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Abstract. Excitation of a model hydrogen atom by a coherent electron beam is calculated by direct
solution of the time-dependent Schrödinger equation on a three-dimensional lattice. The Coulomb
interaction between the electrons is described by v(r1, r2) = 1

r>
and all angular momenta are set

to zero. The coherent beam consists of moving wavepackets for each of two free electrons which
arrive at the third bound electron at different times. As recently predicted by Robicheaux and
Noordam (2000 Phys. Rev. Lett. 84 3735), the probability for a weak excitation should vary as a
function of arrival time. The time-dependent calculations for the model hydrogen atom show that
the 1s → 2s excitation probability oscillates about an axis which is between one and two times
the excitation probability from only one wavepacket. The frequency of the probability oscillation
is found to be equal to the 1s → 2s transition frequency. Large destructive interference of the
1s → 2s cross section is illustrated by contour maps of the 2s projected probability as a function
of wavepacket arrival time.

Accurate cross sections for inelastic scattering processes involving the interactions of electrons
with atoms and their ions are important for the microscopic modelling of many laboratory and
astrophysical plasmas. However, as recently pointed out by Robicheaux and Noordam [1], the
very concept of a fixed inelastic scattering cross section for an atomic target fails when the
incident electron beam possesses some degree of longitudinal coherence. The development
of ‘atom lasers’ [2, 3] and the ‘pulsed electron gun’ [4, 5] holds promise for the experimental
observation of strong constructive and destructive interference effects in atomic collisions
involving coherent matter beams.

In this letter, the excitation of a model hydrogen atom by a coherent electron beam
is calculated by direct solution of the time-dependent Schrödinger equation on a three-
dimensional numerical lattice. The model for the hydrogen atom, in which all angular
momenta are set to zero, is due to Temkin [6] and Poet [7]. This particular model is very
popular for testing new theoretical ideas in scattering theory [8–14], due to its numerical
simplicity and its close qualitative approximation to actual electron scattering from hydrogen.
The coherent beam consists of moving wavepackets for each of two free electrons which arrive
at the third bound electron at different times. This three-dimensional scattering problem is
solved by direct solution of the time-dependent Schrödinger equation using numerical lattice
methods developed previously for the electron-impact double ionization of a model helium
atom [15]. In the following paragraphs we first formulate the time-dependent wavepacket
method for coherent beam scattering, then present results illustrating coherent effects in
excitation probabilities and cross sections, and finally give a brief summary.

The (N + 1)-dimensional wavefunction, �(r0, r1, . . . , rN , t), is a solution to the time-
dependent Schrödinger equation given by:

i
∂�(r0, r1, . . . , rN , t)

∂t
= H(r0, r1, . . . , rN)�(r0, r1, . . . , rN , t), (1)
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where

H(r0, r1, . . . , rN) =
N∑
i=0

(−1

2

∂2

∂r2
i

− 1

ri
) +

∑
i<j

1

max(ri, rj )
, (2)

and N is the number of incident free electrons. In the following paragraphs we will present
results forN = 1 andN = 2. Unless otherwise indicated, atomic units are used in all equations
and results. The initial condition for the solution of the time-dependent Schrödinger equation
is given by:

�(r0, r1, . . . , rN , t = 0) = P1s(r0)G1(r1) . . . GN(rN), (3)

where the incoming radial wavepacket is given by:

Gi ′(ri) = 1

(πw2)
1
4

e− (ri−s
i′ )2

2w2 e−ikri , (4)

w is the width of the packet, si ′ is the localization radius, and E = k2

2 is the incident energy.
The 1s → ns excitation probability is given by either:

P1s→ns = N
∑
k1

. . .
∑
kN

∣∣∣∣
∫ ∞

0
dr0

∫ ∞

0
dr1 . . .

∫ ∞

0
drN

×Pns(r0)Pk1s(r1) . . . PkN s(rN)�(r0, r1, . . . , rN , t = T )

∣∣∣∣
2

, (5)

or approximately by:

P1s→ns = N

∫ ∞

0
dr1 . . .

