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Abstract
We use the time-dependent close-coupling method to explore the triple
differential cross sections produced by double photoionization of He and
H2. Recent extensions of our technique have allowed extraction of the
triple differential cross section as the double photoionization process evolves,
allowing further exploration of the underlying mechanisms. We demonstrate
that the angular distributions of the two outgoing electrons typically reach
a converged shape after 5 or 6 field periods. We also further compare our
method with recent experimental measurements, as well as demonstrating some
similarities in the triple differential cross sections for He and for H2 at certain
molecular orientations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Investigations of the double photoionization of light, two-electron systems, such as He and
H2, have long been an attractive choice for study by both theoretical and experimental atomic
collision physics. The three-body nature of the problem allows detailed investigations of
the interactions between the outgoing electrons as they escape the Coulomb potential of the
atomic or molecular ion. In the last ten years theory and experiment have consistently found
very good agreement for all possible measurable quantities for the double photoionization of
He. A variety of time-independent and time-dependent theories [1–9] show good agreement
with each other, and with experiment (e.g. [10]), for total, single, double and triple differential
cross sections for a variety of photon energies, and outgoing electron energies and angles.

For the more difficult molecular case, it is only within the last couple of years
that theoretical developments have allowed fully ab initio calculations of the double
photoionization of H2. Recently, the time-independent exterior-complex-scaling (ECS)
method [11, 12] and the time-dependent close-coupling method (TDCC) [13] have
demonstrated excellent agreement with each other and with recent measurements of the
triple differential cross sections for this process [14–16]. Both methods had previously been
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shown to also give accurate total double photoionization cross sections [17, 18]. These studies
have also been able to uncover some interesting dynamical effects unique to the molecular
ionization case [19].

In this paper, we strive to uncover some of the behaviour of the electrons as they leave the
atom or molecule using the time-dependent close-coupling method. Examples are presented
for both double photoionization of He and H2 and for various energy sharings between the
outgoing electrons. We caution that this study explores the time history of the triple differential
cross sections, and is not an investigation of how the photoionization process changes as a
result of differing pulse lengths. In this study, the electromagnetic field is always on, and the
angular distributions are extracted at earlier times during the photoionization process.

2. Theory

The development of the time-dependent close-coupling method for double photoionization of
He [5–7] and H2 [13, 18] has previously been described in detail. Here we give only a brief
summary, comparing the approaches for the atomic and molecular cases.

The time-dependent Schrödinger equation for photoionization of He or H2 [5], in the
weak-field limit, can be written as

i
∂ψ( �r1, �r2, t)

∂t
= Hψ( �r1, �r2, t) + V ψ0( �r1, �r2) e−iE0t , (1)

where H is the atomic or molecular Hamiltonian, V is the time-dependent radiation field
Hamiltonian and ψ0 and E0 are the exact eigenfunction and eigenenergy of the atomic or
molecular ground state. In the atomic case, the total wavefunction � may be expanded in
coupled spherical harmonics as

ψ( �r1, �r2, t) =
∑
l1l2

P L
l1l2

(r1, r2, t)

r1r2
YL

l1l2
( �r1, �r2), (2)

where YL
l1l2

( �r1, �r2) is a coupled spherical harmonic, and in the molecular case the total
wavefunction may be expanded in products of rotation functions [18] as

ψ( �r1, �r2, t) =
∑

m1,m2

P M
m1m2

(r1, θ1, r2, θ2, t)

r1r2
√

sin θ1
√

sin θ2
�m1(φ1)�m2(φ2). (3)

Here, �m(φ) = eimφ√
2π

and M = m1 +m2 is the projection of total electronic angular momentum
onto the z-axis. Substitution of these expansions into equation (1) yields a set of time-
dependent close-coupled partial differential equations given by

i
∂P L

l1l2
(r1, r2, t)

∂t
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l1l2
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∑
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′
2
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l1l2,l

′
1l

′
2
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l′1l

′
2
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+
∑
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W
LL0

l1l2,l
′′
1 l′′2

(r1, r2, t)P̄
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l′′1 l′′2
(r1, r2) e−iE0t , (4)

for the atomic case, and by

i
∂P M

m1m2
(r1, θ1, r2, θ2, t)
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∑
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+
∑
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2
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m′′
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′′
2
(r1, θ1, r2, θ2) e−iE0t , (5)
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for the molecular case, where expressions for the various kinetic energy, one-electron potential,
and two-electron potential terms may be found in [5, 18], and P̄

