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Abstract
Using a classical trajectory Monte Carlo method, we have computed the
ionization resulting from the interaction between two cold Rydberg atoms.
We focus on the products resulting from close interaction between two highly
excited atoms. We give information on the distribution of ejected electron
energies, the distribution of internal atom energies and the velocity distribution
of the atoms and ions after the ionization. If the potential for the atom is not
purely Coulombic, the average interaction between two atoms can change
from attractive to repulsive giving a Van de Graaff-like mechanism for
accelerating atoms. In a small fraction of ionization cases, we find that the
ionization leads to a positive molecular ion where all of the distances are larger
than 1000 Bohr radii.

1. Introduction

Two Rydberg atoms can strongly interact at large distances due to the size and easily perturbed
nature of highly excited states. A gas of cold Rydberg atoms can exhibit interesting many-
body effects originating from dipole–dipole or van der Waals interactions between the atoms.
For heavy atoms, e.g. Rb or Cs, at low temperatures, the velocities and accelerations are low
enough that the atoms can be treated as fixed in space over a time of approximately 1 µs. For
principle quantum number, n, less than ∼100, the internal quantum states of the atoms can be
described within an essential states model if the atoms are separated by more than 10n2 a0,
approximately three atomic diameters. In an essential states model, only states within an
n-manifold or only states with near resonance transitions strongly interact.

At longer times, the atoms can be attracted to each other through long-range forces. There
is nothing to prevent the atoms from coming together. When the atoms are close enough, one
electron can drop to more deeply bound levels while the other electron is ionized. This process
can be symbolically written as

Ryd(n) + Ryd(n) → Ryd(n′) + ion + electron. (1)
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This effect was observed in cold Rydberg collisions [1–4]. The cross section for ionization at
somewhat higher energy was investigated in [5]. Reference [6] noted that polarization affected
the cross section even in collisions between a Rydberg atom and an atom in a low excited
state. Reference [7] performed approximate quantum calculations of the ionization from the
interaction between several Rydberg atoms.

In the present paper, we extend the investigation of [5] to treat much lower translational
energies and provide information on the products that result from close Rydberg–Rydberg
interaction. This information may be useful for understanding the limitations of cold Rydberg
gases as coherent quantum systems since the presence of relatively fast positive ions and
slow electrons will cause a rapid decoherence of the gas.

A quantum-mechanical investigation of the strong interaction between two Rydberg atoms
is beyond current capabilities. The treatment of [7] provides a qualitative estimate of rates
when the atoms are sufficiently far apart that perturbative quantum decay is the most important
mechanism. However, a classical treatment of this system should be accurate when the atoms
are in highly excited states. Therefore, we have utilized a classical trajectory Monte Carlo
method (CTMC) in this investigation. The CTMC method solves Hamilton’s equations for
the system starting from a distribution of trajectories whose starting conditions mimic a
quantum system. The CTMC method should be accurate so long as quantum interference
effects are unimportant and the processes are not classically forbidden; both of these conditions
are probably satisfied for strongly interacting Rydberg atoms.

The main limitation of the current treatment is in the choice of initial conditions for the
atoms. I have chosen to investigate atoms that have a random distribution of �,m. This
situation will occur in ultracold plasmas and in Rydberg gases that have been disturbed by
blackbody radiation or charged particles. Unfortunately, this choice of initial conditions does
not apply to a wide variety of interesting situations. In many experiments, the atoms will all
be in low angular momentum states. Low angular momentum states overlap the core electrons
and have energies that can be substantially shifted from the degenerate n-manifold. The
classical analogue of this is the precession of the Runge–Lenz vector due to a short-range
non-Coulomb potential. The long-range interaction between two atoms in low angular
momentum states will depend strongly on the type of states and the type of atoms. However,
the Rydberg–Rydberg interaction will cause an �,m mixing when the atoms are close enough.
Thus, it seems likely that the choice of initial conditions will not qualitatively affect the results
of this investigation.

In all of the calculations, the two Rydberg atoms are initially at an energy equivalent to
an n = 60 state of hydrogen. The atoms have an initial thermal energy of approximately
500 µK. This n-manifold and thermal temperature were chosen to be near what could be
obtained experimentally without recourse to extraordinary measures (temperatures of a few
hundred µK are routinely obtained in magneto optic traps and the excitation of specific
n-states near n = 60 requires laser resolution better than ∼1/3 cm−1). Since the binding
energy is much larger than the thermal energy, the results of the present calculations should
be applicable to other n-manifolds and temperatures by simple scaling arguments. The main
restriction will be that the density of final electronic states of the atom is high enough that it
can be approximated as a continuum.

