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Abstract
The photo-double ionization cross section for the helium atom is calculated in
the near-threshold region by direct solution of the time-dependent Schrödinger
equation. Full close-coupling results for the 1s2 1S ground state are found to
be in excellent agreement with experimental measurements. The calculations
confirm the validity of the Wannier power law from 0.1 eV to about 1.7 eV
excess energy and find no oscillations in the threshold cross section beyond
numerical uncertainty. Further time-dependent calculations are made in a
simpler s-wave counterlinear model for both the 1s2 1S ground and 1s2s 1S
excited states. Although numerical uncertainties are significantly reduced in
the helium model calculations, again no oscillations in the threshold cross
sections are found beyond the remaining numerical uncertainty.

A classic example of the quantal three-body Coulomb problem is the photo-double ionization
of an atom. The emission of two electrons following the absorption of just one photon by a
target atom cannot occur in the absence of electron–electron correlations due to the single-
particle nature of the dipole interaction. The near-threshold region for the escape of two
electrons is a particularly challenging problem for ab initio theory since both electrons move
slowly and interact with each other for quite a long time, thus invalidating the use of low-order
quantal perturbation theory.

Two different semi-empirical theories have been developed which model the energy
dependence of the photo-double ionization cross section near threshold. An early classical
dynamics analysis, carried out by Wannier [1], derived a power law dependence for the
near-threshold electron-impact ionization cross section of hydrogen. For the photo-double
ionization of ground-state helium, the cross section is given by

σ 2+ = σ0E
α
exc, (1)

where Eexc is the excess energy and the Wannier exponent α equals 1.056. The classical
picture is that by the time the two electrons are ejected they are approximately at the same
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distance from the nucleus and have almost identical kinetic energies, but move in opposite
directions. The semi-classical theories of Rau [2] and Peterkop [3] and the higher-order
theory of Feagin [4] show how this threshold law could be obtained from a quantum treatment.
In fact, there is an extensive set of treatments by many different authors that obtain the
threshold law and corrections to it. In particular an oscillating, but still monotonically
increasing cross section near threshold has been derived by Temkin and Hahn [5] originally
for electron-impact ionization of atoms and photo-double detachment of negative ions. It
is based on the picture that one of the two electrons leaves the atom much faster than
the other one does and thus is governed by a dipole field and not by a Coulomb field
as the system of residual ion and slower leaving electron is essentially neutral. Recently,
Temkin and Hahn’s theory has been extended to photo-double ionization of atoms (see
[6, 7] and references therein) and accounts for an additional Coulomb field which is seen
by the faster leaving electron as, in this case, the residual ion is doubly and not singly
charged.

The pioneering experiment by Kossmann et al [8] mapped out the photo-double ionization
of helium in great detail between about 0.17 eV and 4.0 eV excess energy. A power law
dependence of the cross section was observed in agreement with the Wannier theory, but no
oscillations were seen. Recently, however, experimental studies of the photo-double ionization
of lithium [6] and beryllium [7] near threshold have reported oscillatory structures in these
cross sections outside experimental uncertainties. Although the magnitude of the oscillations
may be different due to the varying atomic structure of the atoms studied, it may be argued
that the presence or absence of oscillations should be a universal feature in the near-threshold
region of any atom.

In the last decade, a number of ab initio non-perturbative quantal methods have been
applied to calculate the photo-double ionization of light atoms. The photo-double ionization
of ground-state helium has been calculated using the convergent close-coupling [9–13], time-
dependent close-coupling [14–16], hyperspherical R-matrix [17–19], B-spline based R-matrix
[20], and exterior complex scaling [21] methods, while the photo-double ionization of the
lowest-excited states of helium have been calculated using the convergent close-coupling
[22], time-dependent close-coupling [23], and B-spline based R-matrix [20, 24] methods.
The convergent close-coupling [25], time-dependent close-coupling [26], and hyperspherical
R-matrix [27] methods have also been applied to the photo-double ionization of the outer
subshell electrons of ground-state beryllium. Recently, the time-dependent close-coupling
method has been employed to calculate the photo-double and photo-triple ionization cross
sections for both lithium [28, 29] and beryllium [29]. All of these advanced ab initio
non-perturbative methods are computationally intensive and become increasingly difficult
to converge at the small excess energies found in the near-threshold region. For example,
the convergent close-coupling results for the photo-double ionization of the ground state [11]
and the lowest-excited states [22] of helium do not extend below 1.0 eV excess energy due to
limited computational resources.