L0
l1l2

and P̄ M0
m1m2

are the reduced
wavefunctions for ψ0, for He and H2 respectively. The exact lattice eigenfunction for the He
or H2 ground state is obtained by relaxation of the Schrödinger equation in imaginary time
(τ = it):

−∂ψ0( �r1, �r2, τ )

∂τ
= Hψ0( �r1, �r2, τ ). (6)

The wavefunction ψ0 can again be expanded in products of coupled spherical harmonics or
rotation functions and substituted into equation (6), yielding a set of close-coupled partial
differential equations in space and imaginary time.

We solve the time-dependent close-coupling equations using lattice techniques to obtain
a discrete representation of the reduced wavefunctions and all operators on a two-dimensional
radial grid for the He calculations, and a four-dimensional radial and angular grid for the
H2 calculations. In the calculations presented here, similar grids were employed as used
in previous studies [6, 13]. For the atomic two-dimensional calculations a 640-point grid
was employed with a spacing of 0.1 au. Typically, eight terms were retained in the angular
momentum expansion in equation (4). For the molecular four-dimensional calculations, a
grid of (384, 32) points was used with mesh spacings of 0.1 au and 0.03125π au for the
radial and angular grids respectively. Typically, eight terms were retained in the expansions in
equation (5). The coupled equations (4), (5) were propagated for usually 10 field periods.

The total cross section for double photoionization can be written as

σdion = ω

I

∂Pdion

∂t
, (7)

where ω and I are the radiation field frequency and intensity respectively. We note that, in
this approach, the radiation field is always present, and the double ionization cross section
is found by taking the time derivative of the double ionization probability, which is always
increasing. An alternative approach [20] is to subject the atom to a radiation pulse of given
length and shape, in which case the double ionization cross section must be extracted in a
different manner [21], although such calculations yield results that are very similar to the
results presented in this paper. The double photoionization probability, Pdion, can be defined
as

Pdion =
∑
l1l2

∫
dk1

∫
dk2

∣∣P L
l1l2

(k1, k2, t)
∣∣2

(8)

for He, and by

Pdion =
∑
l1l2

∑
m1m2

∫
dk1

∫
dk2

∣∣P M
l1m1l2m2

(k1, k2, t)
∣∣2

, (9)

for H2. The momentum-space wavefunctions, P L
l1l2

(k1, k2, t) or P M
l1m1l2m2

(k1, k2, t), are defined
as

P L
l1l2

(k1, k2, t) =
∫ ∞

0
dr1

∫ ∞

0
dr2P

L
l1l2

(r1, r2, t)Pk1l1(r1)Pk2l2(r2), (10)

and

P M
l1m1l2m2

(k1, k2, t) =
∫ ∞

0
dr1

∫ π

0
dθ1

∫ ∞

0
dr2

∫ π

0
dθ2

(11)
P M

m1m2
(r1, θ1, r2, θ2, t)P

∗
k1l1m1

(r1, θ1)P
∗
k2l2m2

(r2, θ2),
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respectively. In these equations Pkl(r) and Pklm(r, θ) are continuum functions of He+ or H+
2

respectively, obtained by direct numerical integration of the time-independent Schrödinger
equation [6]. The triple differential cross section for double photoionization of He or H2 can
now be written as

d3σ

dα d�1d�2
= ω

I

∂

∂t

∫
dk1

∫
dk2δ

(
tan α − k2

k1

)
|M|2, (12)

where �1 and �2 are the solid angles in which the outgoing electrons are ejected (with
� ≡ (θ, φ)) with respect to the polarization axis. For He, the amplitude M is given by

M =
∑
l1l2

(−i)l1+l2 ei(σl1 +σl2 )P L
l1l2

(k1, k2, t)Y
L
l1l2

(k̂1, k̂2), (13)

where YL
l1l2

(k̂1, k̂2) is a coupled spherical harmonic. Similarly, for double photoionization of
H2, for the case where the polarization axis is oriented at an arbitrary solid angle (θN, φN) to
the molecular internuclear distance, the amplitude M is given by

