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Abstract
The first application of the time-dependent close-coupling method to electron–
molecule scattering is used to calculate electron-impact ionization cross
sections for H+

2. The time-dependent Schrödinger equation for the six-
dimensional wavefunction is reduced to a set of close-coupled equations on
a four-dimensional numerical lattice in (r1, θ1, r2, θ2) centre-of-mass spherical
polar coordinates. When the non-perturbative close-coupling results for low
lM angular momenta are combined with perturbative distorted-wave results
for high lM angular momenta, the resulting ab initio ionization cross sections
are found to be in excellent agreement with experimental measurements in the
intermediate energy range.

Accurate knowledge of the strength of electron-impact ionization processes for molecules and
their ions is important in many different areas of physics and chemistry, with a number of
applications in laboratory and astrophysical plasma science. In particular, electron ionization
of simple molecules containing one or more H atoms is important in understanding edge plasma
dynamics in controlled fusion experiments [1]. In the past a number of ab initio theoretical
methods have been developed to treat electron-impact excitation of molecules and their ions
at low energies [2]. Although semi-empirical methods based on binary encounter theory have
been extended from atoms [3] to molecules [4, 5], only a limited number of ab initio theoretical
methods have been developed to treat electron-impact ionization of molecules at energies
near the peak of their cross sections; the so-called intermediate energy regime. Recently,
perturbative distorted-wave methods [6, 7] have been applied to the electron ionization of H+

2,
while a non-perturbative R-matrix with pseudo-states method [8, 9] has been applied to the
electron ionization of H2 and H+

3.
In this letter, we present a time-dependent close-coupling method which is used to

calculate the electron-impact ionization cross section for H+
2. The time-dependent Schrödinger

equation for the six-dimensional wavefunction of a two-electron molecular system is reduced
to a set of close-coupled equations on a four-dimensional numerical lattice in (r1, θ1, r2, θ2)

centre-of-mass spherical polar coordinates. In our calculation for H+
2, we employ the fixed-

nuclei approximation. The molecular time-dependent close-coupling method has previously
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been used to calculate the double photoionization cross section for H2 at a fixed internuclear
distance [10]. Unless otherwise stated, all quantities are given in atomic units.

Due to the reduced symmetry of molecules, the time-dependent wavefunction for a given
MS symmetry is expanded in products of rotation functions:

ψ( �r1, �r2, t) =
∑

m1,m2

P MS
m1m2

(r1, θ1, r2, θ2, t)

r1r2
√

sin θ1
√

sin θ2
�m1(φ1)�m2(φ2), (1)

where �(φ) = eimφ√
2π

and M = m1 + m2. The angular reduction of the time-dependent
Schrödinger equation for the two-electron wavefunction of equation (1) yields a set of time-
dependent close-coupled partial differential equations for each MS symmetry:

i
∂P MS

m1m2
(r1, θ1, r2, θ2, t)

∂t
= Tm1m2(r1, θ1, r2, θ2)P

MS
m1m2

(r1, θ1, r2, θ2, t)

+
∑

m′
1,m

′
2

V M
m1m2,m

′
1m

′
2
(r1, θ1, r2, θ2)P

MS
m′

1m
′
2
(r1, θ1, r2, θ2, t). (2)

The single-particle operator is given by

Tm1m2(r1, θ1, r2, θ2) =
2∑

i=1

(K(ri) + K̄(ri, θi) + Ami
(ri, θi) + N(ri, θi)), (3)

where K(ri) and K̄(ri, θi) are the kinetic energy operators,

Ami
(ri, θi) = m2

i

2r2
i sin2 θi

, (4)

N(ri, θi) = − Z1√
r2
i + 1

4R2
1 − riR1 cos θi

− Z2√
r2
i + 1

4R2
2 + riR2 cos θi

, (5)

Z1 and Z2 are the nuclear atomic numbers, and R = R1 + R2 is the internuclear separation.
The two-particle operator is given by

V M
m1m2,m

′
1m

′
2
(r1, θ1, r2, θ2) =

∑
λ

rλ
<

rλ+1
>

∑
q

(λ − |q|)!
(λ + |q|)! P

|q|
λ (cos θ1)P

|q|
λ (cos θ2)

×〈(m1,m2)M|eiq(φ2−φ1)|(m′
1,m

′
2)M〉, (6)

where P
|q|
λ (cos θ) is an associated Legendre function.

