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Abstract
Photoionization cross sections for both atomic helium and molecular hydrogen
are calculated using a time-dependent close-coupling method. The total
electronic wavefunction for the two-electron system is expanded in six
dimensions, where four dimensions are represented on a radial and angular
lattice and a coupled channels expansion is used to represent the other two
dimensions. Double photoionization cross sections are obtained for both
He and H2 for a range of photon energies above the complete fragmentation
threshold. Comparisons are made with absolute experimental measurements.

In recent years much progress has been made in the solution of the three-body Coulomb
problem by several theoretical techniques. The double screened Coulomb [1, 2], convergent
close-coupling [3, 4], hyperspherical R-matrix with semi-classical outgoing waves [5, 6],
time-dependent close-coupling (TDCC) [7, 8], and exterior complex-scaling [9] methods have
all calculated total, single and triple differential cross sections for the double photoionization
of helium, the simplest Coulomb three-body system. This theoretical effort has been matched
by important experimental advances in the last 10–15 years. Accurate measurements of the
total cross section for double photoionization of helium [10] have been obtained and many
measurements have now been made of the triple differential cross sections arising from the
double photoionization of helium [11–14].

These experimental measurements of the triple differential cross sections have also been
extended to examine the differential cross sections arising from the double photoionization of
H2 (or, equivalently, D2) [15–17], i.e. the four-body Coulomb problem. Total cross section
measurements for the double photoionization of H2 were measured in the 1980s first by
Dujardin et al [18] and subsequently by Kossman et al [19]. However, it is notable that
these experimental efforts have not really been matched by corresponding theoretical work.
Early calculations on the double photoionization of H2 were made by Le Rouzo [20, 21]
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and the high-energy asymptotic limit of the ratio of double-to-single photoionization of H2

was calculated by Sadeghpour and Dalgarno [22]. However, apart from some qualitative
studies of the angular distribution of the electrons arising from double photoionization
of H2 by Walter and Briggs [23, 24], using a shape amplitude representation of the
photoionization process and a 3C final-state wavefunction, there has been little theoretical work
to match the experimental measurements. This is no doubt due to the increased complexity of
the molecular system, where the non-spherical nature of the potential removes an important
symmetry from the problem. Also, there are dynamics in molecular photoionization that do
not exist in the atomic case, such as the possible vibrational and rotational motion of the
nuclei.

In this letter, we present a time-dependent close-coupling method which is capable of
calculating the double photoionization cross section for both He and H2. We build on our
previous time-dependent studies of the photoionization of the one-electron system H+

2 [25], by
expanding the electronic wavefunction on a numerical lattice in both radius and angle. In our
calculations for H2 we employ the Born–Oppenheimer approximation, so that the nuclei are
assumed fixed in space. For photoionization processes well above the complete fragmentation
threshold, this should be a good approximation, since the double photoionization process is
typically rapid on the nuclear motion time scale, especially at higher photon energies. We do
note however a recent study [26] which indicates the possible breakdown of this approximation
and of the importance of the nuclear motion. Studies to include the nuclear motion are
currently being considered. Unless otherwise stated, all quantities are given in atomic
units.

In the weak-field perturbative limit, the photoionization of the He atom or the H2 molecule
may be found by solving the time-dependent Schrödinger equation [7]:

i
∂ψ( �r1, �r2, t)

∂t
= Hψ( �r1, �r2, t) + V ψ0( �r1, �r2) e−i E0t , (1)

where H is the atomic or molecular Hamiltonian, V is the time-dependent radiation field
Hamiltonian, and ψ0 and E0 are the exact eigenfunction and eigenenergy of the atomic or
molecular ground state. Due to the reduced symmetry of the molecular case, the time-
dependent wavefunction for a given MS symmetry is expanded in products of rotation
functions:

ψ( �r1, �r2, t) =
∑

m1,m2

P M
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√
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√
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where �m(φ) = eimφ√
2π

and M = m1 + m2. For the spherically symmetric atomic case, the time-
dependent wavefunction may also be expanded in products of coupled spherical harmonics,
as has been used previously with great success [7]. Upon substitution of equation (2) into
equation (1) and application of the variational principle, the time-dependent close-coupled
partial differential equations are given by
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where

Tm1m2(r1, θ1, r2, θ2) =
2∑
i


K(ri, θi) +

m2
i

2r2
i sin2 θi

− 1√
r2
i + 1

4R2 − riR cos θi

− 1√
r2
i + 1

4R2 + riR cos θi


 , (4)

K(r, θ) is the kinetic energy operator, and R is the internuclear separation. For the He
atom we set R = 0.0, while for the H2 molecule we set R = 1.4. In equation (3)
P M

m1m2
(r1, θ1, r2, θ2, t) are the reduced wavefunctions for ψ( �r1, �r2, t) and P̄

M0

m′′
1m

′′
2
(r1, θ1, r2, θ2)

are the reduced wavefunctions for ψ0( �r1, �r2). The Coulomb interaction coupling operator is
found by the reduction of

V M
m1m2,m

′
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where P
|q|
λ (cos θ) is an associated Legendre function. The radiation field coupling operator,

for linear polarization with respect to the internuclear axis, is found by the reduction of

W
MM0

m1m2,m
′′
1m

′′
2
(r1, θ1, r2, θ2, t) = E(t) cos ωt〈(m1,m2)M|
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ri cos θi |(m′′
1,m

′′
2)M0〉, (6)

while, for circular polarization with respect to the internuclear axis, is found by the reduction
of

W
MM0

m1m2,m
′′
1m

′′
2
(r1, θ1, r2, θ2, t) = E(t)√

2
cos ωt〈(m1,m2)M|
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ri sin θi eiφi |(m′′
1,m

′′
2)M0〉, (7)

where ω is the radiation field frequency. We note that for linear polarization M = M0, while
for circular polarization M = M0 + 1. The electric field amplitude, E(t), is slowly ramped
on to its final value to avoid ringing effects in the time evolution of equation (3). Since exact
wavefunctions are employed in the time evolution, we expect our cross section results to be
radiation field gauge invariant, as found in previous time-dependent close-coupling studies
of the photoionization of the He atom [7]. Finally, the exact eigenfunction for the He or H2

ground state is obtained by relaxation of the Schrödinger equation in imaginary time (τ = it):

−∂ψ0( �r1, �r2, τ )

∂τ
= Hψ0( �r1, �r2, τ ). (8)

The total wavefunction is again expanded in products of rotation functions and substituted
into equation (8), yielding a set of close-coupled partial differential equations in space and
imaginary time.

We solve the time-dependent close-coupling equations using lattice techniques to obtain
a discrete representation of the reduced wavefunctions and all operators on a four-dimensional
radial and angular grid. For example, a low-order finite difference representation of the kinetic
energy operator is given by [25]:

(K(r, θ)P (r, θ, r ′, θ ′, t))i,j,i ′,j ′ = −1

2
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θ2

)
, (9)
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where the variationally derived coefficients are given by ci = r2
i+1/2

ri ri+1
, c̄i =

(
r2
i+1/2+r2

i−1/2

)
r2
i

,

dj = sin θj+1/2√
sin θj sin θj+1

and d̄j = (sin θj+1/2+sin θj−1/2)

sin θj
. Our implementation on massively parallel

computers is to partition the radial coordinates (r1, r2) over the many processors, so-called
domain decomposition. Both explicit and implicit algorithms are used to time propagate the
close-coupled equations.