In this letter, we apply the time-dependent close-coupling method to calculate the
photo-double ionization cross section for ground-state helium between 0.1 eV and 2.5 eV
excess energy. Our absolute cross sections are then compared to semi-empirical threshold law
predictions, as well as experimental measurements [8]. Further time-dependent calculations
are made in a simpler s-wave counterlinear model for both the 1s2 1S ground and 1s2s 1S
excited states of helium. As expected, the numerical uncertainties in the model calculations
are found to be significantly reduced when compared to the full close-coupling calculations.
Our model cross sections are then examined near threshold in a further search for oscillations.
Atomic units are used unless stated otherwise.
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In the time-dependent close-coupling method, the wavefunction for ground-state helium
exposed to dipole radiation may be separated as

�total(�r1, �r2, t) = �
1S
0 (�r1, �r2) e−iE0t + �

1P(�r1, �r2, t) (2)

where �r1 and �r2 denote the two electron coordinates and, at time t = 0, the second term is set
to zero. The wavefunction �

1S
0 for the ground state of helium is obtained by relaxation of a

trial function fulfilling the Schrödinger equation

−∂�
1S
0 (�r1, �r2, τ )

∂τ
= Hatom�

1S
0 (�r1, �r2, τ ) (3)

in imaginary time (τ = it). The non-relativistic Hamiltonian for helium with its nucleus of
charge Z = 2 at rest at the origin of the coordinate system reads

Hatom = −1

2
�1 − Z

r1
− 1

2
�2 − Z

r2
+

1

|�r1 − �r2| . (4)

If one-photon absorption is the only relevant process (weak-field perturbative limit), then the
wavefunction (2) satisfies the following time-dependent Schrödinger equation

i
∂�

1P(�r1, �r2, t)

∂t
= Hatom�

1P(�r1, �r2, t) + Hfield�
1S
0 (�r1, �r2) e−iE0t . (5)

In the length gauge, the Hamiltonian of a classical time-dependent electric field fully linearly
polarized along the z axis may be written as

Hfield = E(t)(r1 cos θ1 + r2 cos θ2) sin(ωt) (6)

with E(t) being the time-dependent amplitude and ω the frequency. The velocity gauge
may also be used, but previous calculations on helium [14, 23] have been found to be gauge
invariant. The amplitude has to be ramped on slowly to avoid ringing effects. In the present
time-dependent close-coupling calculation, the amplitude is ramped on as follows:

E(t) = 4t/ttot for t < ttot/4

E(t) = 1 for t � ttot/4
(7)

where ttot is the total time equation (5) has to be time-propagated to obtain converged cross
sections. The propagation time ttot has to be longer for smaller excess energies.

For the numerical solution of the time-dependent Schrödinger equation (5), the
wavefunctions �

1S
0 and �

1P are expanded in two-electron coupled spherical harmonics with
orbital angular momenta up to 2 for the former and up to 3 for the latter, respectively. For
details see [14, 30]. By this, equation (5) is transformed into a set of coupled partial differential
equations for two-electron radial wavefunctions. This set is solved on a non-uniform lattice
consisting of 2784 × 2784 points. The initial mesh spacing of �rmin = 0.1 au is increased
by 0.0005 au at each mesh point up to a final mesh spacing of �rmax = 0.4 au and held
constant afterwards. This yields a huge lattice of size 1023.45 au × 1023.45 au which allows
us to time-propagate equation (5) long enough to converge the photo-double ionization cross
section at small excess energies. As described in [14, 30] projection techniques are used to
obtain cross sections from the time-evolved two-electron radial wavefunctions. Projection is
done onto a complete set of one-electron bound states. This is an excellent approximation,
as fully evolved in time, the interaction of the two electrons becomes quite small in regard
to their kinetic energies. Since this approximation becomes more accurate as the lattice size
increases convergence checks of the photo-double ionization cross section versus the lattice
size can be made. The radial parts of the bound one-electron wavefunctions are obtained by
diagonalizing the time-independent radial Hamiltonian of He+ on a one-dimensional lattice
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Figure 1. Cross section for photo-double ionization of ground-state helium as a function of the
excess energy plotted for two different energy ranges: � TDCC data, � experimental data due
to Kossmann et al [8], —— Wannier power law (1) with the TDCC proportionality constant
σ0 = 0.998 kb.

which has the same number of points and the same non-uniform mesh spacing as that used for
the two-electron system.

