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Abstract
The formulation of the time-dependent close-coupling method is extended so
that energy and angle differential cross sections for the double photoionization
of helium may be obtained. The fully quantal method now yields absolute total
integral, energy differential, and angle differential cross sections. A detailed
comparison is made with the absolute synchrotron measurements of Bräuning
et al (1998 J. Phys. B: At. Mol. Opt. Phys. 31 5149–60) for triple differential
cross sections at 20 eV excess photon energy. The agreement between theory
and experiment is excellent.

An accurate description of the continuum state of three interacting charged particles remains
the key ingredient in the calculation of absolute integral and differential cross sections for the
double photoionization of helium. In the absence of an analytical solution and encouraged
by the spectacular power of modern computing platforms, direct numerical approaches to
the calculation of the correlated double continuum wavefunction have been made in recent
years. Integral and differential cross sections for the double photoionization of helium have
been calculated using the double screened Coulomb [1,2], the converged close-coupling [3,4]
and the hyperspherical R-matrix [5, 6] methods. The even more challenging integral and
differential cross sections for the electron-impact ionization of hydrogen have been calculated
using the exterior complex scaling [7] and the converged close-coupling [8,9] methods. In both
ionization processes, the most demanding test for the theoretical methods has been comparison
with experimental measurements [10–12] of absolute triple differential cross sections. Each
numerical approach, with it’s particular balance of strengths and weaknesses, provides new
insight into the treatment and understanding of the long range dynamics of three interacting
charged particles.

In this letter we extend the time-dependent close-coupling method to the calculation of
absolute energy and angle differential cross sections for the double photoionization of helium.
Previous work [13] on total integral cross sections yielded ratios of double photoionization to
single photoionization that are in good agreement with experimental measurements [14–16]
from threshold to 200 eV incident photon energy. For ejected-energy differential cross sections,
we project the time-dependent two-dimensional radial wavefunction onto product states of
Coulomb continuum radial orbitals and then sum the resulting momentum space amplitudes
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incoherently. Using many more partial waves, the same method has been used successfully to
obtain ejected-energy differential cross sections for the electron-impact ionization of helium
[17] and lithium [18]. For ejected-energy and angle differential cross sections, the key step is to
weight the momentum space amplitudes by coupled momentum spherical harmonics and then
sum coherently. We remark here that the outgoing flux is not computed due to problems that
would be encountered near the box boundary due to single ionization. After a brief summary
of the working equations (atomic units are used throughout this letter), we compare the time-
dependent close-coupling results with the absolute synchrotron measurements of Bräuning
et al [10] for triple differential cross sections of helium at 20 eV excess photon energy.

The ground state of helium is found by relaxation of the time-dependent Schrödinger
equation in imaginary time (τ = it):

−∂�1S
0 (�r1, �r2, τ )

∂τ
= Hatom�

1S
0 (�r1, �r2, τ ) (1)

where the non-relativistic Hamiltonian is given by:
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withZ = 2 for helium. The six-dimensional ground state wavefunction is expanded in coupled
spherical harmonics:

�
1S
0 (�r1, �r2, τ ) =

l0∑
l=0

P
1S
ll (r1, r2, τ )

r1r2
Y

1S
ll (r̂1, r̂2) (3)

where l0 = 3 is sufficient for convergence. Substituting equations (2) and (3) into
equation (1) yields a set of coupled partial differential equations for the two-dimensional
radial wavefunctions, P

1S
ll (r1, r2, τ ), that may be solved on a numerical lattice using standard

finite difference methods [13]. About 500 imaginary time steps at �τ = 0.01 are needed to
achieve convergence on a uniform lattice with a mesh spacing of �r = 0.1 if one begins with
P

1S
ll (r1, r2, τ = 0) = δl,0P1s(r1)P1s(r2), where P1s(r) is a bound state radial orbital for He+.

The correlated ground state wavefunction for helium has a total energy of E0 = −78.1 eV
on the lattice. Further improvements in the absolute value of the total energy (chemical
accuracy is −79.0 eV) could be achieved by an even smaller mesh spacing (see [13] for further
discussion), or by use of a non-uniform mesh. We remark that the uniform mesh is ideal for
the current calculation of double ionization processes, where the treatment of the continuum
is the crucial factor. Of course highly sophisticated bound state methods exist which calculate
the ground state energy of helium to many decimal places in accuracy, but may not be suitable
for representing the continuum.

