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Abstract
A time-dependent close-coupling method is developed to treat the double
ionization of helium by fast bare ion collisions. At high incident energies,
charge transfer to the projectile is quite small, so that the two-electron
wavefunction remains centred on the target, subject to a time-dependent
projectile interaction. A multipole expansion of the projectile–atom interaction
includes monopole, dipole, quadrupole and octopole terms. Time-dependent
close-coupling calculations are carried out for α + He collisions at incident
energies greater or equal to 1.0 MeV amu−1. Over 100 coupled channels
are needed to obtain total double ionization cross sections that are in good
agreement with recent non-perturbative basis-set coupled channels calculations
and absolute experimental measurements.

1. Introduction

The simultaneous ejection of both electrons from the helium atom is one of nature’s clearest
examples of quantal three-body breakup. For small angles between slow moving ejected
electrons, the highly correlated motion becomes difficult for all perturbative approaches. In
the last few years, a number of non-perturbative quantal methods have been applied to calculate
double photoionization processes in helium. The single-photon double ionization of the ground
state of helium has been calculated using the convergent close-coupling [1], time-dependent
close-coupling [2], hyperspherical R-matrix [3], B-spline R-matrix [4] and exterior complex
scaling [5] methods. The level of agreement between the various non-perturbative theories
and experimental measurements using synchrotron light sources for total energy differential
and angle differential cross sections has generally been excellent.

Recently, a non-perturbative quantal method, based on a coupled basis-set solution of the
time-dependent Schrödinger equation, was applied to calculate the double ionization of helium
in heavy-ion collisions [6, 7]. Where before perturbative methods [8, 9] predicted double
ionization cross sections for α + He collisions between 0.9 and 2.0 times absolute experimental
measurements [10, 11], the new non-perturbative results are within the experimental error bars.

In this paper, we develop a non-perturbative time-dependent close-coupling method to
calculate double ionization processes in fast bare ion collisions with helium. At high incident
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energies, charge transfer to the projectile is quite small, so that the two-electron wavefunction
remains centred on the target, subject to a time-dependent projectile interaction. Thus, a
partial wave expansion for the two-electron wavefunction in a target centred spherical polar
coordinate system reduces the time-dependent Schrödinger equation to a coupled set of partial
differential equations in a manner similar to that found before [12, 13] for photoionization
processes. In general, however, the number of contributing terms in the multipole expansion
for the electron–bare ion interaction is greater than the number needed for the electron–
photon interaction. Besides a strong dipole interaction, we find that monopole, quadrupole
and octopole terms must be included in the electron–bare ion interaction. The need for
consideration of polarization in the photoionization processes is replaced by the need for
consideration of impact parameters in the bare ion ionization processes, while consideration
of intensity and pulse length in the photoionization processes is replaced by consideration of
projectile charge and velocity in the bare ion ionization processes. To compare with previous
non-perturbative calculations [7] and absolute experimental measurements [10, 11], we apply
the time-dependent close-coupling method to calculate double ionization cross sections for α

+ He collisions at incident energies greater or equal to 1.0 MeV amu−1. At these energies,
charge transfer processes are too small to be even measured [11]; therefore, a time-dependent
close-coupling method that ignores charge transfer processes should yield accurate double
ionization cross section results.

The rest of the paper is organized as follows. In section 2, we develop a time-dependent
close-coupling method for ionization processes in fast bare ion collisions with helium. In
section 3, we apply the time-dependent close coupling to calculate ionization processes in
α + He collisions and compare with experimental measurements. In section 4, we conclude
with a brief summary and outlook for future work. Unless otherwise stated, all quantities are
given in atomic units.

2. Theory

The fully correlated wavefunction, �L0M0 , for the ground state of a two-electron target atom is
obtained by relaxation of the time-dependent Schrödinger equation in imaginary time (τ = it):

−∂�L0M0( �r1, �r2, τ )

∂τ
= Htarget�

L0M0( �r1, �r2, τ ), (1)

where the non-relativistic Hamiltonian is given by

Htarget =
2∑

i=1

(
−1

2
∇2

i − Zt

ri

)
+

1

| �r1 − �r2| (2)

and Zt is the target atomic number.
The fully correlated wavefunction, �LM , for the ionization of a two-electron target atom

by a fast, fully-stripped atomic ion is obtained by evolution of the time-dependent Schrödinger
equation in real time:

i
∂�LM( �r1, �r2, t)

∂t
= Hsystem�LM( �r1, �r2, t), (3)

where the non-relativistic Hamiltonian is given by

Hsystem = Htarget − Zp

| �r1 − �R(t)| − Zp

| �r2 − �R(t)| (4)

and Zp is the projectile atomic number. For straight-line motion, the magnitude of the
time-dependent projectile position is given by

R(t) =
√

b2 + (d0 + vt)2, (5)
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where b is an impact parameter, d0 is a starting distance (d0 < 0), and v is the projectile
speed.

