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We show how the Kohn variational principle for the K matrix is free from anomalies when
complex short-range basis functions are used. Using only the real part of the K, matrix
increases the accuracy of the calculation and guarantees the unitarity of the resulting S matrix.

INTRODUCTION

The Kohn variational principle' (KVP) is a potentially
useful method for calculating a K matrix which can then be
used to determine a host of scattering parameters (e.g., S
matrix, transition probabilities). Kohn’s paper derived vari-
ational principals for both the .S matrix (which we will call
the S-KVP) and the K matrix (which we will call the K-
KVP). The KVP for the K matrix (K-KVP) has not been
widely used due to the presence of the Kohn anomalies.!*’»2
These are singularities of the variational K matrix (X,)
which occur at energies not associated with resonances in the
problem. The position of these anomalies cannot be predict-
ed beforehand. In order to ascertain the reality of a reso-
nance, at least two calculations would have to be carried out.
Many researchers since the pioneering work of Schwartz
have developed methods for eliminating or reducing the ef-
fect of the Kohn anomalies'® but these introduce compli-
cations which limit the practicality of the K-KVP. Recently,
several workers® have shown that by using a variational prin-
ciple for the S matrix (S-KVP), instead of the K matrix, the
anomalies can be avoided without any further manipula-
tions. It is the purpose of this communication to show how
the central idea of the S-KVP can also be used to eliminate
the Kohn anomalies in the K-KVP. The K-KVP in this form
has a few advantages which may make it more useful than
the S matrix version.

The Kohn variational principle for the K matrix is well
known and derived in many places.' For simplicity sake we
will start with a one-channel problem. The variational prin-
ciple can be written as

KU=ext[K,—2fw¢,(H—E)¢,dx, (1)
(4]

where K, is the trial value of the K matrix and ¢, is the trial
wave function

¥, ~v™'?[sin(kx) + K, cos(kx)], x— oo (2)

with v the asymptotic velocity and k the asymptotic wave
number of the particle. Atomic units are used throughout
this paper. The trial wave function is written as

¥, = uy(x) + i c;u;(x) (3)

i=1
with uy=v""2sin(kx), u, = v~ "*f (x)cos(kx) [[f(0)
=0, f(x) =1as x— « and u;_, short-range basis func-
tions which are zero at the origin and at infinity. The usual
variational condition applies, i.e.,

dK,/dc;, = 0. 4)
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This yields a set of linear equations for the ¢; which can be
inverted to yield

K, = —Z[Moo— 2 Mm(ﬂ“»jMp} (5)

ij=1
where

M, =f u, (H— E)u, dx,
0

Mklzf u (H— E)u,dx, k,il#O0. (6)
o

The matrix M is (n + 1) X (n + 1); M is an n X n matrix.
The basis functions are subject only to the very loose con-
straints following Eq. (3). Since the K matrix is real, the
usual practice is to choose real basis functions suited to a
particular problem. The M matrix is then real symmetric. Its
inverse can diverge as the energy is varied. The Kohn anom-
alies are the divergences which reflect the choice of basis
functions and not the real resonances. Increasing the num-
ber of basis functions usually decreases the width of the
anomalies but at the cost of increasing their number.'®*
Notice, the anomalies are inherent in the procedure and are
not due to calculational errors (e.g., the calculation of the
overlap integrals).

The central idea in Ref. 3 was to use a variational princi-
ple for the S matrix (S-KVP) instead of the K matrix. This
variational principle is similar to Eq. (1) and can be written
as

S, = ext[S, +ifw o.(H — Eo, dx], (1)
0

where ¥, is a trial wave function regular at the origin and
with the asymptotic form
¥, ~ — v '"?[exp( — ikx) + S, exp(ikx)] 29

with §, the trial § matrix. The trial wave function can be
written as

Y= —up(x) + Z c;u; (x) (3

i=1

with uy = v~ "2f (x)exp( — ikx), u, = v~ "/2f (x)exp(ikx)
[f(0) =0and f(x)=1as x> ] and u,_, short-range
basis functions as before. Applying the variational condition
gives

