
J. Phys. B: At. Mol. Opt. Phys.29 (1996) 345–364. Printed in the UK

Low-energy electron–argon scattering in a low-frequency
laser field

C-T Chen and F Robicheaux
Department of Physics, Auburn University, Auburn, AL 36849, USA

Received 14 September 1995

Abstract. We have used several non-perturbative Floquet methods to calculate the differential
and total cross sections for electron scattering from argon in a CO2 laser field. One method
utilizes the mixed-gaugeR-matrix technique to calculate the scattering cross section. A diabatic
approximation adopted from molecular applications is also applied to this low-frequency limit.
Results are compared with the well known Kroll–Watson approximation. We find that all three
theoretical treatments agree well with each other but do not agree with some experimental
results. Possible explanations for the discrepancy between the calculations and experiments are
examined.

1. Introduction

The development of the laser not only provides a tool to examine atomic systems, it can
also generate new phenomena by adding laser beams to some well studied processes. When
a laser is combined with a collision process, new processes can occur, e.g. simultaneous
electron–photon excitation (Mason 1993) or the strong modification field-free processes.
The latter are known as laser-assisted processes. The experimental results to be examined
in this paper belong to the laser-assisted category.

The development of theoretical techniques to study laser-assisted processes has not
kept pace with the experiments partly because experimental laser intensities have increased
significantly and invalidated perturbative approaches. A classic theoretical treatment of
laser-assisted electron scattering from an atom was provided by Kroll and Watson (1973).
Since then it has been an important tool as a guide for the analysis of experimental data.
The Kroll–Watson approximation (KWA) is a non-perturbative method for calculating laser-
assisted scattering cross sections and is widely used in analysing experimental data. One
of the advantages of the Kroll–Watson formalism is the extraordinary simplicity of the
formulae for the cross sections. According to theKWA, the free–free transitions are most
likely to occur if the momentum transferQ of the electron is aligned with the polarization
direction ε̂ of the laser field. The experimental set-up for this situation can be achieved in
two ways. One is to inject the electron in the directionε̂ and measure free–free signals at
large scattering angles. The other arrangement is to rotate both the electron gun and the
detector to make the momentum transferQ align with ε̂. In both cases,̂ε ·Q is substantially
different from zero. TheKWA has been reported to have fair agreement with the experiments
for these cases.

Recent experiments performed by Wallbank and Holmes (1993, 1994) have specifically
explored the situation wherêε · Q ≈ 0. The arrangements of the experiment are therefore
different from that described above. In the first case, the detector is placed at small angles.
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In the second case, the laser beam enters the scattering region in a direction such that
its polarization directionε̂ bisects the angle between the incident direction and outgoing
direction of the electron. The low-frequencyKWA formula has a simple form. The cross
section for absorbingn photons is mainly described by a product of the field-free elastic
cross section and the square of the regular Bessel functionJn(λ). The argument of the Bessel
function,λ, is proportional toε̂ ·Q and the ordern corresponds ton-photon processes. For
small arguments,Jn(λ) ≈ λn/2nn! and under experimental conditions witĥε · Q ≈ 0,
the KWA is either not valid or it predicts tiny free–free cross sections (this is discussed in
section 2.3). Therefore, it is very interesting that the experiments showed relatively strong
signals in both arrangements whereε̂ ·Q ≈ 0. The measured cross section is several orders
of magnitude greater than the prediction of theKWA. These experiments seem to demonstrate
that theKWA is not adequate in describing the free–free transition forsomeexperimental
conditions. The main purpose of this paper is to present several calculations for the case
ε̂ · Q ≈ 0 in order to judge the reliability of the theoretical methods and the assumptions
on which they are based.

Unfortunately, we have not found a mechanism to explain the discrepancy between
calculated and experimental free–free cross sections whenε̂ · Q is small. All of our
calculated cross sections are much smaller than experimental results. Several speculations
about possible mechanisms invalidating theKWA have been discussed. The most promising
speculation concerns the interaction of the incident electron with the polarization potential
of the atom induced by the laser field. TheKWA does not consider themodificationof
the interaction between the target atom and incident electron caused by the laser field; the
atomic dipole moment induced by the laser field has been ignored in theKWA. Recently
Rabad́an et al (1994) examined the electron scattering from He at a 9◦ angle using a
semiclassical method with a model potential. They confirmed the validity of theKWA

under the experimental conditions. They also examined the laser-induced target polarization
and concluded that it is negligible. However, there has been some evidence that this
potential can dramatically influence the free–free cross section in the forward scattering
direction (Byronet al 1984, 1987, Fainstein and Maquet 1994). In experimental studies
of the resonance structures in free–free transitions of electron–neon and electron–argon
scattering, Bader (1986) found a strong non-resonant background in the scattering at small
angles. Such a background is especially pronounced in experiments with argon (but weak
in neon) and cannot be described by theKWA. Argon has a relatively large polarizability
compared to neon. The laser-induced dipole potential is proportional to the polarizability
and therefore seems to fit the speculation that atomic polarizability can strongly enhance
the cross section. In order to examine the problem closely, we have performed a non-
perturbative calculation that incorporates theR-matrix method with Floquet expansion and
scattering formulation to obtain the free–free differential cross section. We also introduce
a diabatic approximation adopted from molecular applications and apply it to this low-
frequency problem. Both approaches are compared to the experiments and also to the
classic Kroll–Watson approximation.