If we expand �L0M0 in coupled spherical harmonics and substitute into equation (1), the
resulting close-coupled equations for the P̄

L0M0
l1l2

(r1, r2, τ ) radial expansion functions are given
by

−∂P̄
L0M0
l1l2

(r1, r2, τ )

∂τ
= Tl1l2(r1, r2)P̄

L0M0
l1l2

(r1, r2, τ ) +
∑
l′1,l

′
2

V
L0

l1l2,l
′
1l

′
2
(r1, r2)P̄

L0M0

l′1l
′
2

(r1, r2, τ ), (6)

where

Tl1l2(r1, r2) = −1

2

∂2

∂r2
1

− 1

2

∂2
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2

+
l1(l1 + 1)

2r2
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+
l2(l2 + 1)

2r2
2

− Zt

r1
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r2
(7)

and

V L
l1l2,l

′
1l

′
2
(r1, r2) = (−1)L+l2+l′2

√
(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)

×
∑

λ

(r1, r2)
λ
<

(r1, r2)λ+1
>

(
l1 λ l′1
0 0 0

)(
l2 λ l′2
0 0 0

){
L l′2 l′1
λ l1 l2

}
. (8)

The initial value boundary condition for equation (6) is given by

P̄
L0M0
l1l2

(r1, r2, τ = 0) = P1s(r1)P1s(r2), (9)

where P1s(r) is a single particle bound radial orbital for the one-electron target ion with
L0 = M0 = 0.

If we expand �LM in coupled spherical harmonics and substitute into equation (3), the
resulting close-coupled equations for the P LM

l1l2
(r1, r2, t) radial expansion functions are given

by

i
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where

W
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The spherical tensor in equations (11)–(12) is defined by

Cλ
q (θ, φ) =

√
4π

2λ + 1
Yλ

q (θ, φ), (13)

where Yλ
q (θ, φ) is a spherical harmonic. If the projectile follows a straight-line trajectory in

the xz plane with �R(t) = bî + (d0 + vt)k̂, then sin θ = b
R(t)

, cos θ = (d0+vt)

R(t)
, φ = 0, and the

spherical tensor is real. If the projectile follows a straight-line trajectory in the xy plane with
�R(t) = bî + (d0 + vt)ĵ , then θ = π

2 , sin φ = (d0+vt)

R(t)
, cos φ = b

R(t)
, and the spherical tensor is

complex. The initial value boundary condition for equation (10) is given by

P LM
l1l2

(r1, r2, t = 0) = δL,L0δM,M0 P̄
L0M0
l1l2

(r1, r2, τ → ∞). (14)

We solve the time-dependent close-coupling equations, found in equations (6) and (10),
using lattice techniques to obtain a discrete representation of the radial expansion functions,
P̄

L0M0
l1l2

(r1, r2, τ ) and P LM
l1l2

(r1, r2, t), and all operators on a two-dimensional grid. The grid is
partitioned into small squares for distribution among the processors on a massively parallel
computer, so-called domain decomposition.

For ionization probabilities, we begin by defining asymptotic radial expansion functions.
For the l1l2L0M0 channels,

P
L0M0
l1l2

(r1, r2) = P
L0M0
l1l2

(r1, r2, t → ∞) − LP̄
L0M0
l1l2

(r1, r2, τ → ∞), (15)

and for all other l1l2LM channels,

P LM
l1l2

(r1, r2) = P LM
l1l2

(r1, r2, t → ∞), (16)

where the overlap factor is given by

L =
∑
l1,l2

∫ ∞

0
dr1

∫ ∞

0
dr2P̄

L0M0
l1l2

(r1, r2, τ → ∞)P
L0M0
l1l2

(r1, r2, t → ∞). (17)

The total single ionization probability, for a given velocity and impact parameter, may be
calculated in either of two ways. The expression involving only bound Pnl(r) single particle
orbitals is given by

Psion(v, b) =
∑

l1,l2,L,M

∑
n

( ∫ ∞
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2

+
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0
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0
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0
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2
)

. (18)

The expression involving both bound Pnl(r) and continuum Pkl(r) single particle states is
given by

Psion(v, b) =
∑

l1,l2,L,M

∑
n

∫ ∞

0
dk

( ∣∣∣∣
∫ ∞

0
dr1

∫ ∞

0
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2

+
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2
)

