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Abstract. We p m t  a novel method for obtaining Floquet or time-dependent wavefunctions 
for atoms in laser fields. This method has the potential to be more stable and/or faster than 
previous, methods. The main idea is IO include the effects of the laser field in a gauge that 
smoothly changes character as a function of distance. This transformation allows us to formally 
account for the analytic behaviour of the wavefunction as r + m and as r + 0. We 
demonstrate the feasibility of this mixed gauge approach thmugh Flcquel calculations on a one- 
dimensional model problem and Lhree-dimensional calculations for the hydrogen atom. Time- 
dependent calculations for a one-dimensional model problem are performed with the mixed 
gauge. This approach may also be useful for exploring analytic and permrbative properties of 
the wavefunction in the high-field limit. 

1. Introduction 

There have been many different theoretical methods used for describing the interaction of 
an electron with a static potential and a strong laser field (i.e. the laser field has a non- 
perturbative effect on the electronic motion). The different methods can be generically 
grouped into two classes: time-dependent and Floquet methods. The time-dependent 
methods directly solve the timedependent Schrodinger equation for a laser pulse with a 
time-dependent intensity (for example, Kulander 1988, Krause et al 1992, Xu er ~l 1992. 
Schwengelbeck and Faisal 1994, Pindzola and Bottcher 1993, Collins and Merts 1989, 
LaGattuta 1991, Grobe and Eberly 1993). The Floquet wavefunctions assume a constant 
(or slowly varying) laser intensity; this type of wavefunction can be obtained by several 
methods: expansion in an L2 basis (Maquet er al 1983, Potvliege and Shakeshaft 1989, 
Madajczyk et al 1992, Potvliege and Smith 1993, and Don et a1 1994). analytic solution 
of Schrdinger's equation (Pont et al 1990, 1992), direct solution of the close-coupling 
equations (Dimou and Faisal 1994, Giusti-Suzor and Zoller 1987, Marte and Zoller 1991, 
Collins and Csanak 1991). or by the R-matrix method (Burke et al 1990, Don er al 1992). 
All of these theoretical techniques have used the 'pure' gauges for the electromagnetic 
field in order to obtain the wavefunction (i.e. length gauge, velocity gauge, or 'acceleration 
gauge'). It is probable that these gauges are favoured because the resulting Hamiltonian for 
the electron is very simple. In this paper, we would like to draw attention to the obvious 
fact that there exist an infinite number of gauges and that the gauge can be chosen in order 
to make the wavefunction simple (instead of the Hamiltonian simple). 

The problem of obtaining a Floquet wavefunction to represent an atom in a 
monochromatic laser field does not have an easy solution. The difficulty relates to the 
nature of the laser-atom interaction which can have different forms depending on the gauge 
used to generate the scalar and vector potential. In the length gauge, the interaction diverges 
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at large distances but is small at small distances. In the velocity gauge, the interaction is 
finite and non-zero for all distances. In the 'acceleration gauge', the interaction has the form 
V ( r  -a@)) - V ( r )  (with V being the electronic potential and a(r) being the oscillations 
of a free classical electron in the laser field) which converges to zero at large distances but 
gives problems at small distances for Coulomb potentials. Most dynamical situations facing 
atomic theorists involve finite potentials that only couple atomic degrees of freedom over 
a limited region of space and therefore involve channels that decouple at large distances. 
The short-range nature of atomic couplings has encouraged a specialization of theoretical 
techniques that take advantage of this fact. The exploration of atomic dynamics in a laser 
field using scattering theory techniques has been hampered by the non-standard nature of 
the laser-atom interaction. 

The difficulty in constructing atomic scattering functions in the presence of a laser field 
can be traced to the form of the electron-laser field interaction. Only in the acceleration 
gauge is it possible to obtain scattering wavefunctions and several authors have used this 
gauge for all space. However, the acceleration gauge interaction has difficulties near r = 0 
for Coulomb potentials because of the time dependence of the singularity; it is difficult 
to get converged results when the acceleration gauge is used for all space except for non- 
Coulombic potentials or high angular momentum states where the electron cannot penetrate 
into the strong interaction region. Burke er a! (1991) and D6rr et al (1992) have taken 
advantage of the nature of the laser-atom interaction to obtain Floquet wavefunctions in 
the length gauge near the nucleus, the velocity gauge at intermediate distances, and the 
acceleration gauge at large distances. The total wavefunction was obtained by matching the 
wavefunctions in the different regions (and therefore with different gauges) at the boundaries. 

The time-dependent methods do not have obvious problems in obtaining wavefunctions 
in the different gauges; the electronic wavefunction is calculated time-dependently on a 
spatial grid of points and the electron does not get to very large distances before the laser 
pulse is turned off. However, it has been noticed that the length gauge cannot be used for 
very high intensities because at larger (where the laser interaction is largest) the de Broglie 
wavelength of the electron becomes too small for the spatial grid which can cause errors 
in the calculation. This problem can be overcome by using the velocity gauge, but some 
parameters (e.g. the autocorrelation function I ( q ( x ,  t ) l @ ( x .  0))l2) may oscillate much more 
strongly in the velocity gauge than in the length gauge. 