2. Calculation methods

2.1. Floquet R-matrix

Recently, we proposed a mixed-gauge approach (Robicheauxet al 1995) to tackle the
problem of electrons interacting with atoms/ions and laser fields. We briefly outline its
main ingredients in this section. The usual approach to the interaction of an atomic
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system with a laser field is to write the Schrödinger equation in one of the pure gauges
(length, velocity, ‘acceleration’). These three pure gauges are suitable for the electron–
laser interaction at short distances, intermediate distances and large distances, respectively
(Dörr et al 1992, 1993, 1995). The Schrödinger equation is relatively simple in each of
the three gauges. Although the Hamiltonian is simple in the ordinary gauges, the effect of
the laser on the wavefunction has unfortunate properties that impede the implementation of
the usual scattering techniques. Only in the acceleration gauge do the channels decouple
at large distances and the scattering wavefunctions can be obtained. However, this gauge
has difficulties if the potential has a singularity nearr = 0. The acceleration gauge is
only adequate for the problems in which the electron wavefunctions do not extend to
small distances. For more general cases where the wavefunctions extend to all space, a
natural approach is to obtain the wavefunctions in a length gauge near the nucleus, velocity
gauge at intermediate distances and acceleration gauge at large distances. By matching the
wavefunctions at the boundaries of the different gauge transformations, the wavefunctions
for all space can be obtained.

The mixed-gauge method maintains the spirit of the pure-gauge approach by adopting
suitable gauges in different regions. However, the gauges are introduced smoothly over
a range of distances. In this way, part of the electron–laser interaction is incorporated
analytically into the wavefunctions. By introducing the gauges in a smooth manner it may
help to eliminate possible cusplike problems in the wavefunctions.

The wavefunction of an electron in a laser field is a solution of the equation

[
1
2(p + A(t)/c)2 + V (r)

]
9(r, t) = H9(r, t) = i

∂

∂t
9(r, t) (1)

whereV (r) is the static potential andA(t) = A0 sin(ωt) is the vector potential of the laser
field with frequencyω. We choose to solve for the wavefunctions with the form

9Ej (r, t) = exp

(
− iEt − i

∫ t

dt ′ A(t ′) · A(t ′)/2c2

)
e−iφ(r,p,t)ψEj (r, t) (2)

where the unitary phase operator of the gauge transformation is chosen as

φ(r,p, t) = −[G(r)A0 · p + A0 · pG(r)] cos(ωt)/2cω . (3)

The parameterE denotes the electron’s energy when it has not absorbed or emitted any
photons. The factorG(r) = {1−exp(−β(r−rc)4)}2(r−rc) prevents gauge transformation
at small distances but allows the transformation from the velocity gauge to the acceleration
gauge at large distances.2(r − rc) indicates we begin this transformation at a distancerc
which we choose to be several times larger thanA0/cω, the amplitude of the oscillation
of the potential in the acceleration gauge.β should be as small as possible but needs to
be large enough to ensure the Schrödinger equation is completely in the acceleration gauge
at theR-matrix boundary (i.e.G(r0) ≈ 1 within tolerable error wherer0 is the size of the
R-matrix). In equation (3) we have omitted the possibility for making the length gauge
to velocity gauge transformation at small distances in order to simplify evaluations of the
matrix elements involving commutators of the phase operator with the Hamiltonian. The
phase operator satisfies the commutation relation [φ, ∂φ/∂t ] = 0 and theψEj (r, t) satisfies
the simplified equation

EψEj (r, t) = (H̄ − A(t) · A(t)/2c2)ψEj (r, t) (4)
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where

H̄ = H − ∂φ

∂t
− i

∂

∂t
+ [iφ,H ] + 1

2!
[iφ, [iφ,H ]] + · · · . (5)

The wavefunctionψEj (r, t) is constructed using a Floquet expansion

ψEj (r, t) =
∑
j ′

exp(−iωnj ′ t)Ylj ′mj ′ (θ, ϕ)ψEj ′,j (r) (6)

in which ψEj ′,j (r) has the asymptotic form

ψEj ′,j (r) = fj ′(r)δj ′,j +
√

2f +
j ′ (r)Tj ′,j r > r0 . (7)

We have used the symbolf +
j ′ = (−gj ′ + ifj ′)/

√
2 wheref and g are the regular and

irregular solutions of the radial Schrödinger equation with zero potential. For short-ranged
potentials such as electron scattering from neutral atoms (the present case),f andg represent
the energy normalized regular and irregular spherical Bessel functions, respectively. The
construction of the radial functions,ψEj ′,j (r), can be accomplished using many methods.
We use the variationalR-matrix method (Schneider 1975, Greene 1985, Robicheaux 1991)
in which we expand the Hamiltonian in a set of basis functions which do not all have the
same logarithmic derivative on the boundary. In the variational principle, thep2 + Bloch
operator in the Hamiltonian is replaced byp†p.

The advantage of the proposed mixed-gauge approach is that it converges quickly with
respect to the number of Floquet blocks. Also, it allows us to obtain the scattering parameters
with the usualR-matrix method. We have found that this method gives accurate results as
long asA0/cω is small compared to the size of theR-matrix boundary. The disadvantage
of the mixed gauge is that at any distance the Schrödinger equation is not in one of the
pure gauges and consequently the Hamiltonian is more complicated than it is in a pure
gauge. WhenA0/cω becomes large, the expansions of the higher-order commutators in the
Hamiltonian pose difficulties. In our calculations, we have evaluated [iφ,H ] analytically
and the next order [iφ, [iφ,H ]] numerically by matrix multiplication. We have found (by
keeping the second-order commutator of the phase operator with the Hamiltonian) that the
Floquet calculation is reliable if the amplitudeA0/cω is less than 10% of theR-matrix
sizer0.