Atomic units are used unless explicitly specified otherwise.

2. Time scales

In the simulation, the atoms start in a statistically random �,m state in the n = 60 manifold.
The Rydberg period for a trajectory is ∼33 ps. Thus, approximately 30 000 radial oscillations
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occur if atoms require 1 µs to reach the strong interaction region. In the numerical simulation
we describe below, we solve Hamilton’s equations using the full electrostatic interaction
forces, but we use the asymptotic form of the interaction for the estimates of this section.

An estimate of the time for the atoms to reach the strong interaction region can be
obtained from the asymptotic form of the potential which arises from the dipole–dipole
interaction: Vasym = −d2/R3 where d ∼ n2 is roughly the dipole moment of the atom. The
initial atom velocity is approximately 0, so the radial inter-atom velocity at a separation R is
approximately equal to

v =
√

2d2(2/M)

(
1

R3
− 1

R3
0

)
(2)

where M is the mass of an atom and R0 is the starting separation of the atoms. The time for
the strong interaction to commence is approximately

T =
∫ R0

0

1

v(R)
dR =

√
MR5

0

4d2

∫ 1

0

√
x3

1 − x3
dx (3)

where the integral equals
√

π�(5/6)/�(1/3) � 0.75. The time to come together can be
simplified to

T ∼ 20 µs ×
√

M(amu)R5
0(µm)/n2. (4)

For Rb in n = 60 the time is approximately 1 µs for a separation of 3 µm. For H in n = 60,
the time is approximately 0.1 µs for a separation of 3 µm. Atoms with a separation of 3 µm
have a density of approximately 4 × 1010 cm−3. For these parameters, kBT /(d2/R3) ∼ 1/50
which agrees with our assumption that the inter-atom potential energy is much greater than
the kinetic energy.

3. Numerical method

The simulations treat the four charged particles interacting through Coulomb forces. In the
numerical simulation, we use the full electrostatic force between the four charged particles.
Since there are only four particles, we do not need to use an asymptotic or multipole expansion
to compute the forces between the particles.

Only the hydrogen atom has a pure Coulomb interaction. For quantum calculations,
there is a well-defined prescription for including the core electrons in the calculation, but a
treatment of non-Coulombic interactions is not well defined for classical calculations. In the
present calculations, the interaction between the electrons and nuclei is given by a soft core
potential V (r) = −1/

√
r2 + 1. Because the atoms are in high-n states, the size of the atom

compared to the size of the non-Coulombic region is very small. We found that the results
did not noticeably depend on the range of the soft core. The soft core has the added advantage
that the acceleration does not diverge which helps in the solution of Hamilton’s equations.

Hamilton’s equations are solved using a fourth-order Runge–Kutta method with an
adaptive step size algorithm. The accuracy condition for the adaptive step size algorithm
varies with time. When both atoms are in high angular momentum states, the time step can be
relatively large, but the step size must be much smaller when the internal angular momentum of
one of the atoms is small because an electron can closely approach a nucleus. The interaction
between atoms causes the angular momentum of each atom to precess so a typical trajectory
has each atom cycling between high and low angular momentum during each collision. The
precession time of the angular momenta is much longer than the Rydberg period.
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Since the atoms spend a long time travelling from their initial separation to the point
where they strongly interact, we need to preserve the accuracy for both high and low angular
momentum trajectories. Unfortunately, the accuracy parameter in the adaptive step size
algorithm needs to be much smaller for low angular momentum trajectories to conserve energy.
Running every trajectory with the accuracy parameter set for low angular momentum would
be prohibitively slow. We implemented a method that adjusted the accuracy parameter with
time so that larger step sizes were allowed when both atoms were in high angular momentum
states but small step sizes resulted for low angular momentum.

