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Abstract
Non-perturbative time-dependent close-coupling calculations are carried out for the double
photoionization of helium including both dipole and quadrupole radiation effects. At a photon
energy of 800 eV, accessible at current synchrotron light sources, the quadrupole interaction
contributes around 6% to the total integral double photoionization cross section. The pure
quadrupole single energy differential cross section shows a local maximum at equal energy
sharing, as opposed to the minimum found in the pure dipole single energy differential cross
section. The sum of the pure dipole and pure quadrupole single energy differentials is
insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at
equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the
quadrupole interaction that may be experimentally observable.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The validity of the dipole approximation in calculations of
double photoionization rests on the assumption that higher
order multipoles can be neglected. Generally, for low photon
energies this is reasonable, however, the dipole approximation
is expected to break down at higher photon energies. Double
photoionization of helium has been the subject of numerous
investigations, both experimental [1–3] and theoretical [4–6]
with good agreement found between theory and experiment at
low photon energies.

The single energy differential cross section due to the
dipole interaction is now well understood. At an excess photon
energy of 20 eV, the single energy differential cross section is
almost flat [7]. This is due to a ‘knock out’ mechanism that
dominates at low photon energies in which the electron that
absorbs the photon ‘knocks out’ the other electron as it is
being ionized. This is referred to as the two-step-one (TS1)
mechanism in the double ionization of atoms by photons or
electrons. This process does not depend strongly on the energy
sharing between the electrons, leading to a flat single energy
differential cross section. For a photon energy of 529 eV the
single energy differential cross section has been shown to be
‘U’ shaped, with one ejected electron taking almost all the
excess energy [8]. This has been explained via the ‘shake-off’

mechanism that dominates the dipole cross section at higher
energies. This process involves one electron absorbing the
photon and being ionized. The sudden change in the atomic
potential caused by the ejection of the first electron causes the
second electron to have a probability of relaxing to a continuum
state of He+, i.e. it is ‘shaken off’. This process will typically
produce one slow and one fast electron, so explaining the ‘U’
shape observed in the single energy differential cross section.

The influence of non-dipole effects has been investigated
within the framework of lowest-order perturbation theory
(LOPT) [9, 10], with a non-dipole forward–backward
asymmetry predicted in the triple differential cross section at
an excess energy of 450 eV. The importance of accounting
for non-dipole effects was confirmed by subsequent non-
perturbative convergent close-coupling calculations [11, 12].
At higher photon energies the single energy differential cross
section has been predicted to show more structure with a ‘W’
shape developing due to the quadrupole interaction [13, 14].
This proposed structure can be understood as arising due
to a mechanism whereby a pair of electrons could absorb
a single photon in the quadrupole (or higher multipole)
approximation such that the nucleus would hardly recoil. To
see how this mechanism arises, examine the dipole operator
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for two electrons through the quadrupole term for light linearly
polarized in the z-direction and travelling in the x-direction:

D = pz1 eikx1 + pz2 eikx2 � pz1 + pz2 + ik(pz1x1 + pz2x2), (1)

where k is the wave number of the photon and pz is the
z component of the momentum operator. If the electron
coordinates are written in centre-of-mass form (x− = x2 − x1,
x+ = (x2 + x1)/2 and pz+ = pz1 + pz2 , pz− = (pz2 − pz1)/2),
then the transition operator can be written as

D � pz+ + ik(pz+x+ + pz−x−). (2)

The part of the operator that depends on the ‘+’ coordinate
gives substantial nuclear recoil because this coordinate is
relative to the nucleus, thus the electron momentum is opposite
to that of the nucleus. But note that at the quadrupole level,
there is a term in the operator that directly acts on the relative
coordinate (pz−x−). This term allows a transition where the
electron–electron relative coordinate absorbs the energy and
momentum of the photon. Since the nucleus is not involved
in the transition, it only recoils through the post collision
interaction of the outgoing electron with the nuclear charge.
Since the electrons are travelling in opposite directions with
nearly equal speed, this interaction will be suppressed. This
leads to a maximum in the single energy differential cross
section at equal energy sharing.

Here we test this prediction by carrying out an ab
initio calculation using the time-dependent close-coupling
method (TDCC) [15] of the double photoionization of helium
including the quadrupole interaction and calculate the total
integral cross section, the single energy differential cross
section and the triple differential cross section. In the
following section, we discuss the extension to the theory that
is needed to incorporate the quadrupole interaction, and then
present results at a photon energy of 800 eV. This energy
should be within the range of existing synchrotron sources
and is accessible to ab initio theory. Unless otherwise stated
we use atomic units throughout.