S, =i[N00— D N,O(N—'),.,Np], (5"

=1

where
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Nkl:J‘ uk(H—E)uldx,
(o}
(6"

Ny= J u,(H— E)u, dx, k,1I+#0.
(1]

The wave functions in Egs. (1') and (6') are not complex
conjugated. The matrices N,N are similar to M,M above.
Since N is complex symmetric (not Hermitian) there are no
real values of E for which itsinverse is singular, i.e., no Kohn
anomalies. (The lesson to be learned here is that by using
complex basis functions the Kohn anomalies are eliminated
in a straightforward manner. We will show how this idea can
also be applied to the KVP for the K matrix.) S, is no longer
unitary, but, as more basis functions are used and S, con-
vergesto S, , .S, also approaches unitarity. The job of invert-
ing the complex matrix N also becomes a problem as the
number of channels and basis functions increase. This can be
circumvented by using the standard Léwden-Feshbach par-
titioning identity in which only real matrices are inverted.
(Reference 3 shows how this is done.)

The Kohn anomalies are present even in the simplest
scattering problems. To demonstrate this we will calculate
K, for the square well potential (in atomic units)

V(x) =, x£0,
= —2, O<x«l,
=0, 1l<x.

The wave number k = 0.8 a.u. and the mass m = 1 a.u. The
following basis functions were used in the calculation

uy = sin(kx),

u; = [1 —exp( — Bx)]cos(kx),

u, =x'"'exp( — Bx), 2<i<5.

To bring out the Kohn anomalies we will vary the parameter
B in the basis functions as was done in Ref. 4 instead of the
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FIG. 1. The real part of (K,/K,,) — 1 vs B for the square well potential
described in the text. The asterisks are the results when using purely real
short-range basis functions; u, = x'~ ' exp( — Bx), 2<i<5. The triangles
are the results when u; is changed to us = x* exp[ — x(B + 0.1))].

energy, k?/2. The results are plotted in Fig. 1 as
d = (K,/K,) — 1 (thesuperscript r denotes only real basis
functions used) as the asterisks vs B. Notice the singularities
near B = 0.8 and 1.6.

These anomalies are inherent in the variational proce-
dure. However, we have not yet utilized the full flexibility of
the KVP for the K matrix. Namely, prior users have restrict-
ed themselves to real basis functions. This failure seems to
have stemmed from matching the basis functions to the X
matrix which is real. But nowhere in the derivation is a con-
dition that the basis functions must be real. If complex basis
functions are used, the matrix M becomes complex symmet-
ric (asin the KVP for the S matrix) and the Kohn anomalies
can be pushed off the real line into the complex plane. We
have found that a single complex basis function per channel
serves to remove the anomalies from the real line. The vari-
ational K matrix will be complex symmetric (K ¢) with the
imaginary part of X ¢ automatically small compared to its
real part. Since K,, is real symmetric we can eliminate part
of the error in K { simply by eliminating its imaginary part.
In using only the real part of K ; we also regain the unitarity
of the § matrix which would be lost if we were to use all of
K ;. However, Re(K ¢ ) is not variationally stationary. Using
only Re(K {) to calculate the S matrix is simply an intuitive
idea which increased the accuracy of all of the calculations
described in this paper; its implications have not been stud-
ied. In fact, Im (K § ) might contain useful information (e.g.,
on the size of the errors in the calculation), but we do not
know how to extract this information (if it exists).