2.2. Diabatic approximation

In the acceleration gauge the potential oscillates along the direction of the polarization with
a time-dependent amplitude given byα(t) = ẑ(A0/cω) cosωt in au. Since the frequency
of the laser is small, the incident electron may be moving much faster than the oscillation of
the potential. If the time it takes the electron to scatter from the potential is small compared
to the laser period, we may treat the potential as fixed at the time when the scattering occurs.
This approximation to the wavefunction will only be good up to distances less thanv/ω

wherev is the electron’s speed. For the experiments discussed below,v/ω ∼ 178 au. The
scattered waves are spherical waves centred at the origin of the potential at that time and
can be written as

ψElm(R, t) = e−iEtYlm(R̂)[jl(kR)− yl(kR) tanδl ] (8)
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where R is the position vector from the potential to the electron. We may obtain the
spherical wavefunctions centred at the true origin by using the re-expansion formula (Danos
and Maximon 1965, Dill and Dehmer 1974) which is expressed as(
jl(kR)

yl(kR)

)
Ylm(R̂) =

∑
LMλµ

iL+λ−l+2m
√

4π
√
(2L+ 1)(2l + 1)(2λ+ 1)

×
(
L l λ

0 0 0

) (
L l λ

M −m µ

)
jλ(k|α(t)|)Yλµ(α̂(t))

(
jL(kr)

yL(kr)

)
YLM(r̂) .

(9)

In the equation,r is the relative position of the electron to the true origin andα(t) points
from the potential to the true origin. The relationship among three position vectors is
R = r + α(t). In this formula, the amplitudeα(t) is assumed to be smaller than the
distancer from the electron to the centre of the potential. The wavefunction now depends
explicitly on r and is written in a compact form

ψElm(r, t) = e−iEt
∑
LM

YLM(r̂)[jL(kr)ILM,lm(t)− yL(kr)JLM,lm(t)] (10)

where we have usedj (kr) andy(kr) to denote explicitly the spherical Bessel functions for
the present short-ranged interaction between electron and argon. The matrixILM,lm(t) is
obtained from (9) as

ILM,lm(t) =
∑
λµ

iL+λ−l+2m
√

4π
√
(2L+ 1)(2l + 1)(2λ+ 1)

×
(
L l λ

0 0 0

) (
L l λ

M −m µ

)
jλ(k|α(t)|)Yλµ(α̂(t)) (11)

andJLM,lm(t) is related toILM,lm(t) simply by

JLM,lm(t) = ILM,lm(t) tanδl(E) . (12)

The parameterδl(E) represents the phase shift of the electron due to the presence of the
atom at positionα(t). It is obtained by the usual potential scattering method with a model
potential to be described later. TheILM,lm(t) is a continuous function oft ; although
jλ(k|α(t)|) andYλµ(α̂(t)) are separately discontinuous, their product is continuous. Since
the oscillation of the potential is along the direction of the polarization of the laser field
which is chosen aŝz, theµ in the above expressions is simply zero. As a result, different
M andm do not mix in the transformation. We can use a single indexm and move it from
a subscript to a superscript and denote the matrices asImL,l(t) andJmL,l(t), respectively, for
a particularm. These two matrices suffice to construct the transition matrixT mL,L′(t) at the
time when the scattering occurs. Alternatively, becauseJmL,l(t) is related toImL,l(t), we can
obtainT mL,L′(t) from

T mL,L′(t) =
∑
l

ImL,l(t)I
m
L′,l(t) sinδl eiδl . (13)

Using theT -matrix and imposing the time-dependent part in then′ channel, we have the
scattering wave

ψEn′lm(r, t) = e−iEt e−in′ωt
∑
L

YLm(r̂)[jL(kr)δLl + h+
L(kr)T

m
L,l(t)] (14)
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whereh+
L(kr) = jL(kr)+ iyL(kr) is the spherical Hankel function of the first kind. At large

distances, the asymptotic form of the Floquet wavefunction in channeln′ is

ψEn′lm(r, t) = e−iEt
∑
nL

YLm(r̂) e−inωt [jL(knr)δLlδnn′ + h+
L(knr)T

m
nL,n′l ] . (15)

This form holds for distances larger than the size of the atom plusA0/cω. Furthermore,
becauseω � 1 and kn = √

2(E + nω) ≈ k + nω/k where k = √
2E, jL(knr) ≈

jL(kr)+djL(kr)/d(kr) · r/(k/nω). The derivative,j ′
L(z), is roughly the same size asjL(z)

and as long asr < (k/nω), we may approximatejL(knr) ≈ jL(kr) andh+
L(knr) ≈ h+

L(kr)

for any n. The approximation of the wavefunction is valid for distances less thanv/nω

as described above (8). Applying the frame transformation to (14) to match Floquet
wavefunction (15), we get two relations

jL(knr)δnn′ = jL(kr)
ω

2π

∫ 2π/ω

0
ei(n−n′)ωt dt (16)

and

T mnL,n′L′ = ω

2π

∫ 2π/ω

0
T mL,L′(t) ei(n−n′)ωt dt . (17)

Equation (16) is an identity under the assumption we have made. Equation (17) gives
the time-independent FloquetT -matrix T mnL,n′L′ and can be used to obtain cross sections.
From equation (17), it is clear that theT -matrix elements are the same for channels with
(n − n′) and−(n − n′). Usually we are interested in the incident channeln′ = 0 and the
exit channeln. The T -matrix elements are therefore symmetric for the emission process
(n < 0) and the absorption process (n > 0). Consequently, we have exactly the same
cross section for emission and absorption in the diabatic approximation. This is one of
the special properties of this approximation and is a consequence of the low-frequency
assumption. This symmetry is not exactly obeyed for the exact wavefunction but can be
considered a good rule of thumb.