2. Theory

For the double photoionization of an atom with two active
electrons, the time-dependent Schrödinger equation in the
weak field limit is given by

i
∂�( �r1, �r2, t)

∂t
= Hatom�( �r1, �r2, t) + Hrad�0( �r1, �r2) e−iE0t ,

(3)

where

Hatom =
2∑
i

(
−1

2
∇2

i + V (ri)

)
+

1

| �r1 − �r2| (4)

and V (r) = −2/r for the helium atom. For a linearly polarized
radiation field in the length gauge:

Hrad =
(ω

c

)n−1
E(t) cos ωt

2∑
i

rn
i Cn(r̂i), (5)

where ω is the radiation field frequency, c is the speed of light,

E(t) is the radiation field amplitude, Cn(r̂) =
√

4π
2n+1Yn0(r̂) is

a spherical tensor, Ynm(r̂) is a spherical harmonic, n = 1 for
dipole interactions and n = 2 for quadrupole interactions. The
wavefunction, �0( �r1, �r2), and energy, E0, for the ground state
of an atom with two active electrons is obtained by relaxation
of the time-dependent Schrödinger equation in imaginary time
(τ = it):

− ∂�0( �r1, �r2, τ )

∂τ
= Hatom�0( �r1, �r2, τ ). (6)

Expanding �( �r1, �r2, t) and �0( �r1, �r2, τ ) in coupled spherical
harmonics and substitution into equations (3) and (6) yields
the time-dependent close-coupled equations [7]:
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and
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The one-body operator is given by

Tl1l2(r1, r2) =
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and the two-body Coulomb operator is given by
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where r< = min(r1, r2), r> = max(r1, r2), and standard
3j and 6j symbols are used. The one-body radiation field
operator is given by
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The time-dependent close-coupled equations of equation (7)
are propagated separately for the dipole and quadrupole
interaction. The coupled radial wavefunctions are then
projected onto products of one-electron orbitals to yield
scattering probability amplitudes given by

PLS
l1l2

(k1, k2, t) =
∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1(r1)Pk2l2(r2)P

LS
l1l2

(r1, r2, t),

(12)

where the box normalized continuum orbitals, Pkl(r), are
calculated in a VN−2 potential. The total cross section for
double photoionization is given by [7]

σ = ω

I
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0
dk1

∫ ∞

0
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∑
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|PLS
l1l2

(k1, k2, t)|2, (13)

where I is the radiation field intensity. The total integral double
photoionization cross section will therefore contain a dipole
and a quadrupole term. The single energy differential cross
section (SDCS) for double photoionization is given by [7]

dσ
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= ω

I
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L
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0
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×
∑
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∣∣2

, (14)

where α is the hyperspherical angle. The differential cross
section may also be given in terms of the ejected energy:

dσ

dE1
= 1

k1k2

dσ

dα
, (15)

where the area under the SDCS corresponds to the total integral
cross section. As is clear from equation (14), the SDCS is
an incoherent sum containing a pure dipole term and a pure
quadrupole term but no dipole–quadrupole interference terms.

The triple differential cross section (TDCS) is given [7]
by

d3σ

dαd�1d�2

= ω

I

∂

∂t

∫ ∞

0
dk1

∫ ∞

0
dk2δ

(
α − tan−1

(
k2

k1

))

×
∣∣∣∣∣
∑
L

∑
l1,l2

(−i)l1+l2 ei(δl1 +δl2 )PLS
l1l2

(k1, k2, t)Y
L
l1l2

(k̂1, k̂2)

∣∣∣∣∣
2

,

(16)

where δl1 and δl2 are scattered phase shifts and YLS
l1l2

(k̂1, k̂2)

are coupled spherical harmonics. The triple differential cross
section is a coherent sum and so in addition to a pure dipole
and a pure quadrupole term, a dipole–quadrupole interference
term will also be present.

3. Results

Our calculations were made at an incident photon energy
of 800 eV. A number of calculations were made to test
convergence with respect to the box size, lattice spacing
and number of channels. The small magnitude of the
double photoionization cross section at a high photon
energy of 800 eV makes numerical convergence particularly

Table 1. Channels used in the double photoionization calculations.

Ground state Dipole Quadrupole

l1 l2 l1 l2 l1 l2

0 0 0 1 0 2
1 1 1 0 2 0
2 2 1 2 1 1
3 3 2 1 1 3
4 4 2 3 3 1
5 5 3 2 2 2
6 6 3 4 2 4
7 7 4 3 4 2
8 8 4 5 3 3
9 9 5 4 3 5
10 10 5 6 5 3
11 11 6 5 4 4
12 12 6 7 4 6

7 6 6 4
7 8 5 5
8 7 5 7
8 9 7 5
9 8 6 6
9 10 6 8
10 9 8 6
10 11 7 7
11 10 7 9
11 12 9 7
12 11 8 8
12 13 8 10
13 12 10 8

9 9

challenging. Tests were made using a number of lattices,
ranging from a 512 × 512 point lattice with a mesh spacing
of �r = 0.10 to a 1500 × 1500 point lattice with a mesh
spacing of �r = 0.05. The close-coupled equations were
propagated for up to 20 radiation field periods. The initial
ground state 

1S
0 (r1, r2) of the helium atom was found by

relaxation of the imaginary time Schrödinger equation using
13 coupled channels for the dipole and 10 coupled channels
for the quadrupole calculation. The real-time Schrödinger
equation was then solved using 26 l1l2 coupled channels for
the dipole and 27 l1l2 coupled channels for the quadrupole
calculation, see table 1 for details.