The triangles in Fig. 1 are the results obtained for the
square well problem above but with one complex basis func-
tion. Specifically, u5 is changed to us5 = x*exp[ — x(B

+ 0.15)]. The triangles are d = Re[ (K /K., ) — 1] (the
superscript ¢ denotes the complex basis function used). No-
tice how the values of d vary smoothly for all B and are
nearly indistinguishable from the results of the first calcula-
tion away from the singularities. This suggests that by using
complex basis functions we improve the accuracy of the cal-
culation only near the anomalies. Note, the functions in Egs.
(1) and (6) are not complex conjugated. To make certain
these results were due to the complex nature of u5 and not to
the change of basis functions, we made another calculation
using only real functions. We set u5 = x* exp( — Bx)cos(x/
10) and u,, = x* exp( — Bx)sin(x/10). The results are plot-
ted as the circles in Fig. 2. There are now three anomalies,
which shows that the lack of singularities in the second cal-
culation was due to the complex nature of u,.

Both the real and imaginary components of the complex
basis function must be linearly independent of all the other
basis functions and of each other. If this condition is not
satisfied, the K¢ matrix will have anomalous singularities
similar to those when using purely real basis functions. For
example, we carried out a calculation in which, instead of us,
we changed u, to u, = x exp[ — x(B + 0.1)]; the rest of
the basis functions were the same as for the first calculation.
The real part of K; was nearly the same as K | of the first
calculation because u, is very nearly a linear superposition of
the other short-range basis functions. The poles of M~" are
too close to the real axis to remove the anomalies. Also, the
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FIG. 2. Same as Fig. 1. The triangles are the same as in Fig. 1. The circles are
the results when us is changed to us = x* exp( — Bx)cos(x/10) and
u, = x* exp( — Bx)sin(x/10).

real and imaginary part of the complex basis function should
be nearly the same order of magnitude. If the difference
between the real and imaginary parts of the complex overlap
integrals is too large, the poles of M ~' will again be too close
to the real axis to remove the anomalies. For example, using
the complex basis function # = f (x) + i[g(x)/100] where
(f|f)={(glg) would not remove the anomalies.

The similarities between the complex KVP for the K
matrix (CK-KVP) and the KVP for the S matrix (S-KVP)
include (a) rapidity of convergence to the exact value with
increasing number of basis functions. (b) The elimination of
Kohn anomalies. (c) The inversion of complex matrices.
The CK-KVP has two advantages: (1) part of the error in
K¢ can be analytically eliminated simply by using only its
real part. This insures the unitarity of the S matrix which is
not the case for the S-KVP. (2) Only one wave function per
channel need be complex which means fewer complex ma-
trix elements. The S-K VP has the advantage that the poles of
S, are automatically pushed off the real line, while in the CK-
KVP this is accomplished only by a careful choice of basis
functions.

The similarities between the KVP for the K matrix using
complex basis functions (CK-KVP) and the KVP for the §
matrix (i.e., using complex boundary conditions) facilitate
the transfer of the technology developed by Miller® to the
CK-KVP (e.g., inverting sparsely complex matrices, calcu-
lating exchange integrals). This is especially useful for mul-
tichannel problems. The relevant CK-KVP equations for
multichannel problems are the same as for the K-KVP (we
have not changed the KVP for the K matrix at all, only the
assumptions behind its application) so they will not be pre-
sented here. We tested the multichannel CK-KVP on the
Lester—Bernstein model of an atom-rigid rotor collision.’
The parameters in Lill, Parker, and Light were used; the K,
matrix was converted into transition probabilities and com-
pared to the “exact” results in their Table II. One complex
basis function in each of the nine channels eliminated the
Kohn anomalies. Since the recent papers by Miller and co-
workers contain multichannel examples and the technology
to implement the multichannel CK-KVP, we direct the read-
er there for details.

In conclusion, the KVP for the K matrix (K-KVP) does
not need modification to eliminate the Kohn anomalies; us-
ing one complex basis function does the trick. The simplicity
of the K-KVP is not lost, and no new technology needs to be
developed to implement this procedure, which has the same
convergence properties as the KVP for the § matrix and
(away from the Kohn anomalies) as the K-K VP and, hence,
similar strengths and weaknesses.
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