In this paper, we present a method for obtaining Floquet wavefunctions in a mixture of 
gauges. This approach is based on a general gauge transformation that approaches the length 
gauge at small distances, the velocity gauge at intermediate distances and the acceleration 
gauge at large distances. Unlike Burke et al (1991) and Dorr et a1 (1992), the change 
from one gauge to the next is accomplished smoothly over a range of distances and the 
transformation can be used in timedependent calculations. This smooth evolution of the 
gauge has the advantage that the resulting wavefunction needs very few Floquet blocks 
for convergence because a part of the electron-laser interaction is included analytically 
in the wavefunction. The disadvantage of the method is that the resulting mixed gauge 
Hamiltonian is much more complicated than the length gauge Hamiltonian, velocity gauge 
Hamiltonian, or acceleration gauge Hamiltonian. However, in some sense this disadvantage 
does not present as many difficulties as the 'pure' gauges because it is the complicated nature 
of the wavefunction that is the main difficulty. The numerid part of the wavefunction for 
the mixed gauge is simpler than for the standard gauges. By using a mixed gauge, the 
interaction with the laser field is finite everywhere and goes to zero at r = 0 and r = 00; 

more of the effect of the laser field is analytically included in the wavefunction with the 
mixed gauge than any of the pure gauges. 



Mixed gauge approach to multiphoton wavefunctions 3049 

The purpose of this paper is to describe how this method works and to investigate 
the properties of the mixed gauge procedure (e.g. convergence). For this purpose, we 
restrict ourselves to problems that are simple or that have already been explored in order to 
investigate the accuracy of the method. 

2. General formulation 

The wavefunction is a solution of 

(1) [ ~ @ + A ( t ) / c ) ’ + V ( r ) ] Y ( r , f ) =  f f W ( r , t )  =i-Y(r , t )  

where V ( T )  is a static potential for the electron, p is the electron’s momentum operator, 
and for the Floquet calculations A(t) = Aosin(wt) with w the frequency of the laser field 
for the Floquet calculations. Atomic units are used throughout this paper. We will look for 
wavefunctions that have the form 

(2) 

a 
at 

Y ~ j ( r ,  t )  = exp(-iEt - i dr’A(t’). A(f‘)/Zc2) ] e-id(r,p,t) ‘ b E j ( P , f )  [ s’ 
where one possible choice of the phase operator is given by 

@(r, p ,  f )  = F(r)A(t) . r / c  - [G(r)& . p + &. pG(r ) ]  cos(wt)/Zcw (3) 
and F(r)  and G ( r )  are arbitrary functions that will be chosen for convenience. The A’ 
term in (2) accounts exactly for the effects of the A2 term in (I). We have chosen the 
form of (3) by taking the usual velocity-to-length transformation and multiplying it by a 
function that goes to zero at large distances (i.e. it ‘turns off the transformation at large 
distances) and by taking the usual velocity-to-acceleration transformation and symmebically 
multiplying it by a function that goes to zero at small distances. The choice F = 1 and 
G = 0 gives the velocity-to-length gauge transformation; the choice F = 0 and G = 1 
gives the velocity-to-acceleration gauge transformation. We will always choose F and G 
to be functions of T such that F(r)G(r)  = 0. This condition on F and G gives 

which will greatly simplify later equations. This constraint on F and G leaves an infinite 
range of possible forms for these functions. As a general procedure, F and G should 
(probably) be functions of r when spherical coordinates are being used in the calculation; 
the phase operator will then only connect states to those with e & 1. The functions F 
and G should probably be functions of rz = P . P in order to alleviate cusp problems near 
r = 0 and G should go to zero faster than rz as r goes to zero in order to avoid singular 
interactions near the origin. For example, F ( P )  = exp(-pr’) and G z 0 gives a gauge 
that approaches the length gauge near the origin and velocity gauge as r + W. As another 
example, the choice F = 0 and G ( r )  = 1 - exp(-pr4) gives a ‘gauge’ that looks like the 
velocity gauge near the origin and the acceleration gauge as r + 03. When cylindrical 
coordinates are used with light linearly polarized in the z-direction, the best choices of F 
and G those where the functions only depend on 2’ (e.g. F = exp(-pz4) might be a 
good choice). 

The phase operator, as defined in (3). is a Hermitian operator which means, exp(-ib), 
is a unitary operator. This property guarantees the Hermiticity of e’+He-’+. If we choose F 
and G to be smooth functions and F + 0 and G + 1 as r + 03 faster than l / r 3  and ljr’, 
the coupling between the Floquet blocks will approach zero as r --f 03 at least as fast as 
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l/rz. For all of our applications, we have chosen functions of F and G that converge to their 
asymptotic forms as fast (or faster) than Gaussian functions of r. Therefore, we can use these 
functions to construct scattering-type wavefunctions that are well behaved near the origin 
and at large distances. This formulation a h w s  a scattering-type treatment of multiphoton 
ionization using any of the standard methods utilized for scattering calculations (e.g. R- 
matrix, close coupling, Kohn variational principles, Schwinger variational principles). 

Formally, the resulting S-matrix is independent of the particular choice of F and G as 
long as F + 0 and G + 1 as r -+ 03 sufficiently fast. To show the independence of the 
S-matrix, assume that you have two different choices of phase operators, @(I) and @@), that 
satisfy the condition on F and G. With these two choices of phase operator there are two 
corresponding wavefunctions + ( I )  and +(*) which will give the same Y through (2); this 
is possible since Y is a solution of (1) which has no dependence on the phase operators. 
Equation (2) can be used to relate the two functions +(‘I and eo) to give 

= exp(i@‘”) exp(-i@”)+@) (5 ) 
since the phases are Hermitian. Both of the phase operators have the property that 
F + 0 and G -+ 1 as r -+ 03 which m e i s  @(I)  -+ @(*) as r + 03 which means 
exp(i@(’))exp(-i@(’)) + 1 as r + CO. This shows that + ( I )  + +@) as r -+ 03 and 
therefore the S-matrix must be independent of the choice of phase as long as F + 0 and 
G -+ 1 as r --f 03. A test of the accuracy of calculations with a mixed gauge can be 
obtained through a comparison of physical parameters (such as the S-matrix) for different 
choices of F and G. 