∫ ∞

0
drN

∣∣∣∣
∫ ∞

0
dr0Pns(r0)�(r0, r1, . . . , rN , t = T )

∣∣∣∣
2

. (6)

The wavefunction �(r0, r1, . . . , rN , t) at a time t = T following the collision is obtained by
propagating the product wavefunction�(r0, r1, . . . , rN , t) of equation (3) using Schrödinger’s
equation on an (N +1)-dimensional spatial lattice and then fully antisymmetrizing the resultant
spatial function. The bound, Pns(r), and continuum, Pks(r), orbitals needed in the above
equations are obtained by diagonalization of the single particle Hamiltonian:

h(r) = −1

2

∂2

∂r2
− 1

r
, (7)

on a one-dimensional spatial lattice. Finally, the 1s → ns excitation cross section is given by:

σ1s→ns = P1s→ns

F , (8)

where the incident flux is given by:

F = Nk2

π
. (9)

For electron scattering from hydrogen in the Temkin–Poet model, we choose a numerical
spatial lattice with uniform mesh spacing �r = 0.4 and a box size of R = 48.0. We first
consider scattering by one free electron (N = 1) on a two-dimensional lattice of 120 × 120
points. Initially, the incoming radial wavepacket is centred at s = 20.0 with w = 4.0 and
an incident energy of E = 50.0 eV. The ground state of hydrogen on the corresponding
one-dimensional lattice has an energy of −13.1 eV. The probability density for the product
wavefunction, |�(r0, r1, t)|2, is shown in figure 1 at times t = 0.0 and t = 25.0. The highest
probability density of figure 1(a) is found at r0 = 1.0 and r1 = 20.0, corresponding to the
most probable position of the 1s target electron and the initial position of the free-electron
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Figure 1. Scattering by one free-electron wavepacket
at an incident energy of 50 eV. Probability density,
|�(r0, r1, t)|2, at (a) t = 0.0 and (b) t = 25.0 (r0 and
r1 are radial distances in atomic units).

wavepacket. The large peaks in the probability density of figure 1(b) along the r0 and r1 axes
are due to elastic scattering and a small amount of target excitation. The probability density
centred along r0 = r1 is due to target ionization. The 1s → 2s excitation probability is found
from equation (5) to be P1s→2s = 2.83 × 10−2, which yields a cross section from equations
(8) and (9) of σ1s→2s = 0.68 Mb, where 1.0 Mb = 1.0 × 10−18 cm2. The spin-averaged
triplet cross section is given by 〈σ1s→2s〉 = 3

4σ1s→2s = 0.51 Mb. Although not needed for our
purposes in this letter, our representation of the ground state energy of hydrogen and the triplet
scattering probabilities and cross sections improves rapidly as the mesh spacing is decreased
to �r = 0.1.

We next consider scattering by two free electrons (N = 2) on a three-dimensional lattice of
120×120×120 points. Initially, one incoming radial wavepacket is centred at s1 = 16.0 and the
other incoming radial wavepacket is centred in succession at s2 = 28.0, 29.0, 30.0, 32.0, 36.0
and 38.0. For each wavepacket w = 4.0 and the incident energy is E = 50 eV. The
1s → 2s excitation probabilities as a function of wavepacket separation, �s = s2 − s1,
are shown in figure 2. The 1s → 2s excitation probability for �s = 20.0 is found to be
P1s→2s = 1.56 × 10−2, which yields a cross section of σ1s→2s = 0.19 Mb. To consider
scattering by two free electrons with larger spatial separation, we increased the size of the
three-dimensional lattice to 145×145×145 points. Initially, one incoming radial wavepacket
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Figure 2. Probabilities for 1s → 2s excitation by two free-electron wavepackets as a function of
wavepacket separation. Full circles, specific wavepacket calculations; solid curve, sine function
fit; solid line, mean axis; lower dashed line, probability for scattering by one free electron; upper
dashed line, twice the probability for scattering by one free electron (separation distance in atomic
units).

is centred at s1 = 10.0 and the other incoming radial wavepacket is centred in succession
at s2 = 40.0, 41.0, 42.0, 43.0, 45.0, 46.0 and 48.0. For each wavepacket w = 4.0 and
the incident energy is E = 50.0 eV. The 1s → 2s excitation probabilities as a function of
wavepacket separation are again shown in figure 2. The 1s → 2s excitation probability for
�s = 36.0 is found to be P1s→2s = 6.90×10−2, which yields a cross sectionσ1s→2s = 0.83 Mb.