The total cross section for single photoionization leaving the atom or molecule in a specific
bound state is given by

σnlm = ω

I

∂Pnlm

∂t
, (10)

where I is the intensity of the radiation field. The single ionization probability is given by
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∑
m′

∫ ∞

0
dr1

∫ π

0
dθ1

[∫ ∞

0
dr2

∫ π

0
dθ2P

M
m′m(r1, θ1, r2, θ2, T )Pnl|m|(r2, θ2)

]2

−
∑

n′,l′,m′

[∫ ∞

0
dr1

∫ π

0
dθ1

∫ ∞

0
dr2

∫ π

0
dθ2

×P M
m′m(r1, θ1, r2, θ2, T )Pn′l′|m′|(r1, θ1)Pnl|m|(r2, θ2)

]2

+
∑
m′

∫ ∞

0
dr2

∫ π

0
dθ2

[∫ ∞

0
dr1

∫ π

0
dθ1P

M
m′m(r1, θ1, r2, θ2, T )Pnl|m|(r1, θ1)

]2

−
∑

n′,l′,m′

[∫ ∞

0
dr1

∫ π

0
dθ1

∫ ∞

0
dr2

∫ π

0
dθ2

×P M
m′m(r1, θ1, r2, θ2, T )Pnl|m|(r1, θ1)Pn′l′|m′|(r2, θ2)

]2

, (11)

where the two-electron reduced wavefunctions, P M
mm′(r1, θ1, r2, θ2, T ), are evaluated at an

asymptotic time T following the collision, and the one-electron reduced wavefunctions,
Pnl|m|(r, θ), are obtained by direct diagonalization of the one electron atomic or molecular
Hamiltonian. The total cross section for double photoionization is given by

σdion = ω

I

∂Pdion

∂t
. (12)

The double ionization probability is given by

Pdion = 〈ψ(t)|ψ(t)〉 −
∑
nlm

Pnlm −
∑
n,l,m

∑
n′,l′,m′

[∫ ∞

0
dr1

∫ π

0
dθ1

∫ ∞

0
dr2

∫ π

0
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×P M
mm′(r1, θ1, r2, θ2, T )Pnl|m|(r1, θ1)Pn′l′|m′|(r2, θ2)

]2

. (13)

We note that this projection is of the final, time-propagated, fully correlated wavefunction onto
products of one-electron ionic states. This projection can only be made after the wavefunction
has sufficiently evolved in time. We further note that this projection technique has produced
total, single and triple differential cross sections for the double photoionization of He which
are in excellent agreement with other theoretical work and many experimental measurements.
The key to whether this projection technique onto one-electron ionic states is valid lies in the
ratio of the potential to kinetic energy of the electrons at large distances from the interaction.
At a sufficiently large distance this ratio is small, so that the projection onto ionic states, which
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Figure 1. Double photoionization cross sections for He. The new time-dependent close-coupling
calculations (squares) are compared with the experimental measurements of Samson et al [10].
(1.0 kb = 1.0 × 10−21 cm2).

can be thought of as accessing the kinetic energy portion of the wavefunction, is valid. For
lower energies near threshold the kinetic energy is smaller so a larger mesh is necessary.

We use the new time-dependent close-coupling method, outlined above, to calculate the
double photoionization cross sections for both He (R = 0.0) and H2(R = 1.4). We employ a
288 × 288 × 32 × 32 point lattice with a uniform radial mesh spacing of 
r = 0.2 from 0 to
57.6 in both r1 and r2 and a uniform angular mesh spacing of 
θ = 0.031 25π from 0 to π in
both θ1 and θ2. Changing the mesh spacing for the θ coordinates made little difference to our
calculations. Also, these calculations were very similar to those made with a smaller lattice
of 192 × 192 × 16 × 16 points. The calculations were made at an intensity of 1015 W cm−2.
It was found that changing this intensity did not affect our cross sections significantly. For
relaxation of the Schrödinger equation in imaginary time, five coupled channels are employed
for the M = 0 symmetry of the ground states of He and H2, resulting in correlated states on the
lattice with energies within 2% of the infinite lattice limit. For propagation of the Schrödinger
equation in real time, five coupled channels are employed for the M = 0 symmetry found
in the linear polarized case and six coupled channels are employed for the M = 1 symmetry
found in the circular polarized case. Increasing the number of coupled channels retained in
this expansion made a difference of no more than 2% for the calculations presented here,
demonstrating convergence of our calculations. The real-time close-coupled equations are
propagated for ten radiation field periods. The time-dependent radial wavefunctions are
projected onto one-electron wavefunctions following equations (11) and (13) at each time
period. Convergence of collision probabilities is found after eight or nine time periods.