The +.E)@, t )  is a solution of the equation 

E + E ~ ( T ,  0 = (fi - A@) . A0)/2c2)+~j(p, t )  (6) 
where fi = e’$He-’+ - a@/at - ia/ar; this equation is exact only when [@, a@/ar] = 0. 
The operator 

(7) 
where the relationship from (4) has been utilized. With the mixed gauge transformations, 
these terms become very complicated which has some drawbacks for practical calculations. 
However, we have found that the F and G can be chosen so that only the terms explicitly 
written in (6) are needed for converged results. Often, the [i@, [i@, HI] term can be ignored. 
The fast convergence resulls from the smoothness of F and G. If the F and G are 
substantially changing over a distance s, then the nth commutator has a rough magnitude 
of IAl/(s . c . w )  where ]AI/@ . w )  is the amplitude of oscillation of a free electron in a 
laser field. The rapidity of convergence can be increased by making s large (i.e. making F 
and G smoother). 

The loose constraints on possible choices of @ is a powerful tool that can be used to 
allow different types of scattering calculations. For example, we always choose the phase 
operator in such a way that we can use R-matrix methods for the calculation. The conditions 
on @ are that at the R-matrix boundary F, 1 - G and dG/dr are negligibly small at r = ro. 
These conditions imply that @ gives the velocity-to-acceleration gauge transformation withii 
negligible errors. 

can be expressed in series form as 
a@ . a  1 .  1 .  . B = H - - 1% + ij[l@. HI + 511@, [I@, HI1 + . . I  

3. One-dimensional application 

In order to investigate the usefulness and the convergence properties of the mixed gauge 
treatment, we have calculated decay rates of the ground state of a model one-dimensional 



Mixed gauge approach to multiphoton wavefunctions 3051 

system. For the Floquet treatment of the model problem, we did not find it necessary to 
include the velocity-to-length mixed gauge transformation; i.e. we chose F = 0. The 
operator can be found term by term with this choice of F .  The first term 

(8) 

is a Hermitian operator even when expanded in an R-matrix basis if G = 1 at the boundary. 
The second term 

1 
at  2 2c 

2 H - - a@ - A .  A/2c 2 -  - - p + V ( x )  + -[(l - G ) p  + p(1-  G)]Aosinwf 

Ao . 
2c dx (p2G' + G'p' + 2pG'p)/4 + (pG' + G'p)-- smut - G"] (9) 

(where G' = dG/dx) is also Hermitian when expanded in a R-matrix basis if G' = 0 at 
the boundary. The next-order term did not make a large contribution when G was a slowly 
varying function of position; the third term had a 1 2 %  effect on the branching ratios for 
the highest field strengths that were attempted with different choices of G. Note, that a pure 
velocity-to-acceleration gauge transformation (G = 1) would only give the term proportional 
to dV/dx. This term would cause difficult problems if the potential were singular. With the 
mixed gauge transformation, the G can be chosen so that GdV/dx -+ 0 at any singularity. 
It is somewhat tedious to evaluate the next higher term. We have evaluated this term 
explicitly only for the length-to-velocity mixed gauge transformation. When we use the 
R-matrix technique to solve for the wavefunction, we use an approximation 

(yj W ,  [i@, ~111yj . j  = (yjIi@(pt.x. t)[i@, HI - [i@, HMP, x .  t)tuj.) 
x{(~j ti@(p+, x ,  ~ ) I Y ~ * ) ( Y ~ ' , I I ~ @ ,  H I I Y ~ , )  
i" 
- (Yjt[i@, H I l ~ y ) ( ~ j * l i @ ( p , x ,  t ) l~ j . ) l  (10) 

where p t  means ia/ax acting to the left. (The fust equivalence only holds when [i@, HI 
is zero at the R-matrix boundary; the G can be chosen so that G' is arhitrarily small at 
the boundary but V' may not be small. When V' # 0 at the boundary, a surface term 
needs to be included in the first line of (lo).) By writing this matrix element as a matrix 
multiplication, we are saved the problem of explicitly evaluating many new integrals. We 
have found that this approximation gives good results for the one-dimensional problem that 
we have examined. Repeating the matrix multiplication to get higher-order terms gives 
inferior results. We did not obtain good results when p t  was replaced by p because the 
matrix multiplication did not converge rapidly with basis size; the matrix elements do not 
converge quickly when the momentum operator acts on the basis function that is being 
summed. All of these statements are based on an examination of the independence of 
physical parameters as the phase operator was changed. 

An examination of the terms in (8x10) would show that the interaction between 
the different Floquet blocks converges asymptotically to zero like dV/dx. For the three- 
dimensional hydrogen atom, this derivative of the potential would go to zero like l /rz.  The 
fast convergence of the coupling to zero allows the calculation of scattering-type functions 
without any additional transformations. We construct the wavefunction using a Floquet 
expansion 

@Ej(x, t )  = Cexp(--iwnj.t)*Ej..j(x) (11) 

*Ej.,j(~) = ( f , f (x)~rj  - fi:(x)Sfj)i/.Jz 1x1 > xo (12) 

i' 
where the *~y.j(x) have the asymptotic form 
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and the $ are the solution of the unperturbed asymptotic equations at energy ET = E+n,,w. 
For short-range potentials 

where kr = &; when the potential is asym totically Coulombic, $ = cy l ky (Seaton 
1983) or equivalently f,* = (-gy & i o ) /  2 2 (Fano and Rau 1986) where f j ( r )  ( g , ( r ) )  
is the regular (irregular), energy-normalized Coulomb function of energy cj and angular 
momentum t j .  