2.3. Kroll–Watson approximation

In their original paper, Kroll and Watson derived a free–free differential cross section valid
for low frequencies. In this limit, the differential cross sections for an electron scattering
from a potential and absorbingn photons is given by

dσn
d�

= kf

ki
J 2
n (λ)

dσel(ε,Q)

d�
(18)

whereki and kf are the magnitudes of the initial and final momentum, respectively. For
emission ofn photons, replacen with −n. Jn is the ordinary Bessel function of ordern,
λ = A0ε̂ · Q/cω and dσel/d� is the differential cross section of elastic scattering in the
absence of laser fields. The elastic scattering cross section is to be evaluated at an energy

ε = Ei − nω(ε̂ · ki/ε̂ · Q)+ (nω)2/2(ε̂ · Q)2 (19)

with Ei the incident energy andQ = kf − ki , the momentum transfer. The expression for
the energyε is valid for |n/λ| 6 1. For the conditions wherêε · Q ≈ 0 this approximation
fails. Often in the application of analysing experimental data the energy is replaced by

ε = Ei + nω (20)

at which the elastic cross section is calculated. This replacement always gives
dσel(ε,Q)/d� ≈ dσel(Ei,Q)/d� in the low-frequency limit and the ratio of the free–
free transition to the elastic scattering is determined byJ 2

n (λ). For ε̂ · Q ≈ 0, the free–free
cross section is always a tiny fraction of the field-free cross section which is reflected in
the KWA.
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3. Model potential

The majority of our calculations are for the low-energy region where the incident electron
energy is well below the excitation energy of Ar atoms. Without the presence of the laser
field the process is simply elastic scattering. With an intensity of 0.38 × 108 W cm−2

and a low frequency 0.0043 au, the atomic potential of Ar is modified only slightly by
the laser field. To a good approximation, we may assume the potential is described by
the elastic electron scattering. Many experiments and theoretical analyses have provided
accurate phase shifts for low incident energies (Williams 1979, Fonet al 1983, McEachran
and Stauffer 1983, Furstet al 1989). Since the atomic structure does not play a dynamic
role, we replace the effect of the 18 Ar electrons on the incident electron with a local, model
potential. In section 5, we will examine the effects of this approximation. The potential in
our calculation is assumed to have the analytical form

V (r) = −Z
r

e−α1r − α2 e−α3r − αd

2r4

[
1 − e−(r/rcut)

3]2
(21)

whereZ is the nuclear charge,αd is the static electric polarizability andrcut is the cut-off
distance for the polarized potential induced by the incident electron.αi are parameters,
together withrcut, to be determined by minimizing the differences between the elastic
differential cross sections from potentialV (r) and from the phase-shift analysis of the
experiment (Furstet al 1989). For Ar,Z = 18, αd = 10.77 (Johnsonet al 1983) and the
minimization givesα1 = 3.04, α2 = 10.62, α3 = 1.83 andrcut = 1.76 au.

An atom exposed to a low-frequency monochromatic laser with linear polarization is
polarized and classically gives rise to an electric dipole potential

Vpol(r) = αdE0 cosθ cosωt/r2 . (22)

The field strengthE0 is related toA0 by E0 = A0ω/c andE0 = 3.3 × 10−5 au for the
experimental intensity and frequency. This potential is included in theR-matrix calculation
and we will investigate its long-range effect in a later section.

4. Results

In the present calculation, we used Floquet blocks fromn = −6 to 6 and angular-momentum
states froml = 0 to 11 for eachn. We used 20 radial basis functions for eachn and l
to represent theψEj ′,j (r) inside theR-matrix boundary. The convergence was checked by
calculating cross sections with a smaller range ofn, l. We chose the size of theR-matrix to
be 30 au for all of the calculations. A CO2 laser has frequency 0.0043 au (¯hω = 0.117 eV)
and the intensity was set to 0.38×108 W cm−2 to match the experiments. The amplitude of
the oscillating potentialA0/cω is 1.78 au. The incident electron energy is 8 eV except where
otherwise specified. The laser is assumed to be monochromatic, spatially homogeneous and
linearly polarized.

4.1. Differential cross sections

Our results are presented in accordance with three different experimental arrangements by
Wallbank and Holmes. (i) The incident electron directionki is parallel to the laser field
polarization ε̂. (ii) The momentum transfer of the electronQ is always parallel toε̂.
(iii) The momentum transfer of the electronQ is always perpendicular tôε. In cases (ii)
and (iii), both electron gun and detector need to be rotated for different scattering angles. For
consistency, in all of the calculations we use the simplified formula (20) instead of (19) for
the KWA. For cases (i) and (ii), much better agreement between the diabatic approximation
and theKWA in the backward direction is obtained when (19) is used.
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Figure 1. Zero-photon free–free differential cross section with the incident direction parallel to
the polarization of the laser. TheKWA curve overlaps with the diabatic curve and they are not
distinguishable in this figure.

4.1.1. Case 1. ki ‖ ε̂. Figure 1 shows the differential cross sections for all three
different calculations for zero-photon free–free transition. The field-free elastic scattering
cross section is plotted for comparison. The zero-photon process deviates from the elastic
scattering only slightly at small scattering angles but significantly at large scattering angles.
The zero-photon cross section is suppressed below the field-free cross section in the
backward direction. The momentum transferQ plays an important role in the free–free
transition. Q is large at large scattering angles where free–free processes are likely to
occur. One- and two-photon absorptions are shown in figures 2 and 3, respectively. The
cross sections for emission processes (not shown) for theR-matrix calculation and the
KWA are nearly equal to the cross sections for the absorption processes. This shows the
validity of the diabatic approximation for which the absorption and emission cross sections
are exactly equal. In the backward direction, the one- and two-photon cross sections are
relatively large. This compensates for the reduction of the zero-photon process from elastic
scattering in figure 1 at large scattering angles. Also it is interesting that the two-photon
absorption is stronger than the one-photon absorption in the backward direction. This shows
the non-perturbative nature of this scattering process. All cross sections show a minimum
around 120◦ because the elastic scattering has a minimum at that angle.

The agreement of theR-matrix calculation with the other two methods for the one-
photon process is not as good as that for the two-photon process, especially in the backward
direction. This can be traced back to the truncation of the Hamiltonian in (5). We note
the first commutator in the Hamiltonian is [iφ,H ] and it can be expanded into three parts.
They are−(A0/4cω) cosωt [i(pzG + Gpz),p

2], −(A0/2cω) cosωt [i(pzG + Gpz), V ] and
−(A2

0/4c
2ω) sin 2ωt [i(pzG + Gpz), pz]. The first two cause one-photon transitions and

the last causes two-photon transitions. As far as the interaction strength is concerned,
only the first one is important. This can be easily seen since the functionG(r) turns
the transformation into the acceleration gauge at large distances where the potentialV

is practically zero. The second term is therefore not important. The third term, apart
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Figure 2. Same as figure 1 but for the one-photon absorption.