We now solve the ‘weak field’ time-dependent Schrödinger equation in real time:

i
∂�

1P(�r1, �r2, t)

∂t
= Hatom�

1P(�r1, �r2, t) + Hrad�
1S
0 (�r1, �r2, τ = ∞)e−iE0t (4)

where the Hamiltonian for a linearly polarized radiation field in the length gauge is given by:

Hrad = E(t)(r1 cos θ1 + r2 cos θ2) cosωt (5)

with electric field amplitude E(t) and radiation frequency ω. The electric field is ramped on
smoothly over one quarter of a field period so that E(t) = t/T for t < T/4, E(t) = 1 for
t > T/4. The velocity gauge may also be used, but previous time-dependent close-coupling
calculations [13] for the double photoionization cross sections of helium have been found to
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be gauge invariant. The six-dimensional photoabsorption state wavefunction is also expanded
in coupled spherical harmonics:

�
1P(�r1, �r2, t) =

∑
l1,l2

P
1P
l1l2
(r1, r2, t)

r1r2
Y

1P
l1l2
(r̂1, r̂2) (6)

where l1 � 3 and l2 � 3 is sufficient. Substituting equations (2), (3), (5), and (6) into
equation (4) yields a set of coupled partial differential equations for the two-dimensional radial
wavefunctions, P

1P
l1l2
(r1, r2, t), that may also be solved on a numerical lattice [13]. Keeping the

same mesh spacing of �r = 0.1 and beginning with P
1P
l1l2
(r1, r2, t = 0) = 0 for all l1, l2, the

close-coupled equations are time propagated for between 10 and 15 radiation field periods ( 2π
ω

).
A lattice size of 600 × 600 points is employed. Increasing the lattice to 1000 × 1000 points
made a difference of no more than 2% in the results presented in this letter. The wavefunction
defined in equation (6) is initially anti-symmetrized as discussed previously [13], and will
remain so under time propagation. We note also that the radial wavefunctions P

1P
l1l2
(r1, r2, t)

are symmetric under interchange of r1 and r2.
The total photoabsorption probability is given by:

P =
∑
l1,l2

∫ ∞

0
dr1

∫ ∞

0
dr2|P 1P

l1l2
(r1, r2, t)|2. (7)

Using standard projection techniques onto symmetrized products of distorted continuum
waves, the total double photoionization probability is given by:

Pdion =
∑
l1,l2

∫ ∞

0
dk1

∫ ∞

0
dk2|P 1P

l1l2
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where

P
1P
l1l2
(k1, k2, t) =

∫ ∞

0
dr1

∫ ∞

0
dr2Pk1l1(r1)Pk2l2(r2)P

1P
l1l2
(r1, r2, t) (9)

andPkl(r) is a continuum state radial orbital for He+. Both total probabilities may be monitored
as a function of time. Time propagations have converged when the rate of change of the total
double photoionization probability becomes constant. In general, larger lattice sizes and longer
propagation times are needed as the excess photon energy, defined by �E = ω +E0, becomes
smaller.

The continuum state radial orbitals found in equation (9) may be obtained by direct
diagonalization of the time-independent radial Hamiltonian for He+:

hion = −1

2

d2

dr2
+
l(l + 1)

2r2
− 2

r
(10)

on a one-dimensional numerical lattice with a constant mesh spacing of again �r = 0.1. The
size of the lattice determines the distribution of bound and continuum states. We also note that
even for a constant box size, the energy distribution of bound and continuum states changes for
each l. We may also obtain the continuum state radial orbitals by direct numerical integration
of the time-independent Schrödinger equation for He+:

(hion − k2

2 )Pkl(r) = 0. (11)

The standard box normalization is given by:

Pkl(r) →
√

2�k

π
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(
kr +

q

k
ln(2kr)− lπ

2
+ δl

)
(12)
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Figure 1. Contour plot of
∑

l1,l2
|P 1P

l1l2
(r1, r2, t)|2, the total photoabsorption probability density as

defined in equation (7), after 15 radiation field periods at 20 eV excess photon energy (r1 and r2
are in atomic units).

where �k is the momentum mesh spacing, q = 2 is the asymptotic charge and δl is the
Coulomb phase shift. Note, that as the density of states increases for smaller�k mesh spacing,
the amplitude of any one continuum wave decreases. We use a total of 600 continuum state
radial orbitals on a uniform momentum mesh with �k = 0.0025.