We solve for the + E j r , j  using the variational R-matrix method (Greene 1985, Schneider 
1975, Robicheaux 1991); we use the form of Schneider and Robicheaux for the calculations. 
In this method we expand the Hamiltonian in a basis, Y&, t) = yn,(x)exp(-in,wt), that 
does not all have the same logarithmic derivative on the boundary. For all of our calculations 
we used two functions that had zero derivative on the boundary and the rest that went to 
zero on the boundary. In this basis, the R-matrix is 

Rpi = -1 zYj’a’Yjol(E - - L)-’Iac+ (14) 
where y,,, = G,,,,y,,(xo) and L is the Bloch operator. We choose G so the equations are 
transformed to the acceleration gauge at x = XO; therefore, we do not need any further 
transformations outside of the R-matrix box. 

We obtained the decay rate and branching ratios for the ground state by treating it as 
a resonance in a multichannel continuum. We utilized the delay-time formalism of Smith 
(1960) which uses the S-matrix at real energies to get the width and branching ratios of 
a resonance; Sadeghpour et al (1992) used this method to describe the resonant doubly 
excited states of H-. In this formalism 

is the Hermitian delay-time matrix. The largest eigenvalue of Q near a resonance has the 
Lorentzian fomi 

q(E)  = r / [ ( E  - Er)’ + (r/2)’1 (16) 
where r is the full width of the resonance. To obtain F and E,. we calculated the largest 
eigenvalue of Q at hundreds of energies and fit it to the form of (16). The branching ratio 
of the resonance to the channel j is given by the squared magnitude of the j t h  element of 
the eigenvector of Q for the largest eigenvalue at energy E?. 

As a test calculation, we found the decay rate of the ground state of the potential 
V ( x )  = -exp(-x*) which has a ground-state energy of -0.4774 au. We converted the 
range -w c x < 03 to 0 < x < w by forcing the parity of the n Floquet block to 
be (-1)”. Calculations were performed for many different choices of w and Ao. As 
a demonstration of the convergence properties of the method, we performed extensive 
calculations with the parameters w = 0.2 au and A0 = 63.3 au. With this choice of 
parameters, three photons are needed to detach the electron. In the acceleration gauge, 
the amplitude of the oscillations of the potential is Ao/cw z= 2.3 au. We chose a mixing 
function G(x) = (1 -exp(-p(x -xJ4))O(x - x c )  where x, = 2 au and 0 is the Heaviside 
step function. This mixing function is smooth at the accuracy level of our calculations. The 
parameter p is chosen so that 1 - C ( x 0 )  i lo-’ au where xo is the size of the R-matrix 
volume. In tables 1 and 2, we summarize the convergence of our calculation with the size of 
basis set and choices of parameters. For these tables, nlo ( n h i )  is the lowest (highest) Floquet 
block of basis functions in the calculation, N is the number of basis for each Floquet block, 
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Table 1. Convergence with Floquet blocks. 

nio nhi E ,  (au) r (au) 83 E4 B6 BI 

0 3 -0.5161 299(-4) 1.00 0.00 0.00 0.00 0.00 
0 

-1 
- I  
-2 
-2 
-3 
-2 
-2 
-2 

4 -0.5156 
4 -0.53511 
5 -0.53512 
5 -0.536504 
6 -0.536506 
6 -0.536583 
7 -0.536506 
8 -0.536506 
9 -0.536506 

1.64(-4) 
9.97(-4) 
1.04(-3) 
1.127(-3) 
1.121(-3) 
1.126(-3) 
1.121(-3) 
1.121(-3) 
1.121(-3) 

0.31 
0.911 
0.836 
0.848 
0.850 
0.850 
0.850 
0.850 
0.850 

0.69 
0.089 
0.154 
0.143 
0.122 
0.121 
0.108 
0.107 
0.107 

0.00 
0.00 
0.010 
0.009 
0.028 
0.028 
0.040 
0.037 
0.036 

0.00 
0.00 
0.00 
0.00 
0.001 
0.001 
0.002 
0.007 
0.007 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.000 
0.000 
0.OOO 

Table 2. Convergence with number of basis per channel. 

N E, (au) r (au) 83 84 8 5  BS 57 

24 -0.536388 1.112(-3) 0.850 0.108 0.040 0.002 0.000 
26 -0.536453 1.117(-3) 0.850 0,108 0.040 0.002 0.000 
28 -0.536488 1.120(-3) 0.850 0,108 0.040 0.002 0.000 
30 -0.536506 1.121(-3) 0.850 0.108 0.040 0.002 0.000 

E,  is the energy and I? is the total width of the resonance, and Bn is the branching ratio for n 
photon detachment. The decay rate from a time-dependent calculation is 1.240.1 x lo-’ au. 
The resonance energy has a substantial shift from the zero-field value of -0.4774 au. 