The time-dependent close-coupled equations, equations (2)–(6), are solved using standard
numerical methods to obtain a discrete representation of the wavefunctions, P MS

m1m2
, and the

operators, T M
m1m2

and V M
m1m2,m

′
1m

′
2
, on a four-dimensional lattice. For a low-order finite difference

representation, the variational principle yields kinetic energy operators given by

(K(r)P (r, θ, r ′, θ ′, t))i,j,i ′,j ′ = −1

2

(
ciPi+1,j,i ′,j ′(t) + ci−1Pi−1,j,i ′,j ′(t) − c̄iPi,j,i ′,j ′(t)

�r2

)
(7)

where

ci =
r2
i+ 1

2

riri+1
, c̄i =

(
r2
i+ 1

2
+ r2

i− 1
2

)
r2
i

,

and

(K̄(r, θ)P (r, θ, r ′, θ ′, t))i,j,i ′,j ′

= − 1

2r2
i

(
djPi,j+1,i ′,j ′(t) + dj−1Pi,j−1,i ′,j ′(t) − d̄jPi,j,i ′,j ′(t)

�θ2

)
, (8)
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where

dj =
sin θj+ 1

2√
sin θj sin θj+1

and d̄j =
(
sin θj+ 1

2
+ sin θj− 1

2

)
sin θj

.

In both equations (7) and (8), Pi,j,i ′,j ′(t) = P(ri, θj , ri ′ , θj ′ , t). The coefficients reflect the
adoption of half-spacing in both coordinate directions so that the proper boundary conditions
may easily be applied. Our implementation on massively parallel computers is to partition the
radial coordinates, (r1, r2), over the many processors.

The initial condition for the solution of the time-dependent close-coupling equations is
given by

P MS
m1m2

(r1, θ1, r2, θ2, t = 0) =
√

1
2 (P1s0(r1, θ1)Gk0l0M(r2, θ2)δm1,0δm2,M

+ (−1)SGk0l0M(r1, θ1)P1s0(r2, θ2)δm1,Mδm2,0), (9)

where P1s0(r, θ) is the ground-state wavefunction for H+
2. The Gaussian wavepacket is

given by

Gk0l0m(r, θ) = e− (r−a)2

2w2

(w2π)
1
4

e−i(k0r− l0π

2 )
√

2π sin θYl0m(θ, φ = 0), (10)

where a is the localization radius, w is the packet width, l0 is the incident angular momentum,

and the incident energy equals k2
0
2 . The time-dependent close-coupling equations are

propagated forward in time using an implicit algorithm:
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2
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(t), (11)

where

U(i) = K(ri) + N(ri, θi) and Ūmi
(i) = K̄(ri, θi) + Ami

(ri, θi).

Probabilities for all the inelastic collision processes possible are obtained by t → ∞ projection
onto bound wavefunctions. Excitation probabilities are given by

PMS
nlm = 2

∑
m′

∫ ∞

0
dr1

∫ π

0
dθ1

∣∣∣∣
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0
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0
dθ2P
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2
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, (12)
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Table 1. Electron-impact partial ionization cross sections for H+
2 . TDCC: time-dependent close-

coupling results, DW: distorted-wave results (cross sections in Kb = 1.0 × 10−21 cm2).

TDCC DW

M l0 50 eV 75 eV 100 eV 50 eV 75 eV 100 eV

0 0 356 417 379 692 608 479
0 1 419 421 347 654 536 410
0 2 502 533 429 750 644 482
0 3 361 414 368 513 468 385
0 4 230 289 273 331 324 279
0 5 122 192 196 209 227 204
0 6 104 143 142
0 7 46 85 95
0 8 19 47 58
0 9 8 24 34

1 1 385 426 373 740 636 493
1 2 352 374 320 542 479 384
1 3 338 360 304 517 443 347
1 4 212 266 246 336 327 279
1 5 112 174 179 207 228 204
1 6 103 142 141
1 7 45 84 94
1 8 19 46 57
1 9 8 24 34

2 2 398 420 357 750 619 472
2 3 321 354 307 536 462 365
2 4 198 259 244 342 334 282
2 5 109 172 177 203 227 206
2 6 100 141 141
2 7 45 83 94
2 8 19 46 57
2 9 7 24 34

and the ionization probability is given by

PMS
ion = 1 −

∑
nlm

PMS
nlm −

∑
nlm

∑
n′l′m′

∣∣∣∣
∫ ∞

0
dr1

∫ π

0
dθ1

∫ ∞

0
dr2

∫ π

0
dθ2

×P MS
mm′(r1, θ1, r2, θ2, t)Pnl|m|(r1, θ1)Pn′l′|m′|(r2, θ2)