. (19)
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Using only bound Pnl(r) single particle orbitals, the total double ionization probability is
given by

Pdion(v, b) =
∑

l1,l2,L,M

∫ ∞

0
dr1

∫ ∞

0
dr2

∣∣P LM
l1l2

(r1, r2)
∣∣2 − Psion(v, b)

−
∑

l1,l2,L,M

∑
n

∑
n′

∣∣∣∣
∫ ∞

0
dr1

∫ ∞

0
dr2Pnl1(r1)Pn′l2(r2)P

LM
l1l2

(r1, r2)

∣∣∣∣
2

. (20)

Using only continuum Pkl(r) single particle orbitals, the total double ionization probability is
given by

Pdion(v, b) =
∑

l1,l2,L,M

∫ ∞

0
dk1

∫ ∞

0
dk2

∣∣∣∣
∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1(r1)Pk2l2(r2)P

LM
l1l2

(r1, r2)

∣∣∣∣
2

.

(21)

The bound Pnl(r) and continuum Pkl(r) single particle orbitals found in equations (18)–
(21) are calculated by direct diagonalization of the time-independent radial Schrödinger
equation for the one-electron target ion. The one-dimensional grid for the diagonalization
has the same mesh spacing and extent as that used for the two-electron system. Finally, for
both single and double ionizations, the total cross section for a given velocity is given by

σ(v) = 2π

∫ ∞

0
P(v, b)b db. (22)

3. Results

The time-dependent close-coupling method was used to calculate the ground state of He
using equation (6). We employed a 384 × 384 point radial lattice with a uniform mesh
spacing of �r = 0.20, and thus a box size of R = 76.8. For four coupled channels
(l1l2L0M0 = ss00, pp00, dd00, ff00), a fully converged ground state of He on the lattice
yielded a total energy of −75.8 eV. The infinite lattice limit is −79.0 eV. A mesh spacing of
�r = 0.20 was used before to study the two-photon double ionization of He and H− [12].

The time-dependent close-coupling method was then used to calculate ionization cross
sections for α + He collisions using equation (10) at incident energies of 1.000, 1.280 and
1.585 MeV amu−1. At these energies charge transfer processes are too small to be even
measured [11]. For the 34 coupled channels found in table 1, and for λ � 3 multipole
contributions in the W operators of equations (11) and (12), the single ionization cross sections
are compared with basis-set coupled channels calculations [7] and absolute experimental
measurements [10, 11] in figure 1. The 34 coupled channels include (s → p, s → d, s → f)
promotions from the dominant uncorrelated ss ground state. The time-dependent close-
coupling results for single ionization are found to be in good agreement with the Shah and
Gilbody [11] experimental measurements, and consistent with the Barna et al [7] calculations
and the Knudsen et al [10] experimental measurements.

To achieve the agreement between theory and experiment found in figure 1 for the single
ionization cross sections, we needed to propagate the time-dependent target wavefunction from
a time when the projectile was at a distance d0 = −50.0, through closest approach, to a time
when the projectile was at a distance d0 = +150.0, which exceeds the box size of R = 76.8.
An approximate 5% increase in the cross sections was found in going from close-coupling
calculations with λ � 2 to those including the octopole terms. Almost no change in the cross
sections was found in going from calculations on a �r = 0.2 lattice to those on a �r = 0.1
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Figure 1. Cross section for single ionization in α + He collisions. Opaque squares: time-dependent
close-coupling results, opaque triangles: time-dependent basis-set coupled channels results [7],
solid diamonds: experimental results [10], solid circles: experimental results [11] (1.0 Mb =
1.0 × 10−18 cm2).

Table 1. l1l2LM coupled channels.

ss 00
pp 00
dd 00
ff 00
sp 11 sp 10 sp 1–1
ps 11 ps 10 ps 1–1
sd 22 sd 21 sd 20 sd 2–1 sd 2–2
ds 22 ds 21 ds 20 ds 2–1 ds 2–2
sf 33 sf 32 sf 31 sf 30 sf 3–1 sf 3–2 sf 3–3
fs 33 fs 32 fs 31 fs 30 fs 3–1 fs 3–2 fs 3–3

lattice, even though the ground-state energy of He decreased to −78.1 eV. Further consistency
checks, such as changing from the bound-state projections of equations (18) and (20) to the
bound and continuum state projections of equations (19) and (21), as well as changing from
an xz to an xy projectile motion scattering plane for the evaluation of the spherical tensors of
equation (13), yielded identical cross sections at all impact parameters.