In generating the continuum functions by direct integration over a fixed energy
(momentum) mesh, with the box normalization defined in equation (12) we ensure that, for all
angular momenta, the continuum orbital amplitudes are calculated at the same energy points.
This allows us to add the continuum orbital amplitudes coherently, which is necessary in the
calculation of angle differential cross sections. We point out here also that we calculated the
total double photoionization cross section using both methods of generating continuum orbitals
and found excellent agreement between the two methods. This validates our use of the second
method described when calculating angle differential cross sections.

For an excess photon energy of 20 eV, we present the total photoabsorption probability
density of equation (7) as a function of r1 and r2 in figure 1, after a time propagation of 15
radiation field periods. Single photoionization may be identified with the high ridges along
each radial axis. A single photoelectron with all 75 eV excess photon energy has time to move
out to the edge of the box, and even begin to reflect back. Although an absorbing potential may
be used to suppress the reflected waves, it was not deemed necessary in this calculation as the
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Figure 2. Contour plot of
∑

l1,l2
|P 1P

l1l2
(k1, k2, t)|2, the total double photoionization probability as

defined in equation (8), after 15 radiation field periods at 20 eV excess photon energy (k1 and k2
are in atomic units).

reflection back into the double ionization region is negligible. Double photoionization may be
identified with the broad plateau on either side of the r1 = r2 axis. Since the two photoelectrons
share the 20 eV, the broad plateau has not journeyed as far in the r1r2 plane. For the same
excess photon energy, and after the same number of radiation field periods, we present the total
double photoionization probability density of equation (8) as a function of k1 and k2 in figure
2. The probability peaks at α = 45◦, where tan α = k2

k1
defines the hyperspherical angle. The

probability ridge is a quarter of the circle defined by the energy conservation condition

�E = k2
1

2
+
k2

2

2
.

The total integral cross section for double photoionization is given by:

σdion = ω

I

∂Pdion

∂t
(13)

where I is the radiation field intensity. For an excess photon energy of 20 eV, the time-
dependent close-coupling calculation yields a total integral cross section of 8.99 kb, where
1.0 kb = 1.0 × 10−21 cm2. This agrees well with the experimental result of 8.76 kb found by
Samson et al [16].

The single differential cross section for double photoionization may be defined in several
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Figure 3. Single energy differential cross section in kb/eV for helium at 20 eV excess photon
energy. Full curve: present calculation; open circles: experimental points of Wehlitz et al [19].
(1.0 kb = 1.0 × 10−21 cm2).

equivalent forms:

σdion =
∫ π/2
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dσ

dα
dα =

∫ �E
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dE1
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∫ �E/2

0
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where E1 = k2
1
2 . The hyperspherical angle differential cross section is given by:
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Since figure 2 shows
∑

l1,l2
|P 1P

l1l2
(k1, k2, t)|2 the rate of change of this function will yield the

single differential cross section.
The ‘natural’ ejected-energy differential cross section is given by:

dσ

dE1
= 1

k1k2

dσ

dα
. (16)

The transformation factors in the denominator will reduce the ejected-energy differential cross
section near the region where k1 = k2, whereas the hyperspherical angle differential cross
section is at a maximum in this region. Finally, due to the symmetry of the single differential
cross section about the k1 = k2 axis, it has become the convention to define the ejected-energy
differential cross section:

dσ̄

dE1
= 2

dσ

dE1
. (17)
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Figure 4. Triple differential cross sections in b/sr2 eV for helium, as a function of θ2, the angle
of the second ejected electron, for different fixed values of θ1 as indicated and for equal energy
sharing E1 = E2 = 10 eV between the two ejected electrons. The full curves are the present
calculations and the full circles are the absolute experimental measurements of Bräuning et al [10].
(1.0b = 1.0 × 10−24 cm2).

We will stay with the convention. For an excess photon energy of 20 eV, the ejected-energy
differential cross section for double photoionization is presented in figure 3. The time-
dependent close-coupling results are smooth and quite flat for all values of E1 from 0 to
the maximum value of 20 eV. The experimental measurements of Wehlitz et al [19] oscillate
about our theoretical results. Remember, that in this convention, the area under the curve from
0 to 10 eV yields the total integral cross section.