The results shown are from the largest calculation on the
1500 × 1500 point lattice. Using the 13 coupled channels
shown in table 1, relaxation of the imaginary time Schrödinger
equation gave a ground-state energy of −78.80 eV, close to
the exact ground state energy of −79.01 [16]. Taking an
average over the last five radiation field periods, the total
integral cross section for double photoionization due to the
dipole interaction was found to be 19.18 b (1 b = 1.0 ×
10−24 cm2) and the total integral cross section due to the
quadrupole interaction was found to be 1.21 b. This
compares to a total integral double photoionization cross
section of 16.9 ± 1.7 b as measured by Samson et al [3]. The
relatively large contribution of the quadrupole interaction to
the total integral double photoionization cross section, with a
quadrupole to dipole ratio for the total integral cross section
of 6% can be explained by the high photon energy of 800 eV
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Figure 1. Quadrupole SDCS for double photoionization of helium
by an 800 eV photon.

considered, since this enhances the effect of the quadrupole
interaction via the ( ω

c
) term in equation (5).

The quadrupole SDCS for double photoionization is
shown in figure 1. The cross section has a ‘W’ shape, with
a local maximum at equal energy sharing of the two ejected
electrons, thus confirming the model prediction of Amusia
[13, 14]. In figure 2, the dipole SDCS is compared to the
sum of the dipole and quadrupole SDCSs. The dipole cross
section has the characteristic ‘U’ shape observed previously
for studies of double photoionization at high photon energies
with the ‘shake-off’ mechanism dominating [8]. The addition
of the quadrupole SDCS results in only a small shift from the
dipole SDCS, so that any planned measurement of the SDCS
at this energy will have difficulty in isolating the quadrupole
effects. However, at higher photon energies >1 keV the sum
of the dipole and quadrupole SDCSs should also develop a
pronounced ‘W’ shape as the influence of the quadrupole
interaction becomes stronger.

The presence of a local maximum at equal energy sharing
in the quadrupole SDCS indicates that non-dipole effects might
be enhanced in the triple differential cross section at equal
energy sharing. The pure dipole contribution to the TDCS
should be zero when the electrons are ejected back to back
with equal energy due to the selection rule ‘C’ defined by
Maulbetsch and Briggs [17], which states that for k1 = −k2,
singlet states with odd parity do not contribute to the cross
section. Figure 3 presents the TDCS that contains pure
dipole, pure quadrupole and dipole–quadrupole components
in comparison to the TDCS containing only the pure dipole
component. The TDCSs are at equal energy sharing, E1 = E2,
with co-planar geometry (φ1 = φ2 = 0) and are plotted as a
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Figure 2. SDCS for double photoionization of helium by an 800 eV
photon. Dashed curve: dipole SDCS; solid curve: sum of the dipole
and quadrupole SDCSs.

function of θ2 for θ1 = 0◦, 30◦, 60◦ and 90◦. The angles
of the ejected electrons are defined relative to the direction
of polarization of the radiation field. Non-dipole effects can
be seen most clearly at θ1 = 0◦ and θ1 = 90◦, with the
effect of the pure quadrupole component strongest when the
ejected electrons are parallel to the polarization direction of
the radiation field. The dominant back-to-back feature seen at
(θ1 = 0◦, θ2 = 180◦) and (θ1 = 90◦, θ2 = 270◦) arises entirely
from the pure quadrupole component, with the smaller wings
arising from the pure dipole component. As experimental
resolution improves, this prediction should be amenable to
experimental verification as it offers a clear signature of non-
dipole effects. Previous work looking at non-dipole effects
on the TDCS [9, 10, 12] accounted for the dipole–quadrupole
term but neglected the pure quadrupole term and so did not
predict this effect.

4. Summary

The inclusion of the quadrupole interaction has been shown
to be important in double photoionization of helium at a
photon energy of 800 eV, with the quadrupole component
of the total integral cross section being 6% the value of the
dipole component. The predicted ‘W’ shape of the quadrupole
SDCS has been confirmed. Experimental measurements of the
summed dipole and quadrupole SDCSs are unlikely to be able
to discern non-dipole features at this photon energy due to
the small effect and the small cross section magnitude.
However, non-dipole features should be clearly visible
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Figure 3. TDCS for double photoionization of helium by an 800 eV photon. The TDCS is plotted at equal energy sharing for θ1 = 0◦, 30◦,
60◦ and 90◦. Dashed curve: TDCS containing only the pure dipole component; solid curve: TDCS containing pure dipole, pure quadrupole
and dipole-quadrupole components.

in the TDCS at equal energy sharing, with the pure
quadrupole component of the TDCS dominating when the
two electrons are ejected back-to-back parallel to the direction
of polarization of the radiation field.

Extending the present calculations to higher photon
energies would be of great interest as non-dipole effects
become progressively more significant. However, numerical
convergence issues make such a calculation challenging at
the present time. In addition, at higher photon energies,
Compton scattering will need to be accounted for. At
photon energies >6 keV, double ionization by Compton
scattering becomes dominant [18]. We hope that the results
presented here will stimulate experimentalists to search for
the predicted non-dipole features in the TDCS at equal energy
sharing.
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