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Abstract

Recent simulations of anti-hydrogen production rely on the rate that anti-protons are slowed in
positron plasmas. These plasmas are typically cold and in strong magnetic fields. This paper
describes Classical Trajectory Monte Carlo calculations of the momentum transfer cross
sections for positron collisions with anti-protons. We also give results for electron collisions
with anti-protons. For the typical temperatures and magnetic fields in the anti-hydrogen
experiments, the dominant slowing mechanism is the close, non-perturbative collisions; all
previous calculations of the slowing rate are for situations where the perturbative collisions
dominate. These cross sections are converted into a slowing rate as a function of magnetic
field and temperature. For the parameter range of current interest, we find this to be an

extraordinarily simple function.

1. Introduction

Recently, two groups [1, 2] reported the formation of anti-
hydrogen (H) by having anti-protons (p) traverse a positron
(e*) plasma. The e*’s and p’s are trapped in the same region
of space using a nested Penning trap geometry [3]. In this
geometry, a strong magnetic field along the trap axis prevents
the charged particles from escaping radially. A series of
electrodes then hold both the e*’s and p’s in different positions
along the trap.

Simulations were performed of the H production [4].
These simulations included the motion of the p, the three-body
recombination which gives the H, the positron collision with
the highly excited H which gives de-excitation to more deeply
bound states and the slowing of the p due to interaction with
the plasma waves [5]. A correct description of the slowing
of the p is crucial because the interplay of the slowing and
the rate of H formation determines the centre-of-mass speed
of the H. If the p loses energy rapidly to collisions with
positrons or to interaction with plasma waves, then the H
will tend to form after considerable slowing has taken place.
The formulation of p slowing in [5] is not accurate when the
p’s speed is comparable to or less than the thermal speed of
the positrons. This casts some doubt on the accuracy of the
calculated velocity distribution of H because it is just this range
of velocities where recombination occurs.

The velocity of the H formed in the experiments has
been roughly measured in [6, 7]. These measurements were
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consistent with the velocity distribution from the simulation
of [4]. A later simulation involving a second charge exchange
found that the velocities in [8] might have been lower than what
was suggested in the original measurement, but still quite hot
compared to the temperature of the positrons.

The next goal of the two anti-hydrogen experiments is
to trap some of the H. This will only be possible if the H
centre-of-mass energy is less than ~2/3 K when it reaches the
ground state. Thus, the slowing of a p in a cold, magnetized
plasma is an important aspect in understanding the production
of trappable H. However, neither experiments nor simulations
are accurate for the low-velocity population of H and it is
unclear whether an experimentally interesting fraction of H’s
is present at low energy.

The purpose of this paper is to compute the momentum
transfer cross section of light species interacting with p’s
in strong magnetic fields. Although this is an old problem
that has been investigated many times, we could not find
calculations that would be accurate for the range of parameters
in the anti-hydrogen experiments. References [5, 9, 10]
compute the slowing of an ion in a magnetized electron
plasma including the effect of plasma waves; however,
these results are not expected to be accurate when the
ion velocity is comparable to or less than the thermal
velocity of the electrons because the interaction is computed
perturbatively where the emphasis is on large impact parameter
collisions. Reference [11] investigated the quantum scattering
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of electrons from ions but for magnetic fields many orders
of magnitude larger than those considered here. There
have been several calculations of the modification of the
collisions between electrons and ions in strong fields for
situations where the dominant collisions are those at large
impact parameters [12-14]. In this region, perturbation
theory can be used to obtain the scattering with a strong
magnetic field. However, simple considerations show that
the close, non-perturbative collisions dominate the momentum
transfer cross section for the parameters of the anti-hydrogen
experiments. Finally, there have been full calculations of
electron-ion scattering in strong magnetic fields [15-17] in
the spirit of this paper. However, the focus of these papers
is on the interesting physics of the scattering; there were no
results of total scattering parameters (e.g. momentum transfer
cross sections) presented in these papers.