The method for adjusting the energy parameter takes advantage of the fact that the
Runge–Kutta propagation scheme does not exactly conserve energy. The accuracy parameter
was adjusted in time increments of the Rydberg period, τRyd. The accuracy parameter, εN ,
between NτRyd < t < (N + 1)τRyd was determined by

εN = εN−1 × �E/|EN − EN−1| (5)

where EN is the calculated energy at time NτRyd and �E is the maximum estimated
energy error during one Rydberg period. For the simulations reported below, we chose
�E = 5 × 10−14|E0| with E0 the initial internal energy of one atom. Because the change in
energy during one period can sometimes be accidentally small a maximum value for εN was
set. Typical trajectories resulted in energy errors less than a part in 106–108 at the end of the
trajectory.

It is known that Runge–Kutta algorithms do not conserve the phase space volume during
propagation which could bias our calculated final state distributions. To protect against this
bias, we ran a distribution with the accuracy parameter set to be uniformly a factor of 10
smaller than for what we believed to be a converged calculation and found our final state
distribution to be unchanged. To check for bias due to numerical round off errors, we
computed the final state distribution using two times double precision accuracy and found
our final state distribution to be unchanged. As a final and very stringent check, we used a
symplectic propagator to solve Hamilton’s equations. The symplectic propagator is exactly
time reversible, conserves the phase-space volume and should protect against bias of the final
state distributions. Again we found the final state distribution to be unchanged within the
statistical errors of the Monte Carlo distribution.

4. Fixed nuclei

In a recent paper [8], we performed model quantum calculations of the interaction between
two Rydberg atoms. We found that the atoms were remarkably stable. To illustrate this effect
in the present calculations, we simulated the interaction between two fixed atoms by freezing
the position of the two nuclei. The initial positions and velocities of the electrons were
consistent with a random �,m distribution for two separated atoms. For a fixed separation
of the nuclei, we then solved Hamilton’s equations with the method described above. We
stopped the propagation after a fixed time or when one electron moved to distances larger
than 15 times the separation between the atoms. If one electron was at a distance larger than
15 times the separation, then that run was counted as ending in ionization. We varied the final
time in the simulation from 100 to 2000 times the Rydberg period for one atom.

For a fixed duration, the fraction of trajectories ending in ionization decreased with
increasing separation. The range of separations where the fraction of ionization decreased
from 90% to 10% was less than 0.5 × 2n2 a0 for durations longer than 1000 times the Rydberg
period. Thus there is a fairly small range of separations for which the two atoms transition
from almost never ionizing to almost always ionizing. As the duration of the simulation
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increased, the maximum separation where more than 90% of the trajectories led to ionization
increased. The maximum separation distance for 90% ionization was ∼1.6 × 2n2 a0 for
400 Rydberg periods, ∼1.8 × 2n2 a0 for 800 Rydberg periods, ∼2.1 × 2n2 a0 for
1200 Rydberg periods. The probability for ionization did not change greatly when increasing
the run time from 1200 to 2000 Rydberg periods.

It may be surprising that the atoms can be quite close together and not ionize: the outer
turning point for a low angular momentum electron is approximately at 2n2 a0. This may be
attributed to the fact that the two electrons repel each other and the classical trajectories would
tend to keep them separated. Of course, as the separation between the electrons increases, the
effectiveness with which energy can be exchanged between them decreases. The simulations
suggest that the ionization is classically forbidden (although it is energetically allowed) when
the separation between the atoms is larger than ∼3 × 2n2 a0! Quantum mechanically the
process is not forbidden although it will be small; an estimate could be made using Fermi’s
golden rule [7] with the initial state being two Rydberg states, n, and the final state is one
Rydberg atom in state nf and the other atom in the continuum (positive energy).

This simulation agrees with quantum calculations we performed for a model problem
[8]. In this model, the two electrons were restricted to move radially and the potential was
given by −1/r1 − 1/r2 + r1r2/R

3. In the quantum calculations, even transitions to adjacent
n-manifolds were suppressed for R greater than ∼5 × 2n2 a0.

5. Free nuclei

We performed a series of simulations where we allowed the nuclei to move freely. In
each simulation, the two atoms are initialized separately using a Monte Carlo distribution
with the following properties. The relative position and velocity vectors, �re − �ri and
�ve − �vi with the subscript e denoting electron and i denoting ion, are chosen to give a
microcanonical ensemble with energy −1/2n2. The initial centre of mass velocity of the
atoms, �V = (me�ve + mi�vi)/(me + mi), was chosen to give a thermal distribution, proportional
to exp(−[me + mi]V 2/2kbT ), at a temperature of 500 µK. The initial separation of the
atoms is set to 3 µm which corresponds to a density of ∼1010−11 cm−3.