M =
∑
l1l2

∑
m1m2

(−i)l1+l2 ei(σl1 +σl2 )

{
cos θNP M=0

l1m1l2m2
(k1, k2, t)Yl1m1(k̂1)Yl2m2(k̂2)δm1+m2,0

+ sin θN

[
cos φN − i sin φN√

2

]
P M=+1

l1m1l2m2
(k1, k2, t)Yl1m1(k̂1)Yl2m2(k̂2)δm1+m2,1

+ sin θN

[
cos φN + i sin φN√

2

]
P M=−1

l1m1l2m2
(k1, k2, t)Yl1m1(k̂1)Yl2m2(k̂2)δm1+m2,−1

}
,

(14)

where in these equations σl is the Coulomb phase and Ylm(k̂) represents a spherical harmonic.

3. Results and discussion

Comparison of the computed triple differential cross sections for He and H2 with experiment
is usually made by extracting the momentum-space wavefunctions P(k1, k2, t) at some long
time which is usually 10 field periods or more. This approach has yielded excellent agreement
between TDCC calculations for He [6, 7] and H2 [13] with experiment [10, 16] for a range
of outgoing electron energies and angles. As a further example of such agreement, in
figures 1 and 2 we compare TDCC calculations for double photoionization of H2 with recent
relative experimental measurements of Weber et al [14, 15]. The measurements have been
normalized to the TDCC calculations, with the same relative normalization used in each figure.
Figure 1 shows measurements made when one of the electrons is ejected perpendicular to the
plane defined by the polarization axis and the momentum vector of the second ejected electron,
for various orientations of the molecule with respect to the polarization axis of the light (which
is along the z axis). The electrons share the excess photon energy of 25 eV equally. The
calculations, when averaged over the experimental uncertainties of the molecular and electron
angles, and electron energies, are in good agreement with the measurements.

Figure 2 shows measurements made for the same electron ejection angles and for a fixed
molecular orientation, for different kinetic energy release (KER) of the outgoing protons. By
measuring the kinetic energy imparted to the protons, one can infer the internuclear separation
of the molecule at the time of double photoionization. In this case, the measurements
are compared with TDCC calculations made at different internuclear separations, which
correspond to the average KER of the protons. Again, the agreement between theory and
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Figure 1. Triple differential cross sections for H2 for E1 = E2 = 12.5 eV, for one electron
ejected perpendicular to the plane defined by the polarization axis and the momentum vector of
the second ejected electron, and for various angles of the molecule with respect to the polarization
axis, as indicated. The TDCC calculations (red lines) are compared to the measurements of Weber
et al [15].

experiment is good, apart from the extra structure in the experimental data in the lower panel
of figure 2, which is not seen in the calculations. We have checked the convergence of our
calculations with respect to additional terms in the summations in equations (3) and (12) and
found our results to be well converged. We also note that time-independent ECS calculations
[19] did not show extra structure in the lower panel of figure 2.

It can also be instructive to extract the momentum-space wavefunction P(k1, k2, t) at
earlier times, during the photoionization process, in an effort to gain some insight into the
double photoionization mechanisms. In figure 3 we revisit the double photoionization of He
at a photon energy of 99 eV. The triple differential cross sections for equal electron energy
sharing, and for the case where θ1 = 0◦, are extracted at nine different times during the double
photoionization process from 2T to 10T , where T = 2π/ω is the field period. At the final time
10T we compare the calculation to measurements of Bräuning et al [10] and find excellent
agreement, as previously shown in [6]. There are several points of interest in the shapes of the
angular distributions as time increases. The zero in the cross section at θ2 = 180◦ is present
at all times. This arises from the selection rules which exist for double photoionization of He
at equal energy sharing, as discussed by Maulbetsch and Briggs [22]. This zero in the cross
section arises from the selection rule ‘C’ (as defined by [22]), which states that for k1 = −k2