One of the general features of these calculations was
that the ion motion perpendicular to the field is damped out
substantially faster than the parallel motion with the magnetic
field. This can be rationalized from the interaction of a
magnetized electron travelling past a stationary positive ion.
If the impact parameter is a few times larger than the cyclotron
radius, the electron will travel past in a helical path. The
impulse to the ion along the field will be nearly zero because
impulse arising during the electron’s approach almost exactly
cancels the impulse as the electron recedes. However, the
impulse perpendicular to the field adds over the whole of the
path. Also, the electron cannot recoil perpendicular to
the field which means it behaves as if it has a large mass
with regards to the perpendicular motion. This effect was seen
in the simulations of [4].

In this paper, we are solely interested in the momentum
transfer to the p along the magnetic field: since the
perpendicular components of the velocity thermalize much
faster than the parallel component, whether a p loses sufficient
energy to be trappable will mainly depend on the slowing
rate parallel to the magnetic field. Also, the thermalization
of the perpendicular components of the p velocity are
more accurately described by the previous calculations even
though they use perturbative techniques. We will show that
the momentum transfer along the magnetic field is mainly
due to close, non-perturbative collisions. In this case,
perturbative techniques do not give a sufficiently accurate
solution. We use a full numerical solution of the classical
equations of motion to obtain accurate momentum transfer
parallel to the magnetic field over the full range of impact
parameters.

We also perform calculations for the interaction of p’s with
electrons because this case has a particularly simple expression
for the momentum transfer cross section. The interaction with
positrons is more complicated due to the attractive interaction
which causes some trajectories to pass close to the p and give
chaotic scattering [15-17]. We use the results of our atomic
calculation to compute the slowing rate due to single particle
scattering when the p velocity is comparable to or less than the
thermal velocity of the light species. It must be emphasized
that this scattering does not include losses due to interaction
with plasma waves which is an open question at these energies.

One of the positive features of a perturbative treatment is
that the scattering parameters can be expressed as (relatively)
simple formulae.  Typically, these involve the impact
parameter, the velocity of the projectile and the energy and
phase of the cyclotron motion. Unfortunately, perturbation
theory is not applicable for the H experiments.

To see whether the perturbative or non-perturbative
collisions play the largest role, the distance scale given by the
Coulomb interaction can be compared to the distance scale for
the collision. Suppose a light particle is launched at a charge
fixed in space so that the impact parameter is b and the velocity
parallel to the magnetic field is vj. In order for the collision to
be perturbative, the potential energy at the distance of closest
approach should be much smaller than the kinetic energy. This
gives the relation: e?/(4weob) < (1/2)mvj. Because of the
magnetic field, the charge has a cyclotron motion which gives
it an adiabatic invariant [18]. This means there is almost no
modification to the motion if the timescale for the collision
(b/vy) times the frequency of the motion (weye = eB/m)
is much larger than 1. This leads to the relation that little
scattering occurs if: b > muy|/(eB). Combining these
two relations means that the non-perturbative collisions will
dominate for speeds vj < (¢*B/[2reem®])!/?. Fora 1 T
field, this gives vj ~ 4.5 x 10* m s™! which corresponds to a
temperature of approximately 70 K. In the H experiments,
the goal is to reach positron and electron temperatures of
approximately 4 K. Thus, the non-perturbative collisions will
be most important for the H experiments.

Another consideration is whether the calculations can be
performed with the p fixed in space. If we were interested
in the thermalization of the cyclotron motion of the p, we
would need to include that motion in our calculation. Since
we are only interested in the motion along the field, it is not
clear whether or not that motion is important. A simple way
to compute the momentum transfer to the p is to take the
negative of the momentum transfer to the positron or electron.
Because the close, non-perturbative collisions dominate, it
seems likely that the two calculations will yield similar results.
We have performed the calculation with the p fixed in space
and with it having its correct, physical mass in order to check
the importance of this effect.

In this paper, we first describe some of the basic features of
the calculation, including approximations and their estimated
contribution to inaccuracies in our results. We then show the
results from electron collisions with the p’s and then positron
collisions with the p’s. We then convert momentum transfer
cross section into slowing rates as a function of the p velocity
parallel to the magnetic field.

2. Computational method

All of the calculations are performed in a strong magnetic
field. We will take the magnetic field to be in the z-direction
and x, y or r, 6 will be used to denote positions perpendicular
to this field.