The microcanonical distribution for a state of energy −1/2n2 can be obtained from five
random numbers. The angular momentum is given by L = √

x · n where x is chosen from a
flat, random distribution 0 � x � 1. The initial radius is chosen to be the outer turning point
for the given L; the random distribution in r is achieved by propagating for a random time, τran,
where τran is chosen from a flat, random distribution between 0 and the Rydberg period. The
angular part of the distribution is computed in two steps. In the first step, the initial position is
in the xz-plane so that z = R cos θ with cos θ chosen from a flat random distribution between
−1 and 1; the initial velocity is chosen so v = v0(cos θ sin φ, cos φ,−sin θ sin φ) where φ

is chosen from a flat random distribution between 0 and 2π . In the second step, the initial
positions and velocities are rotated about the z-axis through a random angle chosen from a flat
distribution between 0 and 2π .

The thermal distribution of velocities can be obtained using a standard technique for
obtaining a Gaussian distribution. For example, if the distribution of the x-component of
the velocity is proportional to exp

(−v2
x

/
2v̄2

)
, then choosing vx = v̄

√−2 ln x1 cos(2πx2)

where x1 and x2 are random numbers with a flat distribution between 0 and 1 will give the
appropriate distribution. The initial direction of the relative velocity of the two atoms is
completely random.

Four different masses were chosen for the atoms in order to investigate the effect that
atomic mass could have on the distributions. In terms of the atomic unit of mass, me, the
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Figure 1. The distribution of n levels of the atom that results after Penning ionization. The
distribution is scaled by the initial principal quantum number of the atoms, n0 = 60. The atoms
are initially separated by 3 µm and the initial velocity is from a thermal distribution at approximately
500 µK. The dotted line is for two Rb atoms, the dashed line is for two Na atoms and the dash-dot
line is for two He atoms. The solid line is proportional to n5.

masses were 1840 × me (H), 4 × 1840 × me (He), 23 × 1840 × me (Na) and 87 × 1840 ×
me (Rb). The successive masses are roughly separated by a factor of 4 which roughly translates
to a factor of 2 in speed. Since the lighter atoms move faster, the duration of the interaction
decreases for the lighter atoms. But as will be seen below, the change in mass has relatively
little effect on any of the calculated distributions. For clarity, we only plot the results for the
three heavier atoms. For each of the atoms, the statistics are based on approximately 20 000
trajectories.

The distributions do not depend strongly on mass because the speed of the atoms is much
less than the electron speeds and the duration of the transitions. It might be possible to see
larger effects in experiments where the atoms start in low angular momentum states. For
low angular momentum, all of the atoms are quite different due to different sets of quantum
defects. However, it is unlikely that the difference between the atoms is large.

5.1. Distribution of atomic levels

The conditions for which these calculations will be useful would be when there is a cold
gas of Rydberg atoms probably created from a cold gas of atoms excited by a laser pulse.
Approximately one-fifth of the trajectories result in ionization for the initial conditions we
chose. This shows that a large fraction of the atoms will be ionized on the time scale required
for two neighbouring atoms to interact.

After an ionization has occurred, one of the electrons is more deeply bound. Usually,
the atom and the ion move apart with approximately equal velocities as discussed in the
next section. An important quantity is the distribution of binding energies for the atom. A
somewhat simpler representation uses the distribution of atoms as a function of the principal
quantum number, n. The n distribution of atoms is plotted in figure 1 for the three heavier
atoms. The n-state is given as a ratio relative to the initial n-state: n0 = 60. Of course, the
largest n-states allowed after the ionization have n = n0/

√
2 since the final state of the atom

must have at least twice the binding energy of the original atom.
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Figure 2. The distribution of velocity of the ions after penning ionization. The velocities have
been scaled by vsca ≡ √

2BE/M where BE is the original binding energy of the atom and M is
the mass of the atom. The starting parameters and type of curves are the same as in figure 1. For
v = vsca/10 the kinetic energy of the ion is 1% of the original binding energy of the atom. Because
the atoms start with velocities much smaller than the final velocities, the final velocity of the atom
is approximately equal and opposite that of the ion.