singlet states with odd parity do not contribute to the cross section. However, the other zero in
the cross section, at θ2 = 0◦, takes some time to form. In fact, at early times the cross sections
are actually largest around θ2 = 0◦, which implies that the electrons are doubly ionized in
similar directions, but that the electron–electron repulsion quickly pushes the electrons apart.
After around 8 field periods, the shape and magnitude of the triple differential cross section
is stable. This behaviour of the cross section as a function of time will have some slight
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Figure 2. Triple differential cross sections for H2 for equal electron energy sharing, for one electron
ejected perpendicular to the plane, at a molecular angle of 55◦ with respect to the polarization axis,
for various kinetic energy sharings between the outgoing protons. These correspond to various
internuclear separations of the molecule at the time of double ionization, as indicated. The TDCC
calculations (red lines) are compared to the measurements of Weber et al [15].
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Figure 3. Triple differential cross sections for He for E1 = E2 = 10 eV, for θ1 = 0◦. The
differential cross sections are presented as a function of the number of field periods (T) elapsed
during the propagation. The first cross sections are computed after 84 attoseconds (as) as indicated.
At the final time of 10T , we compare our calculations with the measurements of Bräuning
et al [10].
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Figure 4. Triple differential cross sections for He for E1 = E2 = 10 eV, for θ12 = 120◦. The
differential cross sections are presented as a function of the number of field periods (T) elapsed
during the propagation.

dependence on how the electric field is ramped on in the calculation (usually the electric field
is ramped on over one quarter of a field period), but the broad behaviour is still the same.
We also note that the magnitude of the cross sections increases until around 5 field periods,
after which it is relatively constant. This reflects the increase in the magnitude of the total
cross section, which has the same behaviour. The triple differential cross section shape at
early times may lend further support to the model of a ‘knock-out’ mechanism for double
photoionization at relatively low photon energies, which has previously been proposed (e.g.
[23]). If double ionization proceeds via a binary collision, one might expect them to be ejected
in similar directions before their mutual repulsion forces the electrons apart.

In figure 4 we show similar triple differential cross sections, where in this case the angle
between the ejected electrons (θ12) is kept fixed at 120◦. Since in this case the electron–
electron repulsion is kept constant at each time (since we extract the cross sections only for
fixed θ12), the shape of the triple differential cross section is not affected by the electron–
electron repulsion. Instead, the shape is dominated at all times by the ‘hard’ selection rules
[22], which give rise to the zeros in the cross section at θ2 = 150◦ and θ2 = 330◦. Again, the
magnitude of the cross section rises and then levels off after around 5 or 6 field periods.

In figures 5 and 6 we show triple differential cross sections for H2, again for equal energy
sharing (in this case E1 = E2 = 12.5 eV), and again for θ1 = 0◦. In figure 5 the angle
between the molecule and polarization axis is 90◦ (which implies that only the M = 1 final
state contributes to ionization), and in figure 6 the angle between molecule and polarization
axis is 0◦ (only M = 0 contributes to the ionization process). Figure 5 shows many similarities
to the corresponding He case (figure 3), which may reflect the dominance of the final-state
correlations in dictating the shape of the angular distributions. Similar selection rules to those
discussed for He specify a zero in the cross section at θ2 = 180◦, and the zero formed at
θ2 = 0◦ takes some time to develop. At the final time of 10T , our TDCC calculations are
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Figure 5. Triple differential cross sections for H2 for E1 = E2 = 12.5 eV, for θ1 = 0◦, and for
θN = 90◦. The differential cross sections are presented as a function of the number of field periods
(T) elapsed during the propagation. At the final time of 10T we compare our calculations with the
ECS calculations of Vanroose et al [12] (red dashed line).
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Figure 6. Triple differential cross sections for H2 for E1 = E2 = 12.5 eV, for θ1 = 0◦, and for
θN = 0◦. The differential cross sections are presented as a function of the number of field periods
(T) elapsed during the propagation. At the final time of 10T we compare our calculations with the
ECS calculations of Vanroose et al [12] (red dashed line).
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Figure 7. Triple differential cross sections for He for E1 = 17 eV, E2 = 3 eV, for θ1 = 0◦.
The differential cross sections are presented as a function of the number of field periods (T)
elapsed during the propagation. The first cross sections are computed after 84 attoseconds (as) as
indicated. At the final time of 10T , we compare our calculations with the measurements of Bräuning
et al [10].

compared with time-independent ECS calculations [12], where excellent agreement is found.
The magnitude of the cross section also increases until around 5T , after which it is quite stable.