In table 1 we explore the convergence properties as a function of the number of Floquet 
blocks included in the calculation. For all of the calculations in this table, j3 = 3 x lo-’ au, 
xo = 30 au, and N = 30. From this table, it is clear that the position and width of 
the resonance are converged at the 1% level using nl, = -2 and nhi = 5. Changing 
nh, to 6 converges the branching ratios at the 1% level which is extremely fast since 
the n = 6 channel mixes in at the 1% level. At nhi = 7, all of the parameters are 
converged at the 0.5% level. This behaviour is in contrast to calculations that matched 
different gauge wavefunctions at fixed distances (Grant and Greene 1994). In this matching 
calculation it was found that (for oscillations Ao/co c 1 au) the number of Floquet blocks 
needed for convergence was 2-5 times the number of FIoquet channels that were physically 
coupled. This slower convergence may be related to the abrupt matching; it is well 
known that abruptly changing functions are more difficult to represent with a basis than 
smoothly evolving functions. The Floquet expansion is a particular representation of the 
wavefunction which converges more or less quickly depending on the physical situation 
that is being described. In atomic R-matrix calculations, the limiting factor is the number 
of channelsmoquet blocks that can be included in a calculation. The fast convergence with 
Floquet blocks compensates for the additional work needed to calculate the Hamiltonian 
matrix elements. 

In table 2, we have fixed nlo = -2 and nhi = I to study the convergence with the 
number of basis functions per channel. The branching ratios are converged at the 0.01% 
level and the total decay rate at the I %  level with 24 basis functions. It appears that for 
the calculations of Burke er al 50 basis functions per channel were needed for convergence 
at this level for similar frequency and field strengths. 

As a final test of this method we increased the R-matrix box size to 34 au with 30 basis 
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Table 3. Convergence of the rimedependem decay rate with grid spacing for rhe four different 
gauges. 

Ax Length Velocity Mixed Acceleration 

0.1 2.18 2.18 2.79 2.19 
0.2 2.74 2.74 2.71 2.81 
0.4 2.58 2.58 2.12 2.90 
0.6 2.34 2.35 2.66 2.91 
0.8 2.16 2.18 2.73 264 

functions per channel. We used nc, = -2 and n,,i = 7. We found that changing p f” 
6 x au changed the resonance width by 0.1% and did not change the 
resonance position. The branching ratios to the three- and four-photon channels changed 
by 1%. For exact calculations, none of the physical parameters should change with p.  

The majority of this section has focused on Floquet applications with a mixed gauge 
treatment of the laser field. We have chosen this emphasis because of our feeling that the 
time-independent methods have a stronger need for this gauge. However, it is not obvious 
that the standard gauges are better than a mixed gauge for timedependent calculations. To 
demonstrate the possible superiority of the mixed gauge, it is necessary to show the mixed 
gauge calculations converge faster with Ax (the spatial grid spacing) or At (the time step) 
than the standard gauges. The more complicated mixed gauge Hamiltonian will cause the 
mixed gauge codes to be slower than the codes based on the standard gauges for the same 
number of spatial and temporal points. 

To study time-dependent approaches, we used the length-to-velocity mixed gauge 
transformation in time-dependent codes 

au to 1.5 x 

W(x,t) = e+’JJ)*(x,t) (17) 
where @ ( x ,  t )  = F(x)xA( t ) / c .  The $ ( x ,  t) is a solution of 

(18) 
where we choose F ( x )  = exp(-x2/2). For the timedependent calculations, we used 
V ( x )  = -I/- for the static potential. For all of the gauges, the p’ operator is 
evaluated using a three-point differencing method and the p operator is evaluated using a 
symmetric two-point differencing method. In the mixed gauge calculation, the p (  1 - F(x)  - 
x F ‘ ( x ) ) $ ( x ,  t) term is evaluated by using a symmetric two-point differencing method for 
p ;  we do not replace this term with [i(2F’(x) -t x F ” ( x ) )  + (1  - F ( x )  - xF’(x))p]p(x,  t )  
because this replacement would cause the discretized Hamiltonian to be non-Hermitian (the 
discretized mixed gauge Hamiltonian is exactly Hermitian without the replacement). We 
have added an absorbing potential at large distances to prevent reflection from the edge of 
the spatial grid; the absorbing potential was not necessary for the calculations we report 
because we stop the calculation well before the reflected wave would reach the origin. Our 
grid extends from -60 to 60 au. The laser has a sin2(wt/20) turn-on over five laser periods. 

In table 3. we show the decay rate for the ground state for the four different gauges as 
a function of the spatial grid spacing, Ax. For this table, o = 1 au and the steady intensity 
was 1.4 x W cmd2 = 2 au. At this frequency only one photon is needed to ionize 
the ‘atom’. This table shows that the mixed and acceleration gauges have a comparable 
accuracy and both are much more accurate than the length and velocity gauges. For our 
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Figure 1. The time-dependent calculation of I($(r)l$(O))l’ for (a) length, (b) velocity, (c) 
mixed and (d )  acceleration gauges. The full c w e  is for grid spacing Ax = 0.1 au and the 
broken curve is for Ax = 0.6 au. 

choice of parameters (which were in no way optimized to give good results for the mixed 
gauge), the mixed gauge obtains the same level of accuracy as the length and velocity 
gauges with a mesh 60% larger than those gauges. In figure 1, we plot the correlation 
function, I(+(t = O)l+(t))12 for the four different gauges for Ax = 0.1 au (full curve) and 
Ax = 0.6 au (broken curve). These plots clearly show the larger error in the length and 
velocity gauge calculations. The norm of the wavefunction deviates from 1 (indicating the 
wavepacket has hit the absorbing potential) after 18 laser cycles. 

