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One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge–

parity–time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield

achieved in recent experiments must be significantly improved before this can be realized.

Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested

Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the

antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is

developed to simulate antiproton and positron dynamics during the mixing process. The simulation is

benchmarked against other numerical and analytic models, as well as experimental measurements.

The autoresonant injection scheme and an alternative scheme are compared numerically over a range

of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and

the latter scheme is seen to offer significant improvement in trapping yield as the number of available

antiprotons increases. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801067]

I. INTRODUCTION

The antihydrogen ( �H) atom is the only neutral antimatter

system that has been synthesized,1,2 trapped,3,4 and held for

long periods of time.5 The goal of these developments is to

establish the methods and physical apparatus needed for the

precision measurement of the physical properties of antihy-

drogen, which may shed light on the baryon asymmetry of

our universe, one of the great unresolved problems of

physics. The validity of charge–parity–time (CPT) symmetry

can also be tested by comparing hydrogen and antihydrogen

spectrums. The ALPHA collaboration’s recent observation

of a resonant interaction of antihydrogen atoms with micro-

wave6 served as a proof of concept for measuring the physi-

cal properties of trapped antihydrogen, but the precision

achieved (Oð10�3Þ) is hampered by the low number of

trapped antihydrogen atoms (�1) per attempt and cannot yet

be compared to that of hydrogen spectroscopy.7

To undertake measurements on antihydrogen atoms

with enough precision to yield insight into CPT symmetry

(e.g., laser and microwave spectroscopy, charge neutrality,

and gravity measurement), a much higher trapping rate is

essential to improve statistics, overcome systematics and
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backgrounds, and ensure stability by reducing the number of

runs required to accumulate data. Some experimental techni-

ques to improve precision and stability, like laser cooling

and optical confinement, also require a much greater number

of trapped antihydrogen. It is, therefore, necessary to under-

stand the possibilities and limits of antihydrogen synthesis

schemes in order to select the best strategy and maximize the

number of trappable antihydrogen atoms.

The core of the ALPHA apparatus consists of a stack of

cylindrical electrodes placed in the bore of a superconducting

solenoidal magnet, forming a highly configurable

Penning–Malmberg trap8 for manipulating electrons ðe�Þ,
positrons ðeþÞ, and antiprotons (�p). The 5.3 MeV antiproton

bunch delivered by the Antiproton Decelerator (AD) at CERN

is passed through a degrading foil and subject to a series of

cooling manipulations which reduce its energy by 8 orders of

magnitude to �250 K. Concurrently, positrons are delivered

by a Surko-type accumulator9 from the other end of the elec-

trode stack and cooled. Both species are subject to further

manipulations to tailor their sizes and numbers. The two spe-

cies are then transferred to the central region of the electrode

stack and stored adjacent to each other in a nested well. A

magnetic minimum trap superimposed on the center of the

electrode stack is then energized before the antiprotons are

excited from their well such that their orbits cross into the ad-

jacent well occupied by the positrons. Antihydrogen atoms are

assumed to form through three-body recombination10 between

the positrons and antiprotons, and ground state antihydrogen

atoms with a kinetic energy (KE) less than �0:54 K are con-

fined by their magnetic moment. A detailed description of the

experiment is given by Andresen et al.11

In our recent studies,5,6 only �1 of the �10 000 synthe-

sized antihydrogen atoms remains in the neutral trap in each

15 min experimental run, with the rest escaping and annihi-

lating on the physical wall after formation. Useful physics

can be obtained from such a low trapping rate because of the

hour-long antiproton and positron lifetime achieved in the

apparatus, and because the silicon vertex detector provides

spatially and temporally resolved antihydrogen detection

down to a single-atom sensitivity.12 Nonetheless, achieving

the precision necessary to resolve CPT symmetry or the

bayron asymmetry problem requires increased trapping rate

and a colder antihydrogen atom distribution.