The cross sections shown in figure 6, where θN = 0◦, show some similar patterns to
figure 5. Again, selection rules give a ‘hard’ zero in the cross section at θ2 = 180◦, and the
zero at θ2 = 0◦ takes some time to form. However, the cross sections for this geometry show
a much richer structure, which is also observed in the time-independent ECS calculations,
which reflect the nature of the molecular M = 0 → 0 transition. It is also interesting that the
magnitude of the cross section is actually greatest at early times, and that the cross section
settles down to a converged value which is 50% lower than the cross-section magnitude at
early times. Again this is also observed in the development of the total cross section as a
function of time, for this transition. This behaviour is quite different from the He case and for
the M = 0 → 1 transition.

It is also possible to extract the triple differential cross sections as a function of time
for unequal energy sharing electrons, where fewer selection rules exist than at equal energy
sharing. In figure 7 we examine once more the He double photoionization at θ1 = 0◦, where
in this case electron 1 has 17 eV of the available excess energy of 20 eV. The near-zero at
θ2 = 0◦ again takes some time to evolve, and the cross section has reached a stable value after
7 or 8 field periods. Again, the final stable cross section value is in very good agreement with
the measurements of Bräuning et al [10]. The peak in the cross section at θ2 = 180◦, now no
longer forbidden, quickly forms after only a few field periods. Before this, the cross section
is relatively flat, which may reflect the early dominance of lower partial waves in the double
ionization, which are more isotropic. For the corresponding H2 case shown in figure 8, where
θN = 90◦ and E1 = 22 eV (of an available excess energy of 25 eV), the dominant peak at
θ2 = 180◦ quickly forms, and again the near-zero in the cross section at θ2 = 0◦ takes around
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Figure 8. Triple differential cross sections for H2 for E1 = 22 eV, E2 = 3 eV, for θ1 = 0◦ and
for θN = 90◦. The differential cross sections are presented as a function of the number of field
periods (T) elapsed during the propagation.
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Figure 9. Triple differential cross sections for H2 for E1 = 22 eV, E2 = 3 eV, for θ1 = 0◦ and for
θN = 0◦. The differential cross sections are presented as a function of the number of field periods
(T) elapsed during the propagation.

7 or 8 field periods to form. The similarities in the final shape of the triple differential cross
sections for this geometry with the He case are clear.
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Finally, in figure 9 we examine the same unequal energy sharing conditions as in figure 8,
but again for θ1 = 0◦. As found in figure 6, the cross section is actually largest at early times,
with the final peak in the cross section at θ2 = 180◦ not dominant until after 6 field periods.
Still, after around 8 field periods, the triple differential cross sections are quite stable.

4. Conclusions

This study of the evolution of the triple differential cross sections for He and for H2 has
highlighted some similarities in the photoionization process between the two systems. For
example, the shapes of the differential cross sections for He and for H2 when the molecule is
at 90◦ to the polarization axis are quite similar at most of the times during the photoionization
process. However, when the molecule is at 0◦ to the polarization axis, the triple differential
cross section behaves quite differently as a function of time. The magnitude is large at early
times and then decreases to a constant value. The shapes of the triple differential cross section
also have more structure compared with the cross section when the molecule is at 90◦ to the
polarization axis. Arbitrary orientations of the molecular axis with respect to the polarization
axis will contain components of the M = 0 and M = 1 amplitudes.

We also find that the triple differential cross sections tend to converge to a stable value
after 7 or 8 field periods. This will depend on the excess energy of the outgoing electrons;
as discussed in detail previously [24], at energies closer to threshold, the double ionization
cross sections take longer to converge. Furthermore, we have found that the convergence of
the shape of the angular distributions is highly dependent on the electron–electron interaction
terms; for distributions where the electrons can be expected to interact strongly, the shape of
the distribution takes longer to form a stable value.

It is interesting to speculate if the distributions presented in figures 3–9 could be observed
by experiment. The formation of the triple differential cross sections takes place over a time
of a few hundred attoseconds, which is almost within the range of the latest generation of short
pulse lasers. By using such lasers to ‘freeze’ or image the motion of the electrons as they
distribute themselves after ionization by a much longer (synchrotron) pulse of light, it may
be possible to watch the angular distributions take shape. Such a feat would be a stunning
confirmation of the ability to control matter using light at the most detailed level possible.
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