Figure 1(a) displays our time-dependent close-coupling (TDCC) cross section for photo-
double ionization of ground-state helium as a function of the excess energy up to 2.5 eV, while
figure 1(b) gives an enlarged view of the same cross section for excess energies up to 1.0 eV
only. The solid line represents the Wannier power law (1) with α = 1.056 and the TDCC value
for the proportionality constant, which is σ0 = 0.998 kb. This is our cross section at 1.0 eV
excess energy. We have not done any least-squares fits to our TDCC data as the low-energy
points, where the threshold law will hold most accurately, are the least well known in our
calculation. Using these values, it is evident from figure 1(a) that the cross section starts to
deviate from the Wannier power law at about 1.7 eV excess energy. At higher excess energies,
the cross section becomes visibly smaller than the one that the Wannier power law predicts.
Almost at threshold, i.e. for excess energies up to about 0.5 eV, our TDCC cross section
lies below the Wannier curve and, thus, may not be fully converged. In the near-threshold
region, the cross section for photo-double ionization converges extremely slowly. While the
Schrödinger equation (5) had to be time propagated over just 10–15 electric field periods
at moderate excess energies [16], in the present work propagation times equal to 450–650
electric field periods, or to about 950–1420 au, were needed until acceptable convergence
was achieved. Though huge, the finite size of the lattice does not allow us to exceed the
propagation time beyond the above electric field periods due to reflections occurring at the
boundaries which generally distort the cross section since it becomes exceptionally large or



Letter to the Editor L65

small compared to the expected value. Within the degree of accuracy our TDCC calculation
does not reveal any noticeable oscillatory structures in the photo-double ionization cross
section of ground-state helium near threshold. The same conclusion can be drawn from the
experimental cross section data by Kossmann et al [8] which are also plotted in figure 1.
Their absolute cross section was deduced from the measured ratio of He2+/He+ ions by using
an already known total photoabsorption cross section [31]. The overall agreement between
the TDCC data and the experimental data is very good. Within the measurement inaccuracy
their proportionality constant σ0 = 1.02(4) kb agrees well with ours. Slight deviations occur
around 2.0 eV excess energy and almost at threshold where the TDCC data may not be fully
converged as detailed above. However, more recent measurements of the total photoabsorption
cross section of helium [32, 33] give values that are about 6% smaller than those of [31]. Thus,
re-scaling the absolute cross section by Kossmann et al [8] should result in slightly smaller
values and in an even better agreement with our TDCC data.

Realizing that time-dependent close-coupling calculations near threshold are difficult to
be carried out and that there might be small oscillations in the photo-double ionization cross
section which could not be found yet because they may be below the numerical as well as
experimental uncertainties, we have performed another type of calculation by which we can
further reduce the numerical uncertainties and get converged results closer to threshold.

This calculation considers a simpler model system which has the same generic properties
as the helium atom but only two instead of six spatial degrees of freedom. This is achieved by
restricting the angular momenta of the two electrons to be zero and by replacing the electron–
electron repulsion in expression (4) by 1/(r1 + r2) [5]. This model potential is motivated
by the observation that close to threshold the two ejected electrons are on opposite sides of
the nucleus, i.e. r̂1 ≈ −r̂2. The time-independent Hamiltonian for the helium atom in this
so-called s-wave counterlinear model reduces to

H model
atom = −1

2

∂2

∂r2
1

− Z

r1
− 1

2

∂2

∂r2
2

− Z

r2
+

1

r1 + r2
. (8)

Using this Hamiltonian, the model calculation basically follows equations (2), (3) and (5) but
with arguments r1 and r2 instead of the vectors. In addition, the Hamiltonian of the classical
time-dependent electric field is now written as

H model
field = E(t)(r1 + r2) eiωt (9)

with the amplitude

E(t) = 1/2[1 − cos(4πt/ttot)] for t < ttot/2

E(t) = 0 for t � ttot/2.
(10)

This choice of amplitude was motivated by the observation that, in the s-wave counterlinear
model, the photo-double ionization probability converges much faster by using a pulse than an
amplitude of the form (7). Thus, the photo-double ionization probability is determined long
after the electric field has been turned off.

Regarding numerical aspects of the s-wave counterlinear model calculation, equation (5)
with the Hamiltonians (8) and (9) and r1 and r2 instead of the vectors is propagated in time on
a uniform lattice that consists of 3082 × 3082 points. With a mesh spacing of �r = 0.3 au
this lattice covers an area of 924.6 au × 924.6 au. To better avoid reflections at the boundaries
of the lattice caused by those parts of the two-dimensional wavefunction �

1P which represent
single photoionization (see, e.g., [14]), the wavefunction has been multiplied by a mask
function whose amplitude decreases from unity to zero over the last 20–30 au of the lattice.
This allows us to increase the propagation time which, in turn, results in a well-defined
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Figure 2. Scaled probability P 2+/tpeak for photo-double ionization of He (1s2 1S) as a function
of the excess energy: � s-wave counterlinear model data, • convolved Wannier power law (11)
with P 2+

0.75 eV = 3.8387×10−4. The upper panel shows the difference � (�) between the two data
sets.

peak of the Fourier transform of E(t) in the energy space centred around the photon energy
(see below). The one-electron wavefunctions of He+ used for calculating the photo-double
ionization probability by means of projection are calculated on a one-dimensional lattice of
twice the radial size as the two-dimensional lattice used for time propagation. As the s-wave
counterlinear model calculation demands much less computational resources than the time-
dependent close-coupling calculation does, much more convergence checks with regard, for
example, to lattice size, mesh spacing and total propagation time have been done to further
reduce the computational uncertainties.