As seen in figure 2, the time-dependent wavepacket calculations produce 1s → 2s
excitation probabilities as a function of wavepacket separation that oscillate about an axis
which is between one and two times the excitation probability from only one wavepacket. The
probability on axis is P1s→2s = 4.21×10−2, where P1s→2s = 2.83×10−2 for one wavepacket.
Fitting to a sine function, the wavelength of the oscillation is found to be λ = 32.9. For
E = 50 eV incident electrons, this translates to an oscillation frequency ω = 2πk

λ
= 0.37,

which is precisely the transition frequency difference between the 1s and 2s bound states in
the model hydrogen atom. The excitation probability should continue to oscillate for larger
and larger wavepacket separations, as long as the external environment has no effect on the
target hydrogen atom.

Although the 1s → 2s excitation probabilities found in the time-dependent wavepacket
calculations are at the few per cent level, we are not in the ‘weak’ scattering limit, which forms
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the basis for the coherent scattering predictions of Robicheaux and Noordam [1]. In the ‘weak’
scattering limit, the excitation probability for scattering by two free electrons should oscillate
about an axis which is two times the excitation probability from only one wavepacket. Our
conjecture is that the shortfall seen in figure 2 is due to ‘strong’ scattering effects, i.e. multiple
scattering of the target electron and scattering between the free-electron wavepackets. To
check our conjecture, we repeated the one- and two-electron wavepacket calculations on the
same 1203 and 1453 point lattices at an incident energy of E = 70 eV. For these calculations,
however, the interaction between all electrons, as found in equation (2), was reduced by the
substitution:

∑
i<j

1

max(ri, rj )
→

∑
i<j

α

max(ri, rj )
, (10)

where α = 0.50 and α = 0.25. For half the normal electron–electron interaction, we
found a probability on axis of P1s→2s = 1.49 × 10−2, where P1s→2s = 8.5 × 10−3 for
one wavepacket. For quarter the normal electron–electron interaction, we found a probability
on axis of P1s→2s = 4.1 × 10−3, where P1s→2s = 2.1 × 10−3 for one wavepacket. Thus, the
time-dependent wavepacket calculations are converging towards the ‘weak’ scattering limit
as we reduce the electron–electron interaction in the model hydrogen atom. We note that
‘normal’ coherent scattering in the three-dimensional Temkin–Poet model for hydrogen is
much stronger than that expected in a full nine-dimensional calculation which includes non-
zero angular momenta. Thus, a reduced electron–electron interaction in the model is closer to
that found in real electron–atom collisions.

To illustrate the destructive interference caused by the scattering of two free electrons
on the target, we examine in greater detail the full electron–electron interaction calculations
at an incident energy of E = 50 eV and a wavepacket separation of �s = 20.0.
The probability density for the product wavefunction projected onto the 1s orbital,
| ∫ ∞

0 dr0P1s(r0)�(r0, r1, r2, t)|2, is shown in figure 3 at six different times from t = 0.0 to
t = 25.0. The highest probability density of figure 3(a) is found at r1 = 12.0 and r2 = 32.0,
corresponding to the initial positions of the two free-electron wavepackets. The peak of the
probability density follows the classical path of (r1(t), r2(t)) = (|12.0 − kt |, |32.0 − kt |),
where k = 1.92 for an incident energy of E = 50.0 eV. Thus, at t = 6.25 the density peak
is at (0.0, 20.0), while at t = 16.7 the density peak is at (20.0, 0.0). The classical path is a
‘two cushion shot’ in billiards, which can be seen in the progression from frames (a) to (f ) in
figure 3. The ripples in the probability density at times near t = 6.25 or t = 16.7 are due to
wave interference between the incoming and outgoing components of a single wavepacket as
it reflects at the origin. The probability density for the product wavefunction projected onto
the 2s orbital, | ∫ ∞

0 dr0P2s(r0)�(r0, r1, r2, t)|2, is shown in figure 4 at six different times from
t = 0.0 to t = 25.0. There is no probability density in figure 4(a) since the initial target
electron is in the 1s orbital. The maximum probability densities are found in figure 4(c) at
t = 10.0 and figure 4(d) at t = 15.0 following the arrival of the first free electron, but before
the arrival of the second free electron. In figure 4(f ) at t = 25.0 the probability density is
reduced following the arrival of the second free electron due to destructive interference between
the wavepackets. Furthermore, the featureless ball of probability density found in figures 4(c)
and (d) has been replaced by a double lobe in figure 4(f ) with a clear interference minimum
through its centre.