On the other hand, the time-dependent calculations with 34 coupled channels yielded
double ionization cross sections for α + He collisions that are approximately a factor of 2–
3 smaller than the absolute experimental measurements [11]. With the addition of the 67
coupled channels found in table 2, time-dependent close-coupling calculations were carried
out with 101 channels (λ � 3) at an incident projectile energy of 1.0 MeV amu−1. The
additional channels include (p → d, p → f, d → f) promotions for the pp and dd parts of
the fully correlated ss + pp + dd + ff ground state. The single and double ionization weighted
probabilities as a function of impact parameter for both the 34 and 101 channel calculations are
shown in figures 2 and 3. The change in the single ionization weighted probabilities in going
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Figure 2. Weighted probability for single ionization in α + He collisions at an incident energy of
1.0 MeV amu−1. Solid line: 101 channel time-dependent close-coupling results, dashed line: 34
channel time-dependent close-coupling results.

Table 2. Additional l1l2LM coupled channels.

pp 11 pp 10 pp 1–1
dd 11 dd 10 dd 1–1
pd 11 pd 10 pd 1–1
dp 11 dp 10 dp 1–1
pp 22 pp 21 pp 20 pp 2–1 pp 2–2
dd 22 dd 21 dd 20 dd 2–1 dd 2–2
pd 22 pd 21 pd 20 pd 2–1 pd 2–2
dp 22 dp 21 dp 20 dp 2–1 dp 2–2
pf 33 pf 32 pf 31 pf 30 pf 3–1 pf 3–2 pf 3–3
fp 33 fp 32 fp 31 fp 30 fp 3–1 fp 3–2 fp 3–3
dd 33 dd 32 dd 31 dd 30 dd 3–1 dd 3–2 dd 3–3
pd 33 pd 32 pd 31 pd 30 pd 3–1 pd 3–2 pd 3–3
dp 33 dp 32 dp 31 dp 30 dp 3–1 dp 3–2 dp 3–3

from 34 to 101 channels is extremely small, while the change in the double ionization weighted
probability is quite large. We note that while the single ionization weighted probability peaks at
an impact parameter of approximately 1.0, the double ionization weighted probability peaks at
a much smaller impact parameter of approximately 0.4. This decrease in the impact parameter
for the peak of the weighted probability in going from single to double ionization is in keeping
with that observed in basis-set coupled channels calculations for O8++ He collisions [7].

Further time-dependent close-coupling calculations were carried out with 101 channels
(λ � 3) at incident projectile energies of 1.280 and 1.585 MeV amu−1. The new 101
channel single ionization cross sections are almost identical to the 34 channel results shown in
figure 1. The new 101 channel double ionization cross sections are compared with basis-
set coupled channels calculations [7] and absolute experimental measurements [10, 11] in
figure 4. The time-dependent close-coupling results for double ionization are found to be in
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Figure 3. Weighted probability for double ionization in α + He collisions at an incident energy of
1.0 MeV amu−1. Solid line: 101 channel time-dependent close-coupling results, dashed line: 34
channel time-dependent close-coupling results.
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Figure 4. Cross section for double ionization in α + He collisions. Opaque squares: time-dependent
close-coupling results, opaque triangles: time-dependent basis-set coupled channels results [7],
solid diamonds: experimental results [10], solid circles: experimental results [11] (1.0 Mb =
1.0 × 10−18 cm2).

good agreement with the Shah and Gilbody [11] experimental measurements, and consistent
with the Barna et al [7] calculations and the Knudsen et al [10] experimental measurements.

4. Summary

A non-perturbative theory has been developed to treat double ionization processes in fast bare
ion collisions with helium. In the approximation that charge transfer processes are small,
the resulting time-dependent close-coupling method is based on a target centred two-electron
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wavefunction subject to a time-dependent projectile interaction. The time-dependent close-
coupling method is then applied to α + He collisions at incident energies greater than or
equal to 1.0 MeV amu−1. In contrast to γ + He collision calculations [2], the α + He collision
calculations are found to be computationally more demanding due to an increase in the number
of coupled channels and the need for an extensive range of impact parameters at each incident
energy. In the end, absolute cross sections for single and double ionization are found to
be in good agreement with recent basis-set coupled channels calculations [7] and absolute
experimental measurements [10, 11].

In the future, we plan to apply the time-dependent close-coupling method to calculate
ionization processes in other fast bare ion collisions with helium. The extension of the time-
dependent close-coupling theory to handle energy and angle differential cross sections for
double ionization of helium in collisions with fast bare ions should follow that found before
for photoionization processes [13]. In the past, we have found that certain outgoing energies
and angles found in the differential cross sections will require many more partial waves and
much larger radial meshes than those needed to converge total cross sections. Hopefully,
comparisons may then be made with recent experimental measurements [14, 15].
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