The double photoionization cross section results for He are shown in figure 1. As expected
for the atomic case, the linear and circular polarized cross sections for He are found to be
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Figure 2. Double photoionization cross sections for H2. The new time-dependent close-coupling
calculations (squares) are compared with the experimental measurements of Dujardin et al [18]
(circles) and the measurements of Kossman et al [19] (diamonds). The inset shows the contribution
to the total double photoionization cross section (solid line) from the circular polarized cross section
(dashed) and the linear polarized cross section (dot-dashed). (1.0 kb = 1.0 × 10−21 cm2).

approximately the same. In figure 1 we compare our He results with the absolute experimental
measurements of Samson et al [10] and find good agreement between experiment and the
new TDCC calculations. Although there are other experimental measurements for the double
photoionization of He, the measurements reported by Samson et al have become something
of a standard and so we compare only to these results. We note that our current calculations
are also in good agreement with our previous TDCC calculations [7, 8], which expanded
the wavefunction in coupled spherical harmonics with the radial dimensions represented on a
two-dimensional lattice.

The good agreement of the new TDCC calculations for the helium case with both
experiment and previous theoretical calculations gives us confidence to perform calculations
for R = 1.4, the equilibrium internuclear separation of H2. We propagate the same close-
coupled equations on an identical four-dimensional lattice for the same length of time. The
double photoionization cross section results for H2, at its equilibrium internuclear separation,
averaged over both circular polarization components and the linear polarization component,
are shown in figure 2. The inset shows the contributions from linear and circular polarized
light; as expected for the molecular case, the linear and circular polarized cross sections for
H2 are quite different; the circular polarized cross sections being very much larger of the two.
Also, the behaviour of both contributions as a function of photon energy is different; in this
energy range the contribution from circular polarized light peaks and then falls off, whereas
the contribution from linear polarized light increases slightly over all this energy range. This
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large difference indicates that the dominant contribution to double ionization is from the 1�u

state, which implies polarization perpendicular to the molecular axis, in agreement with the
conclusions of [19]. We compare our H2 results with the absolute experimental measurements
of Dujardin et al [18] (circles) and Kossmann et al [19] (diamonds) and find good agreement
between the new TDCC calculations and experiment. Our cross sections are lower than the
measurements of Dujardin et al, but well within the large error bars of the experiment. The
calculations are also in very good agreement with the later experiment of Kossmann et al.
We also note that our theoretical calculations are substantially below the early calculations
of Le Rouzo [20, 21], which were higher than the experimental measurements. These early
calculations, however, showed large differences when carried out in the length and velocity
gauge formulations, indicating the approximate nature of the initial and/or final wavefunctions
used. We finally note that the exterior complex-scaling method has also started to explore
calculations of double photoionization processes in H2 [27]. We look forward to comparing
with these non-perturbative calculations in the near future.

In summary, we have described a new time-dependent close-coupling method which can
be used to obtain double photoionization cross sections for two-electron diatomic molecules.
We have demonstrated the validity of our theory by comparing calculations made for He
with absolute experimental measurements. We have then, for the first time, calculated
ab initio double photoionization cross sections for H2 and found that our results agree well
with previous absolute experimental measurements. Much work remains to be done on the
four-body Coulomb problem. Of great interest are the differential cross sections arising from
the two ejected electrons in the double photoionization process. Our method has enormous
potential to calculate and examine the interesting dynamics which contribute to the angular
differential cross sections. We are currently working on ways to calculate these quantities to
compare with the experimental measurements already available.
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