∣∣∣∣
2

, (13)

where the bound-state wavefunctions, Pnl|m|(r, θ), are obtained by direct diagonalization of
the one-electron Hamiltonian:

Hm(r, θ) = K(r) + K̄(r, θ) + Am(r, θ) + N(r, θ). (14)

The total cross section for excitation or ionization is given by

σ = π

4k2
0

∑
M,S,l0

(2S + 1)PMS. (15)

The molecular time-dependent close-coupling method, outlined above, is used to calculate
the electron-impact ionization cross section for H+

2 at an internuclear separation of R = 2.0.
We employ a 192×16×192×16 point lattice with a uniform radial mesh spacing of �r = 0.2
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Figure 1. Electron-impact total ionization cross sections for H+
2 . Solid squares: close-

coupling/distorted-wave results, solid diamonds: pure distorted-wave results, solid circles:
experimental measurements [11] (cross sections in Mb = 1.0 × 10−18 cm2).

from 0 to 38.4 in both r1 and r2 and a uniform mesh spacing of �θ = 0.0625π from 0 to π in
both θ1 and θ2. Five coupled channels are employed for the M = 0 and M = 1 symmetries,
while six coupled channels are employed for the M = 2 symmetry. In table 1 we compare the
non-perturbative close-coupling partial cross section results with perturbative distorted-wave
results, obtained using an expansion in prolate spheroidal coordinates [6], at incident electron
energies of 50 eV, 75 eV and 100 eV. Each partial cross section for M and l0 is summed over
the two-spin angular momentum numbers, S = 0 and S = 1. The partial cross sections for
−M are, of course, identical to those shown. For 100 eV incident energy, the close-coupling
and distorted-wave cross sections for l0 = 5 are in good agreement. For 50 eV and 75 eV
incident energies, the contribution to the total M partial cross section is small for l0 � 6. We
also carried out perturbative distorted-wave calculations using an expansion in spherical polar
coordinates [7] and found good agreement with the prolate spheroidal distorted-wave results
found in table 1.

The electron-impact ionization cross section results for H+
2 are shown in figure 1. The

solid diamonds are perturbative distorted-wave results, obtained using an expansion in prolate
spheroidal coordinates. Each total cross section is found by summing partial cross sections for
S = 0 and S = 1,M = 0 to |M| = 16, and l0 = |M| to l0 = 16. The solid squares are non-
perturbative time-dependent close-coupling results for low lM angular momenta combined
with perturbative distorted-wave results for high lM angular momenta. The close-coupling
partial cross sections for S = 0 and S = 1,M = 0 to |M| = 2, l0 = |M| to l0 = 5 are topped up
using distorted-wave cross sections for l0 � 6. A simple extrapolation procedure is then used
to smoothly join the close-coupling partial cross sections for |M| � 2 with the distorted-wave
partial cross sections for |M| � 3 to |M| = 16. Overall, the close-coupling/distorted-wave
results at relatively low energies and the pure distorted-wave results at relatively high energies
are found to be in excellent agreement with the classic experimental measurements of Peart
and Dolder [11]. We note that semi-empirical cross section results [4], based on binary
encounter theory, are also within the error bars of the experimental measurements over the
same energy range.

In summary, we have developed a time-dependent close-coupling method to calculate
electron-impact excitation and ionization cross sections for diatomic molecules and their
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ions. We have applied the molecular time-dependent close-coupling method to calculate the
electron ionization cross section for H+

2. The ab initio non-perturbative close-coupling and
perturbative distorted-wave results are found to be in excellent agreement with long-standing
experimental measurements in the intermediate energy regime. We look forward to applying
the molecular time-dependent close-coupling method to calculate excitation and ionization
cross sections for a wide variety of diatomic molecules. Our first step will be the electron
ionization of H2 in a frozen core approximation to compare with recent R-matrix pseudo-states
calculations [9] and experiment. We also hope to stimulate experimental measurements of
energy differential ionization cross sections for which the close-coupling and distorted-wave
methods could easily be combined to produce accurate predictions.
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