We also carried out calculations for I = 3.0 x 1014 W cm-’ and w = 0.33 au. For thii 
calculation, the length gauge needed a time step at least twice as small as the other gauges 
to get results converged at a comparable level. The acceleration gauge had dramatically 
poorer convergence with Ax compared to the other three gauges. For this calculation, the 
velocity and mixed gauge converged faster overall. For the few calculations we completed 
for intense (but not super-strong) laser fields, the mixed gauge always converged as fast 
as the fastest converging of the standard gauges. Each of the standard gauges converged 
slowly for at least one of the test calculations. 

Threedimensional calculations never use the acceleration gauge when the potential 
has a Coulombic singularity because the interaction will look like a proton swinging back 
and forth. This causes relatively large numerical errors. To date, three-dimensional time 
dependent calculations have been performed in the length or velocity gauge. Our results 
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for the one-dimensional time-dependent calculations indicate the possibility that a mixed 
gauge program may be much more computationally efficient than the length or velocity 
gauge (remember that at each time step you multiply a vector by a matrix which is an N 2  
operation where N is proportional to l/(AxAyAz)). Many three-dimensional programs 
utilize an expansion in spherical harmonics; the mixed gauge reduces the number of angular 
momenta that need to be included. 

Another possible area for improving computational speed is through greater accuracy 
in At. The number of operations goes like I/At for a fixed initial and final time. Because 
some of the behaviour of Q ( x ,  t) is analytically incorporated into the phase operator q4, it 
is probable that the @ ( x ,  t )  varies more slowly with time in the mixed gauge than in the 
length or velocity gauges. This would allow a larger At for the mixed gauge. We have 
not explored this issue in detail because there is not a large concem for increasing At in 
practical time-dependent calculations. 

4. Three-dimensional hydrogen atom 

The exceptional convergence of the mixed gauge wavefunction for the model one- 
dimensional problem demonstrates the possibilities of the mixed gauge wavefunctions. 
However, most problems of interest are three-dimensional and involve Coulomb 
singularities. In this section, we explore the application of mixed gauge wavefunctions to the 
three-dimensional hydrogen atom. This will allow an honest evaluation of the difficulties and 
promise of the mixed gauge treatment of multiphoton dynamics for Floquet wavefunctions. 

Atomic hydrogen has been studied extensively with many methods and the previous 
results provide ready benchmarks for comparison with those of the present approach. 
However, the application of the mixed gauge method to the hydrogen atom in a laser 
field is simplified because there is only one electron. The main difficulty is to express the 
matrix elements of the Hamiltonian in a simplified form that is computationally accurate 
and efficient. Since the form of the Hamiltonian is complicated by the mixed gauge, we 
chose F = 0 in the phase operator in  order to simplify the form of the matrix elements. 
For the calculations of this section, the laser field is linearly polarized in the ?-direction so 
that the magnetic quantum number is conserved during the ionization process. We choose 
the phase operator to have the form 

W ,  p )  = - [ G ( r ) p ,  + p z G ( r ) l A ~ c o s w t / 2 c ~  (19) 
where G(r)  = [l -exp[-p(r -rc)4]]@(r -rJ. With this choice of phase, the Hamiltonian 
is in the velocity gauge near the nucleus and in the acceleration gauge at large distances. 
The fi operator is expanded according to (7) and gives the first term the same as (8) except 
p is replaced by p , .  The next term consists of three commutators 

cosot[i(p,G + Gp, ) ,  VI Ao Ao [U.  HI = -- cosot[i(p,G + Gp, ) ,  $1 - - 
4cw 2cw 

. A i  
4c20 -I- sin2wr[(pzG + Gp,) ,  p , ]  

in which the first two commutators connect angular momentum states 1 to li 1 and the third 
connects 1 to 1 k 2 and 1 in an R-matrix basis. The function G is chosen so the first and 
third commutator of (20) are negligibly small at the R-matrix boundary. This is a useful 
property since the resulting Hamiltonian is then Hermitian within negligible errors. We 
utilize the R-matrix method to obtain the Roquet wavefunctions. The explicit expressions 
of the matrix elements for these operators are given in the appendix. 
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We have found that within moderate intensity, the next term in I?, [i@, [i@, HI], can 
often be neglected. When this term is small but necessary, it can be approximated by matrix 
multiplication as we did in the one-dimensional example. As in (lo), we replaced p z  by 
p i  in the first term of the matrix multiplication to avoid slow convergence with basis size. 
However, unlike the one-dimensional example with a short-range potential, a surface term 
emerges as a result of the non-vanishing of the derivative of the potential at the R-matrix 
boundary (i.e. pi -+ p!+ surface terms). This surface term, which is of the order of l / r i ,  
can be made negligibly small by choosing a relatively large ro; ro is the size of the R-matrix 
box. In case a small ro is desired, the surface term, 

where Ya(r ,  t )  = ya(r)&a,mo(6', @)exp(-in.ot) is an R-matrix basis function, should be 
included in the iq5(pt)[i@,H] matrix element. This term is non-zero only when it is 
evaluated between two open-type basis with the angular momenhun 1, = 16 or 1. = ib f 2. 

We choose the function G so that the acceleration gauge has been fully turned on at the 
R-matrix surface. The electronic potential outside of the R-matrix volume is V ( r  -or(?)), 
where the amplitude of the oscillation or@) = Aocosot/co. The deviation of this potential 
from a Coulomb potential is propotional to l/rz and the amplitude is less than 2 au 
at the intensity we examined. The R-matrix provides the multichannel analogue of the 
logarithmic derivative at the surface of the enclosed volume and includes al l  of the electron 
interactions inside of the volume. We find the asymptotic wavefunction by matching the 
linearly independent solutions of Schrodinger's equation outside the R-matrix volume. We 
chose a relatively large ro and expressed the solutions of the Schrodinger's equation as 
perturbative corrections to the Coulomb functions f and g; this includes most of the laser- 
atom interaction outside the R-matrix volume. This is analogous to a standard correction 
in the R-matrix treatment of electron-ion scattering. With ro = 31 au, the perturbative 
correction of the f and g functions outside the R-matrix boundary changes the decay rate 
and branching ratios by less than 1%. Interactions with the laser field outside of the R-matrix 
volume become more prominent if one reduces ro. 