Figure 3. Same as figure 1 but for the two-photon absorption.

from the commutator, contains an additional factorA0/c to the first term. For the
frequency and intensity of the present case, this factor would reduce the contribution by
two orders of magnitude. We also checked these three terms numerically and confirmed
the dominance of the first. In short, the commutator [iφ,H ] is a one-photon interaction
in character for the experimental parameters. The phase operator iφ is also one-photon
in origin since it is proportional to cosωt . Therefore the next commutator [iφ, [iφ,H ]]/2
basically contributes to zero-photon and two-photon transitions. We do not include the next
commutator [iφ, [iφ, [iφ,H ]]] /6 and its followers in theR-matrix calculation. Therefore
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Figure 4. One-photon free–free differential cross section with the incident direction parallel to
the polarization of the laser. The incident energy is 10.5 eV.

the leading term we have neglected is a one- and three-photon interaction. So the lowest-
order interaction we have neglected in the Hamiltonian contributes to one-photon processes.
This is why the two-photon cross section in theR-matrix calculation is better than that for
the one-photon process.

For small scattering angles, all inelastic free–free transitions are predicted to have small
cross sections. This can be seen from theKWA in which the argument of the Bessel
function,λ, containsε̂ · Q and the momentum transferQ is not only small itself but also
nearly perpendicular tôε at small angles. TheR-matrix and diabatic approximation agree
with the KWA but all fail to predict the experimental results at small scattering angles. This
conclusion does not change if we increase the incident energy to 10.5 eV at which the
experiment was performed in this geometric arrangement. In figure 4 we concentrate on
small scattering angles and compare the calculations with the experiment. The experimental
results are much larger than the calculations.

4.1.2. Case 2.Q ‖ ε̂. One-photon and two-photon processes are shown in figures 5 and 6,
respectively. The shape looks similar to that in case 1. But because the momentum transfer
is arranged to favour the free–free transition, it begins to give appreciable signals at small
angles. At large angles the quantityε̂·Q is even closer to that of case 1 and the similarity in
cross sections between the two cases becomes apparent. Again all three calculations agree
reasonably well.

At large scattering angles, the cross sections fromKWA deviate from theR-matrix and
diabatic calculations for then = 2 channel in both this case and case 1. This is because we
have used the renormalized energyε = Ei + nω to evaluate elastic scattering cross section.
If the original expression (equation (19)) is used, the agreement of the three methods is
excellent at large angles. However, in doing so,ε̂ · Q in the denominator of the energy
expression will cause difficulties at small angles so we chose to avoid it.
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Figure 5. One-photon free–free differential cross section with the momentum transfer of the
electron parallel to the polarization of the laser.

Figure 6. Same as figure 5 but for the two-photon absorption.

4.1.3. Case 3.Q ⊥ ε̂. In this case theKWA fails to apply. The condition for the low-
frequency limit is not satisfied. However, if the renormalized energyε = Ei + nω is used,
the cross sections are calculable but tiny because ofε̂·Q ≈ 0. TheR-matrix method and the
diabatic approximation are free from this limitation. TheR-matrix calculation gives a very
small cross section and the diabatic method has exactly zero cross section for one-photon
absorption. The results are shown in figures 7 and 8. The two-photon process from the
diabatic calculation has strong angular dependence but is too small to be displayed. The large
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Figure 7. One-photon free–free differential cross section with the momentum transfer of the
electron perpendicular to the polarization of the laser.

variation with angles actually comes from the incompleteness of angular-momentum states
used in the calculation. By increasingl to 20, this ‘noise’ disappears. This may suggest
that we need to include higher-angular-momentum states in theR-matrix calculation as
well. However, the magnitude of this ‘noise’ in theR-matrix calculation is several orders
of magnitude smaller than the cross section for non-perpendicular cases. Its magnitude is
smaller than what has been truncated after the second commutator in the Hamiltonian. The
one-photon transition from the diabatic calculation vanishes for a different reason to be
discussed later. In the experiment both one- and two-photon cross sections have several
per cent of the signals of the field-free scattering. It is at least two orders of magnitude
larger than theR-matrix calculation. We leave the discussion of this discrepancy to a later
section.

4.2. The sum rule

The sum rule for the free–free transition states is∑
n

dσn
d�

= dσel

d�
(23)

where the summation runs over all positive and negativen and the right-hand side is the field-
free differential cross section. We find theR-matrix result follows this rule closely at large
scattering angles but deviates slightly in the forward direction. The diabatic approximation,
however, is consistent with the sum rule. The sum rule is known as a result of the low-
frequency approximation (Mason 1993). In the limitω → 0, the argument of the Bessel
function is the same for emission and absorption process. By applying

∑
n J

2
n (λ) = 1, the

sum rule follows. As we have mentioned, the diabatic approximation does not distinguish
the absorption from emission process. This treatment is true only in the limitω → 0. The
diabatic approximation follows the sum rule more closely than theR-matrix calculation and
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Figure 8. Same as figure 7 but for the two-photon absorption.

the KWA because it utilizes more low-frequency features in the approximation. The validity
of the sum rule was reported to have other restrictions (Danieleet al 1986, 1987). The
experimental parameters examined in this paper do not violate the restrictions.