Figures 2 and 3 show the results of our s-wave counterlinear model calculation for the
scaled photo-double ionization probability for the ground state and excited state 1s2s 1S
of helium as a function of the excess energy up to 1.0 eV. Due to the slow convergence,
these results are extrapolated probabilities (t → ∞) which have been obtained by fitting the
photo-double ionization probability to the expression A + B(t − tpeak)

−1 + C(t − tpeak)
−2 with

tpeak = ttot/4 for the last quarter of the total propagation time ttot = 1800 au. A series of
calculations have been done using lattices of 1/4 and 1/2 the size of the final lattice. We
find the scaled photo-double ionization probability for the ground state to be about an order
of magnitude smaller than that for the excited singlet state. This goes on for energies beyond
the near-threshold region, e.g. [16, 23]. Scaled by tpeak, the full circles refer to a convolved
Wannier power law given by

P 2+ = P 2+
0.75 eV

〈
Eα

exc

〉
E〈

Eα
exc

〉
0.75 eV

, (11)

where

〈
Eα

exc

〉
E

=
∫ ∞

0 dE
∣∣F

(
E − Eα

exc

)∣∣2
Eα

∫ ∞
−∞dE

∣∣F
(
E − Eα

exc

)∣∣2 (12)

and F is the Fourier transform of the pulse amplitude defined by equation (10). For the photo-
double ionization probabilities at 0.75 eV excess energy, our s-wave counterlinear model
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Figure 3. Scaled probability P 2+/tpeak for photo-double ionization of He (1s2s 1S) as a function
of the excess energy: � s-wave counterlinear model data, • convolved Wannier power law (11)
with P 2+

0.75 eV = 5.4223×10−3. The upper panel shows the difference � (�) between the two data
sets.

calculation yields P 2+
0.75 eV = 3.8387 × 10−4 for the ground state and P 2+

0.75 eV = 5.4223 × 10−3

for the excited singlet state. By employing a convolved Wannier power law, we account for
the energy distribution centred around the actual photon energy as a result of the finite time
the electric field given by the relations (9) and (10) is kept on. The longer the electric field
is kept on, the smaller are the contributions of other energies of the distribution to the photo-
double ionization probability. However, this time is limited since time is also needed for the
development of the wavefunction after the electric field has been turned off before accurate
projections can be carried out. The overall time, in turn, is limited by the size of the lattice. As
is evident from figure 2, the scaled probabilities for photo-double ionization of ground-state
helium almost match the scaled and convolved Wannier power law over the entire energy
region. The deviation of the scaled probabilities from the Wannier curve is shown in the upper
panel of figure 2 and is about two orders of magnitude smaller. At a first glance the deviation
may be due to numerical inaccuracies as neither in magnitude nor in period do they resemble
the oscillatory structures that have been found for the photo-double ionization cross section of
lithium [6] and beryllium [7]. However, taking into account the excited singlet state of helium
and observing that the deviation of the scaled probabilities from the Wannier curve is just one
magnitude smaller (see the upper panel of figure 3) and thus much larger than for the ground
state, other reasons for these deviations are more likely than numerical inaccuracies. Almost
at threshold the deviations may be especially due to the pulse width and projections while
at higher energies inclusion of higher-order terms in the Wannier law may be of importance.
Nonetheless, we do not consider these deviations as oscillations. It is clear that for the excited
singlet state of helium, the validity of the lowest-order Wannier theory is restricted to smaller
excess energies than for the ground state. Taking the classical picture of the Wannier theory
into account, it is more likely for the ground state than for the excited singlet state with a 1s
and a 2s electron that the electrons will leave the atom from almost the same distance to the
nucleus and with almost the same kinetic energies. But the larger deviations may also have
something to do with the model system used, since restricting all angular momenta of the two
electrons to zero is more appropriate for the ground state than for excited states.



L68 Letter to the Editor

In conclusion, for the first time, an ab initio non-perturbative calculation has generated
absolute data for the near-threshold photo-double ionization cross section of ground-state
helium below 1.0 eV which are in excellent agreement with the pioneering measurement by
Kossmann et al [8]. The calculation supports the Wannier power law up to about 1.7 eV
excess energy and provides the proportionality constant, which is σ0 = 0.998 kb. Within
the accuracy of the calculation the photo-double ionization cross section does not show any
oscillatory behaviour near threshold. The s-wave counterlinear calculation, which considers
a simpler model system but allows for a significant reduction of numerical uncertainties also
does not reveal any oscillations, neither for the ground state nor for the additionally investigated
lowest-excited singlet state of helium.
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