In summary, the excitation of a model hydrogen atom by a coherent electron beam is
studied by direct solution of the time-dependent Schrödinger equation on a three-dimensional
lattice. For two incident electron wavepackets, the 1s → 2s excitation probability is found
to oscillate about an axis which is between one and two times the excitation probability for
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Figure 3. Scattering by two free-electron wavepackets at an incident energy of 50 eV. Probability
density, | ∫ ∞

0 dr0P1s(r0)�(r0, r1, r2, t)|2, at (a) t = 0.0, (b) t = 5.0, (c) t = 10.0, (d) t = 15.0,
(e) t = 20.0 and (f ) t = 25.0 (r1 and r2 are radial distances in atomic units).
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Figure 4. Scattering by two free-electron wavepackets at an incident energy of 50 eV. Probability
density, | ∫ ∞

0 dr0P2s(r0)�(r0, r1, r2, t)|2, at (a) t = 0.0, (b) t = 5.0, (c) t = 10.0, (d) t = 15.0,
(e) t = 20.0 and (f ) t = 25.0 (r1 and r2 are radial distances in atomic units).
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one incident electron wavepacket. When the electron–electron interaction is reduced in the
model Hamiltonian, the two wavepacket excitation probability is found to oscillate about an
axis which is about two times the excitation probability for one wavepacket, in agreement with
‘weak’ scattering theory [1]. In addition, the frequency of the 1s → 2s excitation probability
as a function of wavepacket arrival time is found to precisely equal the 1s → 2s transition
frequency. In conclusion, we find time-dependent scattering theory to be a clear and powerful
tool for studying coherence effects in electron–atom collisions. In future, the development of
coherent matter beams may lead to experimental observation of these same interference effects
in various atomic collision cross sections.

This work was supported in part by the US Department of Energy, the US National Science
Foundation and the Smithsonian Astrophysical Observatory. Computational work was carried
out at the National Energy Research Supercomputer Center at Lawrence Berkeley National
Laboratory.

References

[1] Robicheaux F and Noordam L D 2000 Phys. Rev. Lett. 84 3735–9
[2] Mewes M O et al 1997 Phys. Rev. Lett. 78 582–5
[3] Bloch I, Hansch T W and Esslinger T 1999 Phys. Rev. Lett. 82 3008–11
[4] Robicheaux F, Lankhuijzen G M and Noordam L D 1998 J. Opt. Soc. Am. B 15 1–5
[5] Rella C W et al 1999 J. Opt. Soc. Am. B 16 182–7
[6] Temkin A 1962 Phys. Rev. 126 130–42
[7] Poet R 1978 J. Phys. B: At. Mol. Phys. 11 3081–94
[8] Callaway J and Oza D H 1984 Phys. Rev. A 29 2416–20
[9] Bray I and Stelbovics A T 1992 Phys. Rev. Lett. 69 53–6

[10] Watanabe S, Hosoda Y and Kato D 1993 J. Phys. B: At. Mol. Opt. Phys. 26 L495–501
[11] Ihra W, Draeger M, Handke G and Friedrich H 1995 Phys. Rev. A 52 3752–62
[12] Bartschat K and Bray I 1996 Phys. Rev. A 54 R1002–5
[13] Baertschy M, Rescigno T N, Isaacs W A and McCurdy C W 1999 Phys. Rev. A 60 R13–16
[14] Jones S and Stelbovics A T 2000 Phys. Rev. Lett. 84 1878–81
[15] Pindzola M S, Mitnik D and Robicheaux F 1999 Phys. Rev. A 59 4390–8