4.3. Total cross sections

In this section we examine total cross sections for two experimental arrangements. The
first one varies the incident angle of the electron gun with respect to the direction of laser
polarization and collects all scattered electrons. The second one varies the angle between the
detector and the laser polarization and shoots the incident electrons from all directions. The
corresponding total cross sections are functions of the incident angle and the scattered angle,
respectively. Although the polarization of the laser field defines a particular direction, there
is no positive or negative distinction. The electron has the same probability to be scattered
whether the incident angle isθ or π − θ . Therefore we expect the total cross sections to
be symmetric about 90◦ of the incident angle and of the scattered angle. The results shown
in figure 9 confirm this general rule. The zero-photon total cross section has a maximum
at 90◦ while the one-photon cross section has a minimum. Then-photon total cross section
varies with angle but if we sum over alln-photon processes, including both absorption and
emission, the angle dependence disappears. This result can be derived from the sum rule.
The sum over alln-photon total cross sections is the integration over angular variables
of (23). According to the sum rule, it is equal to the field-free total cross section which is
independent of angle.

Is the angle dependence of the total cross sections the same for the two experimental
arrangements? In theR-matrix calculation we found the angle dependence is approximately
the same for the total cross section with respect to incident angle and scattered angle. They
are exactly the same in the diabatic approximation. This may suggest that the symmetry of
the angle dependence is a result of the low frequency of the laser. It may also be possible
that the asymmetry between varying incident angle and scattered angle is caused by the
truncation in theR-matrix calculation.
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Figure 9. Total cross section as a function of the incident angle.

5. Discussion

We have found all three methods agree quite well under all experimental conditions. From
the theoretical point of view this indicates that the low-frequency limit of theKWA and the
diabatic approximation are valid since theR-matrix calculation is free from this limitation.
But none of the methods predict the strong signals in the experiments when the product
ε̂ · Q is small. It should be noted that the quantityε̂ · Q appears explicitly in theKWA

formula but implicitly through thepz operator in theR-matrix formalism and through the
transformation matrixImL,l(t) in the diabatic approximation.

If the experimental cross sections are correct, there must be some interactions that are
missing in all three methods. Particularly, these interactions are pertinent to the observed
cross section in the perpendicular case. Possible interactions responsible for the discrepancy,
as suggested elsewhere, are the exchange effect and the induced-dipole potential of the atom
by the laser field. We examine these effects carefully as well as other possible mechanisms.

5.1. Exchange effect

In all of our calculations, the interaction between the electron and Ar atom is described
by a local model potential. The model potential has been parametrized to get the best
agreement with the experimental field-free elastic scattering cross section. If the exchange
effect participates in the scattering process, the cross section should have contained it and, in
turn, this effect would be embedded in the model potential. To account for this effect more
consistently and clearly, we have performed a frozen-core Hartree–Fock calculation. First,
Hartree–Fock wavefunctions of the ground configuration of Ar are obtained self-consistently
(Froese Fischer 1972). Exchange integrals are then included in constructing the (N + 1)-
electron Hamiltonian. The static exchange phase shifts, which are used in theKWA and the
diabatic approximation, can be calculated from this Hamiltonian. TheR-matrix calculation
proceeds with the exchange Hamiltonian in place. The three methods show good agreement
with each other.
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The Hartree–Fock potential is not a good description of the electron–argon scattering and
the cross section thus obtained does not compare well with the field-free experimental cross
section. However, our purpose is to examine whether the exchange effect can dramatically
increase the one-photon process whereε̂ · Q is small. According to the experiments, the
one-photon process has a magnitude of about 1% to 10% of the elastic scattering for the
perpendicular arrangement. Our calculations with the exchange effect show no such increase
in the one-photon cross section. This rules out the possibility that the strong signals seen
in the experiment are due to the exchange effect.

5.2. Laser-induced dipole potential

Outside theR-matrix boundary the Schrödinger equation has been completely transformed
to the acceleration gauge and the electron–laser interaction disappears as a result. The
atomic potential, however, is shifted by the time-dependent amplitude(A0/cω) cosωt and
provides residual coupling to the laser field. There are two different interactions arising
because the electron cloud on the Ar atom can be polarized. One is the∼1/r4 interaction
of the outer electron with the dipole moment induced by the outer electron and the other
one is the∼1/r2 interaction of the outer electron with the dipole moment induced by the
laser field. Although the latter diminishes more slowly than the electron-induced potential
at large distances, its strength is much smaller. Explicitly the interaction of the electron
with the laser-induced dipole isαdE0 cosθ cosωt/r2 with αdE0 = 3.5 × 10−4 au. It is
therefore not surprising that we found no change in the cross section if this interaction is
included inside theR-matrix boundary. Its slowly decaying character, however, requires
some attention to the effect of this interaction on theT -matrix when the electron is outside
of the boundary.

We calculated the effect on the cross section from the laser-induced dipole (i) by
numerically solving the close-coupling equations with this potential and (ii) by using
perturbation theory.

(i) High-angular-momentum states do not actively participate in the transition process
inside theR-matrix boundary because of the centrifugal potential. We do not include high-l

states in theR-matrix calculation because it is unnecessary and not practical. However, as
we go further away from the atom, those high-angular-momentum states begin to mix in
from the 1/r2 interaction. As a result, the number of coupled channels increases rapidly
with the distance from the atom. For our calculation with the laser-induced dipole moment,
we included the angular-momentum states up tol = 25 and used the diabatic approximation
to obtain theT -matrix at 30 au. From thisT -matrix we obtained channel wavefunctions
and their derivatives atr = 30 au. The wavefunctions thus obtained served as the initial
values for the coupled-channel equations to be solved outside of the boundary. The atomic
potentials are transformed to the acceleration gauge which gives a correction to their forms
in the length gauge; this additional factor is proportional to the ratio of the amplitude
of oscillation to the distance of the electron from the origin in the acceleration gauge
(A0/cω)/r. The amplitude is 1.78 au and the correction term is only 6% compared to
the leading terms at theR-matrix boundary. We keep only the leading terms followed by
solving the close-coupled equations. The wavefunctions are propagated to 300 au and the
full T -matrix (short range and long range) is constructed. If this laser-induced potential
outside of theR-matrix boundary has a significant effect on the observed cross section, the
procedure just described should give an estimate to the order of magnitude. We did not find
a significant enhancement of the cross section.
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(ii) According to the Kohn variational principle, the variationalT -matrix element is
given by