In table 4 we test the convergence with Floquet block for the multiphoton ionization of 
the ground state of a hydrogen-atom exposed to a laser field with frequency o = 0.184 au 
and intensity 1.3 x 10l4 W cm-* (the amplitude of the oscillation Ao/cw = 1.80 au). 
The branching ratios B.! designates the probability the electron absorbs n photons into 
the angular momentum 1 channel. For this table we used au, ro = 31 au, 
and N = 30, we obtained similar convergence properties to the one-dimensional example, 
with n,, = -2 and nhi = 7 giving converged results. As in the one-dimensional model 
calculation, the convergence is very rapid with the number of Floquet blocks; convergence 

= 3 x 

Table 4. Convergence with Flcquet blocks For atomic hydrogen, w = 0.184 au. 

nro nhi Er (au) r (a) 831 833 840 842 851 853 

0 5 -0.52325 2.92(-3) 0.565 0.207 0.029 0.189 0,000 0.011 
-1 5 -0.53292 2.19(-3) 0.527 0.232 0.026 0.203 0.000 0.012 
-2 5 -0.53330 2.16(-3) 0.525 0,232 0.026 0.204 0.000 0.012 
-3 5 -0.53331 2.16(-3) 0.525 0.232 0.026 0.204 0.000 0.012 
-2 6 -0.53330 2.16(-3) 0.525 0.232 0.025 0.190 0.008 0.019 
-2 7 -0.53330 2.16(-3) 0.525 0.232 0.024 0.188 0.009 0.019 
-2 8 -0.53330 2.16(-3) 0.525 0.232 0.024 0.188 0.W9 0.019 
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Table 5. Convergence with Floquer blocks for atomic hydrogen, o = 0.65 au 

0 3 -0.316 
-1  3 -0.311 
-2 3 -0.306 
-3 3 -0.305 
-4 3 -0.305 
-3 4 -0.305 
-3 5 -0.305 
-3 6 -0.305 
-3 7 -0.305 

0.141 0.701 
0.152 0.686 
0.149 0.670 
0.149 0.666 
0.149 0.666 
0.146 0.622 
0.145 0.622 
0.145 0.627 
0.145 0.627 

0.057 
0.008 
0.009 
0.009 
0.009 
0.006 
0.006 
0.006 
0.006 

0.022 0.206 
0.035 0257 
0.040 0.266 
0.041 0.268 
0.041 0.269 
0.054 0.224 
0.072 0.192 
0.074 0.182 
0.074 0.180 

0.007 0.007 
0.008 0.007 
0.008 0.007 
0.008 0807 
0.008 0.007 
0.052 0.037 
0.039 0.046 
0.052 0.040 
0.051 0.035 

Table 6. Energies and decay rates for some selected states of atomic hydrogen, o = 0.65 au, 
intensity = 7 x lots W cm-2. 

State Noble er a1 Present 
position Decay rate position Dway me 

3s -0.053225 1 4.454(-3) -0.053 1966 45(-3) 
3d -0,0559664 9.890(-5) -0.0559664 9.83(-5) 
4s -0.0302565 1.870(-3) -0.0302491 1.88(-3) 
4d -0.0314275 5.44X-5) -0.031427 1 5.47(-5) 
5s -0.0194892 9.580(-4) -0.0194816 9.4(-4) 
5d -0.0200921 3.084(-5) -0.0200910 3.01(-5) 

is obtained when the basis contains slightly more Floquet blocks than are physically coupled 
together. We calculated the same rates for nr0 = -2, nhi = 7 and t < 5. The position 
and width of the resonance did not change at the 1% level. The only branching ratio that 
changed by more than 1% was B33 which decreased from 0.23 to 0.20 and B ~ J  which 
increased from 0 (because the 4, 4 channel was not included in the calculation) to 0.03. 
The speed of the convergence with t may be somewhat surprising for these high intensities. 
We stress that the fast convergence arises from explicit and analytic inclusion of some of 
the effects of the laser field into the mixed gauge transformation. 

In table 5 we test the convergence with Floquet blocks for the multiphoton ionization 
of the ground state of a hydrogen atom exposed to a laser field with frequency w = 0.65 au 
and intensity 2.0 x 10l6 W cm-’ (Ao/cw = 1.79 au); we used the same parameters as those 
in table 4 for the basis functions. We have seen that. in both cases, one can obtain decent 
results using ten Floquet block, each block contains two angular momentum states. 