The distribution of final states displays some interesting features. The first is the
similarity between the different atoms. This shows that the speed with which the atoms
come together is slow enough that the electrons respond in similar ways for all atoms. This
is not completely obvious because the ionization is a non-adiabatic event and the speed with
which the atoms come together could influence the outcome. Another interesting feature
is the dependence of the distribution on n. The distribution monotonically increases to
the maximum allowed value of n because small energy changes are favoured in long-range
Coulomb interactions. To get an idea about the n-dependence, a curve proportional to n5 is
also shown in figure 1. A curve proportional to n6 gives slightly poorer agreement with the
distribution in figure 1. We do not know why the distribution should be roughly proportional
to such a high power of n, but we note that the final volume of space that the bound electron
moves in is proportional to n6.

5.2. Atom and ion velocities

After an ionization, the resulting atom and ion usually separate to extremely large distances.
The typical trajectory of these three particles results in a pair of ions and an electron with a
motion that gives a net repelling force between the two ions. Because the two atoms start with
relatively small velocity, the relative velocity of the two ions is usually much larger than the
centre of mass velocity of the ions. Because of this, the ion and atom have nearly equal and
opposite velocities when they separate to large distance.

We plot the distribution of ion speeds scaled by the binding energy in figure 2; the
scale speed vsca = √

2BE/M where BE is the binding energy of an atom and M is the mass
of the ion. As can be seen, the distribution is very similar for the different atoms. This shows
that the internal dynamics (essentially governed by the motion of the electron) is very similar
for the different atoms. Thinking of the motion of the ions as being adiabatic, we can imagine
there is an effective potential between the two ions, Ueff(R), that depends on the trajectories.
The relative velocity of the ion and atom will be determined by conservation of energy at
large distances (1/2)Mv2 + Ueff(R) = E.
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Figure 3. The distribution of kinetic energy of the ejected electron scaled by the original binding
energy of the atom. The starting parameters and type of curves are the same as in figure 1. The
solid line is proportional to 1/(KE + 2BE)4. Because little energy relative to the binding energy is
in the final kinetic energy of the atom and ion, the kinetic energy of the electron is approximately
determined by the final binding energy of the atom.

The velocity distribution in figure 2 can be converted into a kinetic energy distribution.
Importantly, the peak of the kinetic energy distribution is at approximately 1/100 of the
original binding energy of an atom. Thus, only a small fraction of the binding energy is
converted into translational motion of the atoms or ions. But even this small amount of energy
is large compared to the original thermal energy of the atoms. For the parameters of the current
simulation, the ion and atom have average speeds more than 10× greater than the average
thermal speed.

5.3. Kinetic energy of ejected electrons

In the previous section the distribution of atom and ion velocities were given. Converting
the velocities into kinetic energies shows that approximately 1% or less of the initial binding
energy is converted into the kinetic energy of the atom and ion. Thus, almost all of the energy
lost by one electron is gained by the other electron. The distribution of kinetic energy of
ejected electrons is directly obtained from the distribution of atomic levels of the atom. In
that section, it was shown that the distribution of n-levels is roughly proportional to n5 up to
the maximum allowed n. The distribution of kinetic energies can be obtained from the
distribution of n using f (KE) = f (n) dn/dE = n8. The kinetic energy and n are related
through energy conservation

2 ×
(

− 1

2n2
0

)
= −2BE � KE +

(
− 1

2n2

)
(6)

where BE is the binding energy of an atom and KE is the kinetic energy of the ejected
electron. This gives a kinetic energy distribution approximately proportional to 1/(2BE +
KE)4 where BE is the binding energy of one atom. This expression will only be accurate for
kinetic energy up to a few times the binding energy.

The kinetic energy distribution of the ejected electron is displayed in figure 3. The
kinetic energy has been scaled by the original binding energy of an atom. We also plot a
distribution proportional to the simplified expression 1/(2BE + KE)4. It is clear that this
simple expression gives a decent representation of the kinetic energy distribution. The region
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of largest disagreement is very close to threshold where the CTMC distributions turn down.
It is not clear whether this is a sampling bias in our definition of ionization in the CTMC
calculation or is a real effect.

5.4. Molecular ions

After an electron is ejected, we propagate Hamilton’s equations until either the separation of
the atoms is 20% larger than the initial separation or for 1 µs. Oddly, we find that a few
per cent of the trajectories reach the 1 µs limit without reaching a separation 20% larger than
the initial separation. The percentage of molecules formed was larger for the heavier atoms.
When we examined these trajectories, we found that the nuclei were vibrating. After the
ionization transition, the two nuclei and the remaining electron were on a trajectory that gave
bounded motion.