T υj ′,j = T tj ′,j − π〈ψt
j ′ |V |ψt

j 〉 (24)

whereT tj ′,j is obtained using the solution of a model HamiltonianH0 andV = H − H0

with H the full Hamiltonian. The integration in the expression is to be performed over all
space. For the present case, theR-matrix calculation has contained the dipole interaction
insider0; the desiredT -matrix can be more explicitly expressed as

Tj ′,j = T Rj ′,j − π

∫ ∞

r0

dr
∫

d�ψt
j ′

∗
Vpolψ

t
j ≡ T Rj ′,j + T Pj ′,j (25)

whereψt
j is the wavefunction in the regionr > r0 for channelj and Vpol is the laser-

induced dipole potential. A perturbative calculation approximatesψt
j by the solution of the

Schr̈odinger equation assumingVpol = 0 for r > r0. This approximate wavefunction is
given by (7) where theT -matrix is taken from theR-matrix calculation,T Rj ′,j .

We found thatT Pj ′,j slowly converges with respect to angular momentum. We note
that in obtaining the differential cross section, theT -matrix has been summed over all the
angular-momentum states in both the initial channelj and the final channelj ′

Tnj ′ kf ,njki =
∑

lj ′mj ′ ljmj

(ilj ′Y ∗
lj ′mj ′ )

∗
Tnj ′ lj ′mj ′ ,nj ljmj (i

lj Y ∗
ljmj
) . (26)

Since the short-ranged effect has vanished at large distances, the wavefunction deviates from
the Bessel function only for low-angular-momentum states. We may expect(T Rj ′,j + T Pj ′,j −
T Bj ′,j ) contributes to the cross section only for lowl whereT Bj ′,j is the Born approximation.
A fortunate property is that we can sum over alll andm analytically to getT Bnj ′ kf ,njki . The
whole idea can be summarized as

Tnj ′ kf ,njki = T Bnj ′ kf ,njki +
∑

lj ′mj ′ ljmj

(ilj ′Y ∗
lj ′mj ′ )

∗
(T R + T P − T B)nj ′ lj ′mj ′ ,nj ljmj (i

lj Y ∗
ljmj
) . (27)

We did not find a large enhancement of the cross section by this procedure.

It has been pointed out that at high incident electron energy a significant contribution
to the free–free cross sections at small scattering angles comes from the dressing of the
atom by the laser field (Byronet al 1984, 1987, D̈orr et al 1994). These calculations have
focused on the high-energy region and with larger electric field strength (about 600 times
bigger than the present case). The dressing effect predicted for H and He atoms in the
forward scattering is limited to small angles. We have used the perturbative procedure
and parameters of the calculations on H to obtain the first Born cross section. There is a
big enhancement in the forward direction forε̂ parallel to the momentum transferQ and
it is mainly from T Bnj ′ kf ,njki

. The magnitude is proportional toQz/Q
2 and at the forward

direction it reduces to 1/Q. This is where the big effect comes from whenQ is small.
For the present case, the 1/Q contribution in the forward direction is reduced by a much
weaker field strength in the experiment. Furthermore, in case 1 whereki is parallel toε̂ and
the scattering angle is between 9◦ and 25◦, Qz remains small butQ does not. The factor
Qz/Q

2 does not boost the cross section. It is also true for the perpendicular arrangement
in which ε̂ · Q ≈ 0. Qz ≈ 0 but the magnitudeQ is comparable to the electron momentum
ki for large scattering angles. The dressing of the Ar atom by the laser field cannot explain
the disagreement between calculations and experiments. Recently Geltman (1995) also
examined this field-induced dipole effect and reached the same conclusion.



Low-energy electron–argon scattering 361

5.3. Other possibilities

Other possible explanations which could result in the discrepancies have also been
considered. These include the possible misalignment of the equipment in scattering angles.
This would make the perpendicularity in the momentum transfer and the polarization
deviate from exactness. By intentionally shifting the scattering angle, we obtain a non-
zero momentum transfer in the polarization direction which would favour the free–free
transition. We find the shifted angle would need to be as large as 20◦ to account for the
difference between experiment and theory and therefore is not a possible explanation.

Multiple scattering may be important if the density of the Ar beam in the experiment is
relatively high. From the experiment (Weingartshoferet al 1983) the beam is about 0.5 mm
in diameter and the pressure is 14 mTorr at the centre. The probability of double scattering
under this condition is negligible. It is not likely the multiple scattering has an effect on
the observed results.

We next consider the effect of experimental uncertainty in the laser intensity. The
intensity of the laser field in our calculations (3.8 × 107 W cm−2) is the firstµ s of the
re-estimated value (Wallbank and Holmes 1994). The second and thirdµ s are 1.3×107 and
0.42× 107 W cm−2, respectively. These values are smaller than their previous estimated
values 1.3×108 W cm−2 for the firstµ s and the second and thirdµ s are 4.6×107 W cm−2

and 1.5 × 107 W cm−2 respectively. Suppose the average intensities were best described
by the previous values: the intensity used in the calculation for the firstµ s is close to the
secondµ s and larger than the thirdµ s of the assumed set. If this were the case we should
compare our results to the secondµ s of the experiment. However, the measurements of
the experiment do not show much difference in signal for the first and secondµ s. We
do not think the uncertainty in the average intensity can be the cause of the disagreement
unless the actual intensity is several orders of magnitude larger than the estimation.

We did not include resonances in our calculations. The two lowest-resonant states of
Ar−, 2P3/2 and 2P1/2, lie at 11.1 and 11.27 eV, respectively with widths of 2.5 ± 0.5 meV
(Brunt et al 1977). The energy of the incident electron is 8 eV and is more than 3 eV
(1200 linewidths) away from the resonances. This suggests the resonances should not have
any effect on the cross section whereε̂ · Q ≈ 0. This hypothesis can be tested using
experimental data. If it is the resonances that cause the enhancement, the cross section at
10 eV, which is three times closer to the resonances, should be much larger than those at
8 eV. From the experiment, the magnitudes of the cross section at 10 eV and at 8 eV are
about the same. This seems to rule out the resonances as the reason for the disagreement.

