, and that the final J-distribution only differs than that
in the beginning of the laser pulse for J = 0 and J = 2 by
roughly 5%.
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