The triple differential cross section for double photoionization is defined by:

σdion =
∫ π/2

0
dα

∫
d#1

∫
d#2

d3σ

dαd#1d#2
. (18)

Since for long times following the collision �r → �kT , the differential cross section in the
hyperspherical angle and the solid angles for the emission of both photoelectrons is given by:

d3σ
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Figure 5. Triple differential cross sections in b/sr2 eV for helium, as a function of θ2, for θ1 = 0◦,
for three values of the energy of the first ejected electronE1 as indicated. (1.0b = 1.0×10−24 cm2).

In contrast to equation (15), the sum over l1l2 is now inside the square so that the outgoing
momentum space wavefunction amplitudes are summed coherently. Since we make use of
a projection in equation (9) onto products of radial Coulomb waves, the momentum space
amplitudes must also be weighted by the appropriate phases to guarantee projection onto
the complex outgoing Coulomb waves. Finally, the orthonormality relations for the coupled
momentum spherical harmonics guarantee reduction of equation (19) to equation (15) upon
integration over the solid angles for both photoelectrons.

Defining all photoelectron emission angles with respect to the direction of the polarization
of the radiation field, triple differential cross sections are presented in figures 4–6 as a function
of ejected energies and as a function of θ1 and θ2 for co-planar geometry (i.e.φ1 = φ2 = 0).
We present Cartesian plots, as opposed to polar plots, to compare as closely as possible with
the absolute experimental data of Bräuning et al [10]. In figure 4 we present triple differential
cross sections at equal energy sharing E1 = E2 for four values of θ1 as shown. For all cases
over a wide range of θ2 from −180 < θ2 < 180 the agreement with experiment is excellent.
The peaks mapped out by the experimental data are reproduced by theory in both shape and
magnitude; only in one instance does theory give a higher peak than experiment. Only for
θ1 = 0◦ do we find any significant cross section in the forward scattering range.
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Figure 6. Triple differential cross sections in b/sr2 eV for helium, as a function of θ2, for
θ1 = 30◦ for various values of the energy of the first ejected electron E1 as indicated. (1.0b =
1.0 × 10−24 cm2).

In figure 5 we show the dependence of the triple differential cross section, with fixed
θ1 = 0◦, on the energy sharing between the electrons. Again the agreement with the experiment
of Bräuning et al [10] is excellent in both the shape and magnitude of the triple differential
cross section. It is clear that the triple differential cross section is almost zero for small values
of θ2 and reaches a maximum for |θ2| � 100◦. In figure 6 we give a detailed analysis of the
triple differential cross section when the energy sharing between the electrons is varied in a
consistent manner, at θ1 = 30◦. At all energy sharings the agreement between theory and
experiment is still excellent. Apart from the case of most unequal energy sharing (E1 = 1 eV
andE1 = 19 eV), where back to back emission becomes enhanced, the triple differential cross
section is broadly the same over a wide range of energy sharings.

In summary, the time-dependent close-coupling method has been extended to obtain
absolute angular differential cross sections for the double photoionization of helium. Excellent
agreement is found between theory and the experimental results of Bräuning et al [10] over a
wide range of angles and energy sharings of the two outgoing electrons. More work remains
to be done on (γ , 2e) processes in systems with simple cores, such as the alkaline earth
atoms [20, 21], as well as more challenging open shell core systems [22]. Also, (γ , 2e)
processes in molecules, where the process is greatly complicated by the extra vibrational
degree of freedom, remains an outstanding challenge. The time-dependent method has also
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been used to study (2γ , 2e) processes [23]. It is hoped to extend this method to extract
fully differential cross sections in order to obtain maximum information about the outgoing
electrons. We also plan to study the (γ , 3e) complete fragmentation of lithium, which has been
the subject of much recent work [24,25]. It is hoped that the application of the time-dependent
method can help in the understanding of these highly correlated processes.

We would like to thank R Dörner, H Bräuning and R Wehlitz for communication of their
experimental data in numerical form. This work was supported by the US Department of
Energy. Computational work was carried out at the National Energy Research Supercomputer
Center at the Lawrence Berkeley National Laboratory [26].
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