The laser field in our calculations is assumed to be single mode and spatially
homogeneous. The pulsed CO2 laser used in the experiments was used under multi-mode
operation in which spatial and temporal averages are to be taken. The consequence of this
is complicated and requires knowledge of the laser in the experiment. It is known that the
trajectory of a charged particle in a laser field deviates from a straight line (Mittleman 1993).
The scattering angles measured in the experiment may not correspond to the actual angles
of the collision between the electron and the atom. If the field intensity is not homogeneous,
it will change the electron’s momentum. The correction to the momentum is a collective
effect from the ponderomotive potential and its spatial variation in the scattering region.
The ponderomotive potential is the difference between the kinetic energies of the electron
inside and outside of the laser field. Its magnitude at the intensity in our calculations is
Up = E2

0/4ω
2 = 1.47 × 10−5 au if the field is homogeneous. This is negligibly small

compared to the kinetic energy 8 eV (∼0.294 au) outside of the laser field. Unless the laser
intensity has strong spatial nonhomogeneity in the scattering region, the electron will not
change paths because of the inhomogeneity of the laser field.
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5.4. Validity of theKWA

The KWA is believed to be valid when the photon energy of the laser field is smaller than
both the energy of the incident electron and the excitation energy of the target atom. These
conditions are well satisfied with 8 eV incident electrons in the experiments. TheR-matrix
method is not only an alternative method to theKWA, it also provides a tool to examine
the validity of theKWA. They are complementary in that while theKWA is applicable to
the low-frequency limit, theR-matrix approach is valid providedA0/cω is small compared
to theR-matrix size. This is usually satisfied in the high-frequency region where theKWA

tends to fail. It is desirable to use theR-matrix method to test the limit of the validity of
the KWA.

Since the validity conditions forKWA are in good standing in the above calculations, we
choose a high frequencyω = 0.25 au to explore its limit and still keep the incident energy
of the electron at 8 eV. The photon energy is no longer small compared to the incident
energy andn = −2 is now a closed channel. The high frequency also allows us to increase
the intensity to 3.8 × 1012 W cm−2 with the amplitudeA0/cω = 0.17 au which is tiny
compared to the size of theR-matrix boundary atr = 30 au. Even under this condition
we found that theKWA prediction of the cross section is fairly close to theR-matrix except
for the ‘perpendicular’ arrangement. The largest difference occurs in then = −1 channel
which is 1.2 eV above threshold. In this channel theR-matrix results show much larger
cross section than theKWA. If the arrangement is ‘perpendicular’, their differences are more
apparent. Because the photon energy is comparable to the incident energy,ε̂ · Q 6≈ 0
even when the polarization direction bisects the angle between the directions of the incident
electron and the scattered electron (‘perpendicular’ arrangement). Overall, the validity of
the KWA seems to go beyond its usual criteria.

5.5. Peculiar symmetry in the diabatic approximation

We have mentioned the one-photon differential cross section from the diabatic approximation
is exactly zero ifε̂ · Q = 0. Actually all n-photon differential cross sections vanish for
this approximation ifn is odd. This is an exclusive feature of the diabatic approximation
and comes from indistinctness of channel indexn in (13). The indexn comes in to play in
the time average of (17). BecauseT mL,L′(t) is symmetric aboutt = 0, there is no difference
betweenn-photon absorption and emission processes as mentioned earlier. In calculating
the differential cross section, we need to perform the summation in (26). The independent
indicesL andL′ form pairs in the summation, e.g. for one term withL = 1, L′ = 2 there
is another term withL = 2, L′ = 1. While the product of spherical harmonicsYL,m × Y ∗

L′,m
andT mnL,n′L′ remain unchanged with the exchange ofL andL′, the phase factor iL

′−L changes
sign if L′ −L = ±1,±3, . . . . The summation overL andL′ for these pairs have a perfect
cancellation for a givenm. Terms withL′ − L = 0,±2,±4, . . . will add up because the
factors iL

′−L and iL−L′
have the same sign. However, we foundT mnL,n′L′ = 0 for oddn but

T mnL,n′L′ 6= 0 for evenn. Hence, for oddn, all terms add up to zero. This does not happen
for the R-matrix calculation because the absorption and emission have different channel
energies. For evenn this symmetry does not hold. However, as mentioned before, by
including more angular-momentum states, the differential cross section eventually vanishes.
Thus, in the diabatic approximation, non-photon (exceptn = 0) free–free transitions occur
if ε̂ · Q = 0. This conclusion should not be taken too seriously because the additional
simplifications of the method. However, at low frequencies where the diabatic assumption
is a good approximation, this conclusion should be approximately right and we can expect
small laser-assisted signals under the experimental conditions discussed above.
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6. Conclusions

We have presented a non-perturbativeR-matrix Floquet calculation and a diabatic
approximation to the differential and total cross section of electron–argon scattering in
a low-frequency CO2 laser. The calculations attempted to explain recent experiments by
Wallbank and Holmes. We have found that these calculations agree with the Kroll–Watson
approximation but do not agree with the observed strong signals in the forward direction and
in the case where the electron momentum transfer is perpendicular to the direction of the
laser polarization. This conclusion agrees with some previous results (Geltman 1995, Varró
and Ehlotzky 1995). Several possible explanations for the discrepancy have been examined
but excluded. This seems to suggest that some of the assumptions in the calculations do not
correspond to the real experimental conditions. We also present the total cross sections as
a function of incident and scattered angle. Our calculations, though unable to explain the
experiments, should provide valuable information for further investigation of this problem.
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