! Perturbative expressions for the change in perpendicular velocity contain
the Bessel function, K (wcycb/v)), which has the asymptotic form K (x) ~

/7 /(2x) exp(—x) for large x.
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All of the calculations reported in this paper use the
Classical Trajectory Monte Carlo method. We solve for the
full motion of the particles using the classical Hamilton’s
equation in Cartesian coordinates. This is an approximation
to the extent that quantum effects are unimportant. We do
not have a way of estimating the size of this error because
the quantum calculations are prohibitively large. We do not
expect this to be an important effect because the situations we
investigate correspond to large impact parameters compared
to the wavelength of the light particle. Also, we average over
velocities, impact parameters, etc and the averaging process
tends to reduce the size of quantum effects. As an example,
a positron in a 1 T field has hwe,e = 1.3 K compared to the
minimum expected temperature of 4 K for these experiments;
thus, even the cyclotron motion will have several quanta. One
gauge of the error can be obtained from figure 3 where our
calculations show that strong scattering occurs out to ~400 nm.
The number of quantum states for an electron confined to a
circular area with radius 400 nm and Kinetic energy less than
4 K is roughly 350. Thus, there are several available quanta
in all directions so correspondence between the classical and
quantum results should be more accurate than the inaccuracies
of our final classical result.

We used an adaptive step—size, Runge—Kutta algorithm
[19] to solve our ordinary differential equations. Although
the algorithm is fourth order, it does not preserve the
constants of the motion. =~ We performed two types of
convergence checks. For a sampling of parameters, we
performed the calculation several times with an increasingly
stringent accuracy parameter until our convergence level was
achieved. Secondly, we checked the level of change in all
of the conserved quantities (e.g. energy, canonical angular
momentum, .. .) to ensure the error was not too large. The
number of rejected trajectories leads to an estimated error
from the numerical solution of Hamilton’s equations of less
than 1% for the total cross sections.

The slowing rate due to single particle collisions can be
obtained from the momentum transfer cross section. In a
Classical Trajectory Monte Carlo simulation (for example,
see [20]), the distribution of initial conditions is determined
by the parameter being studied. We computed the momentum
transfer by launching the light particle at an initial distance
z; with a random initial x;, y;; the x;, y; are each chosen
from a flat distribution within the range —L/2 to L/2. The
size of L was determined numerically by performing a series
of calculations with increasing L until the final results were
converged. We chose the light particle to have thermal velocity
distribution in the x, y direction, but the velocity along the field
was chosen to be a fixed quantity. The p was started at the
position (0, 0, 0) with 0 velocity parallel to the field. In some
of the calculations, we held the p fixed in space and in others
we allowed the p to have a thermal distribution perpendicular
to the field and have a finite mass.

The momentum transfer along the field is simply the
change in momentum at the end of the run. It can be found from
either the p or the light particle because the total momentum
along the field is a conserved quantity. The momentum transfer
cross section in the z-direction is

op. = LX(Ap)/pei )

where p, ; is the initial momentum of the light particle in the
z-direction, L? is the area through which the light particles are
flowing and the (Ap,) is the average momentum transfer for
that ensemble.

We performed convergence checks on the momentum
transfer cross section with respect to the number of trajectories.
We increased the number of trajectories until the fractional
variance of (Ap,) was roughly 1%. Similarly, we checked
the convergence with respect to L by increasing it until the
accuracy was roughly 1%. Convergence with respect to L is not
completely obvious. The reason is that Coulomb interactions
tend to give logarithmic singularities for momentum transfer
cross sections. However, this is not a problem for a strong
magnetic field. The cyclotron motion causes the spatial
integrals to converge [18]. The long-range contribution to
the momentum transfer is orders of magnitude smaller than
the contribution from close collisions.

One of the main problems in accurately computing the
momentum transfer cross section is the slow convergence
with respect to the z-range of the calculation. This becomes
a problem because the CPU time is proportional to the
length in z in the calculation. We found that stopping each
trajectory so that the magnitude of the force in the z-direction
was the same at the beginning and end of the trajectory
greatly increased the speed of convergence with respect to
z;. Also, the approximation that the cyclotron motion was an
adiabatic invariant for |z| > |z;| greatly increased the speed of
convergence.