We have performed several calculations and compared the results with previous methods 
using the L2 non-Hermitian Floquet formulation (Chu et a1 1985) and the complex energy 
R-matrix Floquet method (Don er al 1993, Noble et a1 1993). In table 6 we give some 
selected comparisons with the same truncated n and I as previous calculations. In the 
delay-time method for extracting resonance positions and widths, the decay rate is obtained 
by measuring the full width of q ( E )  in (16). Quite often, especially in the multiphoton 
ionization of hydrogen, two or more resonances are close to each other so that the shape of 
the resonances deviates from the Lorentzian form. The numerical extraction of the width 
becomes somewhat ambiguous if the resonances are not well separated. An example is 
the 3d resonance located on the left wing of the 3s resonance and almost right at its half 
maximum. In ambiguous cases we have estimated the width by graphically measuring the 
full width at half maximum. 
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Most of the previous multiphoton ionization calculations of atomic hydrogen have 
focused on energy shifts and total decay rates of specific states. The branching ratios 
were rarely reported, probably due to the difficulty in obtaining these parameters. Using 
the delay-time formulation, the information of the branching ratios can be easily obtained. 
The most extensive report on the branching ratios of hydrogen atom was given by Dorr 
e? a1 (1993). We explored extensively the ground state of the hydrogen atom in a laser 
field with frequency w = 0.65 au and w = 0.184 au, and compared the decay rate and 
branching ratios with figures given by Don et a1 (1993). In the two cases they report, we 
have agreement with their decay rates within 4% up to intensities of 2 x 10l6 W cm-’ for 
w = 0.65 au, and up to 1.3 x lor4 W cm-’ for w = 0.184 au. Our branching ratios also 
follow their calculation within 2% except at intensities above lOI4 W cm-2 for w = 0.184 
au (Ao/cw = 1.58 au). For this frequency, their E42 passes its maximum around 1.1 x 1014 
W cm-2 (Ao/co = 1.69 au) while ours keeps increasing. Don et a! (1993) also provided 
branchmgratios using a Sturmian Floquet approach at intensity 1014 W cm-’, The Sturmian 
Floquet approach gave E42 N 0.15 while the R-matrix result by Dorr er a1 was 0.13. We 
have obtained 842 = 0.148 for this frequency and intensity which is very close to the 
Sturmian Floquet calculation. 

5. Discussioo 

The mixed gauge treatment of non-perturbative laser-atom interactions is based on the 
obvious fact that there are an infinite number of possible gauges and the gauge can be 
chosen in order to analytically incorporate the correct asymptotic nature of the interaction. 
With the power of modem computers, it is not necessary to remain wedded to the three 
standard gauges. That we can choose a gauge that simplifies the numerical description of 
the wavefunction is proved by the fast convergence of the numerical wavefunction with the 
number of Floquet blocks. Furthermore, the simplicity of the idea should allow it to be 
easily incorporated into existing computer programs. An interesting prospect involves the 
fast convergence: is the convergence fast enough to allow accurate calculations for laser 
interactions with multielectron atoms? 

We do not 
know whether it is desirable to use mixed gauges in time-dependent calculations in three 
dimensions. Our results on a one-dimensional model problem indicates there are positive 
aspects of mixed gauge time-dependent wavefunctions. These calculations demonstrate the 
fast convergence of the mixed gauge wavefunction with Ax (the spatial grid spacing). The 
more complicated Hamiltonian that is a signature of the mixed gauge will slow the time- 
dependent codes for a fixed Ax but the mixed gauge codes are often much faster than the 
length and ty codes for a fixed level of accuracy. The general phase operator describes a 
larger part of the wavefunction analytically in the mixed gauge. The numerical part of the 
wavefunction will then be much simpler (as it is in the Floquet calculations), thus reducing 
the number of spatial mesh points needed for the wavefunction (which increases the speed 
of the calculation). It is also possible that a mixed gauge would improve the stability of 
the time-dependent calculations or possibly allow larger time steps (the small number of 
Floquet blocks in the time-independent calculations indicates a slower time evolution of 
the numerical wavefunction for the mixed gauge). Even if the codes are slower with a 
mixed gauge, the resulting wavefunctions may be easier to interpret which could aid in the 
identification of decay mechanisms. 

Our calculation of the mixed gauge Floquet wavefunction is firmly based on a scattering 
formalism. This formalism allows a simpler description of electron-ion or electron-atom 

The mixed gauge idea can be utilized in time-dependent calculations. 
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scattering than of the decay of bound states in a laser field. There are several interesting 
aspects of the exchange of photons with the laser field during the collision of an electron 
with an atom or ion. For example, is the exchange of photons enhanced as a function of 
the incident electron direction? Preliminary calculations show a strong dependence of the 
total scattering cross section with emission or absorption of n photons as a function of the 
incident angle for electron-At scattering in the field of a CO1 laser. What are the systematic 
properties for electrons scattering from a proton and laser field? What are the systematic 
propexties for electrons scattering from atoms and laser field? 

A final possible use for the mixed gauge is for improved theoretical treatment of 
asymptotic field strengths. In the approximations developed by Keldysh (1965) and Reiss 
(1980), rates are obtained by projecting the acceleration gauge wavefunction with zero 
potential onto the initial function. It is possible that more accurate first-order terms may 
be obtained by utilizing a mixed gauge transformation for the zeroth-order wavefunctions. 
This possibility has not been explored. 

We feel that the mixed gauge approach may be very useful in the theoretical treatment 
of laser atom interactions and merits more study. Most of the questions and possibilities 
raised in this paper will be addressed in the future. 
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Appendix 

Here we give some matrix elements of the mixed gauge Hamiltonian for a three-dimensional 
application. Let Y a ( r ,  ?) = y&-)Y~a,ma(O, 4) exp(-in&) be the basis function, we then 
obtain 

( Y d r .  ?)lz sinwt [PJU - G) + (1 - GIP,] Iyb(r, 0)  Ao . 
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x GYaYblro + G (YaYb - YAYb) + ( lb  - b ) ( l b  + 10 -I- l ) -YoYb dr . 
r 

(-43 
[ S (  ) I  
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