Some of these trajectories were characterized by an electron bound to one nucleus but
with an attractive dipole that bound the other nucleus. For some of the trajectories, the electron
oscillated around both nuclei in turns: when the nuclei were far apart the electron revolved
around one and when the nuclei came close together it could revolve around both (which
nucleus the electron became trapped on when the nuclei moved apart seemed to be random).

Many of the trajectories that survived to 1 µs appeared to be unstable; the motion did not
repeat and the orbits became more erratic and larger with time. However, several trajectories
appeared to be a relatively stable oscillation. This is consistent with the trend that more
molecules formed for the heavier atoms: the heavier atoms would oscillate fewer times in
1 µs and would be more likely to survive.

For these molecular ions, all of the distances between the charged particles were roughly
the original size of the atoms. It seems unlikely that it would be possible to observe these
molecular ions. The ions are created in a region where there are many Rydberg atoms.
Many Rydberg atoms will be attracted to the net positive charge of the molecular ion. The
collision between the molecular ion and Rydberg atoms would undoubtedly destabilize the
molecular ion. Although it seems improbable that a molecular ion could survive collisions
with the background Rydberg gas, any surviving molecular ions would be easy to detect with
time-of-flight techniques since they have mass 2M but charge e.

5.5. Van de Graaff transition

There were several trajectories for which the dipole–dipole interaction was initially attractive.
After a time the atoms were accelerated towards each other and gained noticeable speed. But
before the atoms reached the distance where ionization could occur, the non-Coulomb part
of the potential caused the Runge–Lenz vector to precess into a different direction where the
dipole–dipole interaction was repulsive. The atoms were then repelled apart. During such a
trajectory, net positive work is done on the atoms on both the incoming and the outgoing parts
of the trajectory. This is analogous to how a Van de Graaff accelerator works.

The energy gained by the atoms is a small fraction of the binding energy of the atoms
(between 1/1000 and 1/100 of the binding energy). Since the original kinetic energy of the
atoms can be much, much smaller than the binding energy, the energy gained due to this Van
de Graaff mechanism can be substantially larger than the initial thermal energy of the atoms,
providing a heating mechanism for the atoms.

I expect that this process also would be present in a quantum calculation. The quantum
version would work through crossings of the internal energy levels as a function of the
distance, R, between the atoms. At large R, the energy levels are degenerate. As R decreases,
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the energy levels fan apart and levels associated with different n-manifolds can cross. At
the crossing, the internal state can change character from giving attractive potential to giving
a repelling potential. If the atom remains on the repelling potential, the internal levels will
evolve into different n-manifolds. The smallest energy change would be for one atom to go
to n − 1 and the other to go to n + 1. Such a state change corresponds to a decrease in the
total internal energy of the two atoms given by 3/n4 atomic units (this energy change is
6/n2 of the binding energy of one atom).

6. Final remarks

We have generated data for the ionization due to the interaction between cold Rydberg atoms.
We have computed the distribution of n-states, the distribution of atom and ion velocities, and
the distribution of kinetic energies of the ejected electrons after the ionization. Although the
ionization step is non-adiabatic, the distributions for different atoms are similar.

The collisions between cold Rydberg atoms result in several products that can strongly
affect other Rydberg atoms. (1) Most of the electrons ejected in the ionization process have
kinetic energies less than the original binding energy of the atom. Electrons with kinetic energy
comparable to or less than the binding energy have extremely large inelastic scattering cross
sections. (2) After the ionization both the ion and the resulting atom recoil with approximately
1% of the binding energy. This can be much larger than the original kinetic energy of the
atoms. These atoms and ions can then collide with Rydberg atoms that have not yet been
disturbed. (3) A Van de Graaf collision mechanism can transfer 0.1% to 1% of the binding
energy into kinetic energy of the atoms. These atoms can have higher kinetic energy than the
background Rydberg gas and can collide more frequently with the background atoms.

The products of the Rydberg–Rydberg collisions are themselves extremely effective at
causing electronic transitions in Rydberg atoms. Thus, we expect that the electronic levels
of a Rydberg gas will be substantially mixed soon after a small fraction, 1–10%, of the cold
Rydberg atoms collide.
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