As a final test, we computed the momentum transfer cross
section using the change in momentum of the light particle
in two different kinds of calculations. In one calculation, we
allowed the p to move and have a perpendicular temperature
equal to the perpendicular temperature of the light particles.
In the other calculation, we held the p fixed in space. The
average momentum along the field lost by the light particle
was within a few percent in both cases.

3. Electron scattering

In figure 1, we show the momentum transfer to the p as
a function of the impact parameter of the electron for an
initial electron speed of 2 x 10* m s~!. In both calculations,
the perpendicular temperature of the electron is 4 K and
the electron has an initial parallel velocity of v,;. In one
calculation, the p is fixed in space whereas the p has the
physical mass in the second calculation. In the finite mass
calculation, the p has a perpendicular temperature of 4 K and
the initial conditions are chosen so that it is at the origin at
the time z; /v, ;. The two calculations have the same general
features. There is a region where the momentum transfer is
large and is approximately 2m.v; ;; this value arises for elastic
reflection of the electron. Over a small region of impact
parameter the momentum transfer rapidly drops to 0. As
a point of reference, the arrow marks the impact parameter
where the perturbative estimate of the momentum transfer
starts becoming exponentially small.

This can be understood from simple arguments. When
the impact parameter is less than ~2e? / (4 egmv? ), then the
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Figure 1. The average momentum transfer to the p from electrons
with initial velocity of 20 km s~! along the field as a function of the
impact parameter. The magnetic field is at 1 T and the perpendicular
temperature of the electrons is 4 K. The x* is for the p fixed in space,
while the + is for the p having the correct mass and 4 K for the
perpendicular temperature.

electron does not have enough energy to surmount the repelling
potential from the p and is reflected back. Since the p is much
more massive than the electron and it is moving slowly, the
electron finishes with approximately the same kinetic energy it
started with. When the electron has impact parameter greater
than ~2e* / (4 gomv?), then it has enough energy to pass by
the p. Again, the electron tends to finish with roughly the same
kinetic energy it started with because the p is slow and heavy.
This gives a momentum transfer of approximately 0. It is only
in a small range of impact parameter near this cutoff that the
momentum transfer is between 0 and 2mv, ;. The transition is
mostly due to the motion of the p: there are some trajectories
where the p moves sufficient distance in the calculation so the
electron’s impact parameter at z = 0 can (randomly) be larger
than the cutoff impact parameter (no reflection) or smaller than
the cutoff (reflection).

Instead of the momentum transfer cross section, we have
found it useful to present the results in terms of the momentum
transfer rate which we are taking to be the momentum transfer
cross section times v, times p, ;:

F(v,) = v,L*(Ap,), 2)

which has units of force times volume. If you have a beam
of electrons with density n. impinging on a stationary p, then
Fne is the average force on the p.

For electrons, the momentum transfer rate is
approximately given by
Fa 3)
a 2n88mv§’

where e is the electron charge and m is the mass of the electron.
In figure 2, we show the calculated momentum transfer rate.
The plotted results are at three levels of approximation. The
dotted line uses the full equations of motion for both the p and
the electron, the solid line uses the full equation of motion for
the electron but the p is held fixed in space and the dashed line
is the approximation of equation (3). From this graph, it is
clear that the physical mass of the p is not important and that

Figure 2. The force per unit density exerted on a p from electrons in
a 1 T magnetic field with a perpendicular temperature of 4 K as a
function of the initial parallel velocity of the electrons. There are
three curves: (a) an approximation from simple energy arguments,
(b) a numerical calculation with the p fixed in space and (c) a
numerical calculation with the p having the correct mass and 4 K for
the perpendicular temperature.
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Figure 3. The average momentum transfer to the p from positrons
with initial velocity of 20 km s~! along the field as a function of the
impact parameter (solid line). The symbols show the momentum
transfer for individual trajectories (only a small fraction of those
used in the calculation are shown). The magnetic field is at 1 T and
the perpendicular temperature of the positrons is 4 K.

the simple result from conservation of energy gives an accurate
approximation to the full result. The agreement between the
simple energy argument and the full numerical calculation
shows that the perturbative scattering is not relevant at these
energies and fields.

4. Positron scattering

4.1. Fixed v, ;

In figure 3, we show the momentum transfer to the p as a
function of the impact parameter of the positron for a positron
with an initial v, of 2 x 10* m s~!. The perpendicular
temperature of the positron is 4 K. For this calculation, the
p is fixed in space. Unlike the electron case, the scattering
gives a random momentum transfer depending on the phase

of the cyclotron orbit. The small + are some of the individual
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Figure 4. The force per unit density exerted on a p from positrons in
a 1 T magnetic field as a function of the initial parallel velocity of
the positrons. There are three perpendicular temperatures of the
positrons: 4 K (solid line), 8 K (dotted line) and 16 K (dashed line).

calculations and the solid line is the average momentum
transfer at each impact parameter. Since this is the same
velocity as the electron in figure 1, one might expect that
the momentum transfer would be bounded between 0 and
3.64 x 1072 kg m s~!. However the actual range extends
to negative numbers and above the value of 2mv, ;. This is
because energy can be removed from the cyclotron motion in
the close collisions of the positron with the p. This can lead to
situations where the positron speed after the collision is greater
than that before the collision. As a point of reference, the arrow
marks the impact parameter where the perturbative estimate of
the momentum transfer starts becoming exponentially small.

Another interesting feature of figure 3 is that the average
momentum cross section substantially differs from O for
a smaller range of impact parameters. Also, the average
momentum transfer at small impact parameter is roughly 1/2
the value for electrons. The momentum transfer cross section
for positrons is substantially smaller than that for electrons for
velocities less than 50 km s~

Figure 4 shows the F versus the initial velocity of the
positrons for a temperature of 4 K, 8 K and 16 K in the
cyclotron motion. For this calculation, the p is fixed in space.
Unlike the case for the electrons, the average force on the p
goes to 0 as the positron speed along the field decreases to
0. The reason for this is that the range of impact parameters
that contribute to scattering becomes finite as the positron
velocity decreases to 0 while the momentum available from the
positron decreases. If the temperature of the cyclotron motion
is nonzero, there is always a finite amount of momentum
available from the scattering. However, the scattering rate
has an additional factor of v, which means the average force
goes to 0 in this limit. Note this is completely different than
the scattering from electrons where F diverges as v, goes to 0;
the strong dependence on the sign of charge of the projectile
is another indication that the perturbative region of scattering
is not important.

Another striking feature is the fact that the perpendicular
temperature does not play a strong role in the value of F.
There is a consistent trend for the higher temperatures to have

F.. (1073 N m?)
[av)
w
x

0 S I R R R R
0 10 20 30 40 50 60
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Figure 5. Same as figure 4 but all curves are for the same
perpendicular temperature, 4 K. There are three different magnetic
fields: 1 T (solid line), 1/2 T (dotted line) and 2 T (dashed line).
The results have been scaled so that v, ;. = v,/(B/T)!/? and

Foe = ‘7_—(B/T)2/3

a lower force, but the differences are barely outside of the
estimated uncertainty in our calculation. Our calculations for
a finite mass p match those shown in figure 4 to within 5%.

Figure 5 shows the F versus the initial velocity of the
positrons for a temperature of 4 K but with different magnetic
field strengths. The results shown are for magnetic fields of
1T, 1/2 T and 2 T with the 1/2 and 2 T results scaled to
show the similarity to the 1 T result. The classical equations
of motion can be scaled. If the motion is represented by the
scaled position p = B?/3#, the scaled velocity v = B~'/3% and
scaled energy ¢ = B~%/* E, then the motion is independent of B
when the starting value of p and v are the same. From figure 5,
it is clear that the scaling is quite good even though the
perpendicular energy is not being scaled. This is because
F only weakly depends on the perpendicular energy.

One of the more important features of figures 4 and 5 is
the large region of velocities where the force is roughly linear:
a couple km s~! to roughly 30 km s~!. A perfectly linear
relation dependence of F on the incident velocity can arise
from a scattering situation where the incident particle can only
move in one dimension, the scatterer has a size that decreases
like 1/ /Vz.i» and the fraction that scatter is independent of
velocity. In looking at the scattering shown in figure 3 but
for different initial velocities, we find that (Ap,) near b = 0
is roughly proportional to v, ;; this means that roughly the
same fraction are scattered independent of initial velocity of
the positrons. We also find that the region over which the
scattering is large decreases with increasing incident velocity
and the decrease is roughly proportional to 1/,/v;; over this
velocity range. This has important consequences for the rate
of slowing in a thermal plasma as discussed in the following
section.

4.2. Thermal average

In the experiments that are attempting to make and trap H, the
p’s slow in a positron plasma. Thus, the relevant quantity is
from the thermal average over the positron collisions. If the p
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has a velocity V, along the magnetic field, the drag force can
be written as

Fdrag = —MVznV(Vz, B, T)» (4)

where M is the mass of the p, n is the positron density and
y (V,, B, T) is the slowing rate per unit density which depends
mainly on the p’s velocity V,, the magnetic field, and the
positron temperature, 7.

In the previous section, we showed how the results can
be scaled so we will focus on the V, and T dependence
of y. Taking the positrons to have a Maxwell-Boltzmann
distribution in the rest frame, the slowing rate can be computed
from

_ 1 m /D"]__( )
V= v et J, T

( _m(vz - Vz)2 _ _m(vz + Vz)2 )d
P 2T xp 2T vz
)

where kg is the Boltzmann constant, m is the positron mass
and T is the positron temperature. For small V, the difference
in exponentials is proportional to V, with a correction of order
VZ3. Thus, y has little dependence on the p’s velocity for small
V..

In performing the integral for y, we found an
extraordinary result. To within 10%, we found

43 x 10712

B
with B(T) being the magnetic field in tesla; this expression
was in good agreement with the numerical calculation for
the full range of parameters that we can check which is
the range of |V,| < 10 km s~!, temperature between 4 K
and 32 K and magnetic field between 1/2 T and 2 T. This
result probably extends to a larger range. The dependence
of y on B is a simple result of the scaling discussed in
the previous section. The lack of dependence on V, arises
from the definition of y; upon expanding the difference of
the exponentials, the next-order term in V, is approximately
mVZ2 / 6kgT which is less than 1/9 for the range |V,| <
10 km s~!. The very small dependence on temperature
is the most surprising aspect of this equation, but it can
be understood from velocity dependence seen in figures 4
and 5.

For the restrictions in the previous paragraph, the

approximation

s™! ©)

/ F(v)exp[ — mv? [2ksT]2 Y4
~ V;)€eX mv v,
4 0 2JZkBT : z B MkBT )

@)

arises by taking only the lowest-order term in V.. When the
temperature is in the range of 4-16 K, the exponential drops to
1/eat 11-22 km s~!. An examination of figures 4 and 5 shows
that the (v, ) is roughly linear from a couple km s~ ! to roughly
30 km s~! which is the region that mostly contributes to the
integral. The integral above has no temperature dependence in
the situation that F(v;) is perfectly proportional to v, because
all terms contain factors of v,/ ﬁ .

5. Application

We can use the slowing rate from the previous section to
estimate y from the ATHENA and ATRAP experiments. In
[4], we used a density of 2.5 x 10'* m™3, temperature of 15 K
and a magnetic field of 3 T for the calculation to model the
ATHENA experiment and 4 x 10"* m=3, 4 K and 5.4 T for
the calculation to model the ATRAP experiment. Both of
these experiments were in the temperature range given in
the previous section but the magnetic fields are somewhat
higher. However, we expect the expression will still give
a good estimate of the slowing rate. Using the expression
from the previous section gives Fy., = —360 HzMV, for
the ATHENA experiment and Fye = —32 HzM YV, for the
ATRAP experiment. Thus, if the main slowing is due to
individual collisions with positrons then the slowing was
much faster in the ATHENA experiment than in the ATRAP
experiment.

6. Conclusions

We performed calculations of the scattering of electrons and
positrons from p’s in a strong magnetic field. The purpose
was to understand the mechanism that controls this process
and obtain a simple relation that could be used to estimate the
slowing in ongoing experiments at CERN. We have found
that non-perturbative collisions dominate the momentum
transfer to the p’s and, thus, large-scale Classical Trajectory
Monte Carlo calculations are needed to obtain usable results.
Furthermore, we found that to a good approximation the
slowing rate per unit density is inversely proportional to the
magnetic field and has very little temperature dependence in
the range of interest. Our calculations only include single
particle effects; thus, it will be important to have calculations
of the energy lost to plasma waves in order to fully understand
p slowing in these cold, highly magnetized, positron plasmas.
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