Whether an antihydrogen atom can be magnetically

trapped depends on its KE and its spin state. The KE of the

antihydrogen atoms is almost exclusively determined by that

of the antiprotons immediately before recombination (since

the positrons are much lighter). The number of antihydrogen

atoms trapped thus depends on the energy at which the anti-

protons are injected into the positron plasma, as well as a

number of factors:

1. The injected antiprotons equilibrate with the positrons

through Coulomb collisions.

2. The positrons, whose velocity distribution is perturbed by

the injected antiprotons, re-equilibrate with the back-

ground radiation.

3. The antiprotons recombine with positrons in a three-body

recombination process, which cross-section is a function

of their relative velocity. At the moment of recombina-

tion, the KE of the antiprotons is “frozen” into that of the

antihydrogen atoms.

4. The antihydrogen atoms formed are initially in a high

quantum state, making them easier to confine, since they

are more likely to possess a higher magnetic moment. The

anti-atoms subsequently reach lower quantum states

through radiative cascade, or become field-ionized in the

process.

Antiprotons initially sit in a electrostatic well adjacent

to the positrons and are injected through an excitation of

their axial oscillation such that their orbits cross into the

positron plasma. The optimal excitation should allow the

majority of the antiprotons to gain just enough energy to

cross into the positron plasma, ensuring that the antiprotons

start their equilibration with the positrons at the minimum

KE. This was achieved in the recent ALPHA studies3,6 by

autoresonantly exciting the axial oscillation of the antiproton

bunch. A weak, frequency-chirped, oscillating signal is gen-

erated by an arbitrary waveform generator and fed through a

high-pass filter to one of the electrodes near the antiproton

bunch (which also has a non-zero DC background forming

part of the nested well; see Fig. 1), creating an additional

oscillating force across the antiproton bunch. The antiprotons

automatically become phase-locked to the perturbation under

specific conditions and oscillate with increasing amplitude.

Phase lock between the antiprotons and the perturbation is

ultimately lost when injection occurs, and the mean

FIG. 1. Potentials and geometry for measuring the AR excitation of an antipro-

ton bunch. (a) The physical setup, with the electrode marked pink connected to

the AR signal. (b) The external potential created by the electrodes at r ¼ 0. (c)

A close-up of b, emphasizing the effect of various antiproton space charges.

(d) The perturbation created at r ¼ 0 when 1 V is applied to the AR electrode.

The potentials used in the PPM Vlasov model are deduced by solving the 2D

Poisson equation with physically accurate boundary conditions. Those in the

spectral Vlasov solver are analytic fits up to z6. The external potential /ext in

the analytic model fits up to z4, and the perturbation /AR to z1.
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antiproton energy stops increasing. This self-arresting nature

of autoresonant (AR) excitation means it is robust against

shot-to-shot variation in antiproton and positron numbers.

Without this mechanism, it is likely that the fluctuations

would misalign the potential between antiprotons and posi-

trons during injection by several percent. Given that the

nested well potential is �5 V, and the potential created by

the positron space charge is �2 V, a 5% misalignment gives

the antiprotons a kick of O(1000 K), which would almost

certainly eliminate any chance of producing antihydrogen

atoms trappable in the 0.54 K-deep neutral trap.

This paper presents the first detailed study of the injec-

tion process by simulating the antiproton and positron dy-

namics during manipulations of the nested Penning-

Malmberg trap. In Sec. III, a numerical model is developed,

in which the antiproton bunch is modeled dynamically

through the Vlasov–Poisson equation, and the positron

plasma quasi-statically through the Poisson–Boltzmann

equation. The model is benchmarked against other numerical

and analytic models in Sec. IV and compared with experi-

mental measurements in Sec. V. The effectiveness of the AR

injection technique is studied in Sec. VI across a range of

antiproton parameters that can be realized in current and

upcoming antihydrogen experiments, and a novel technique

is proposed in Sec. VII, which may offer significant

improvement to antihydrogen yield when an intense cold

antiproton bunch is used.

II. BASIC THEORY OF AUTORESONANT EXCITATION

AR excitation has been applied to, and observed in, a

wide variety of systems.13 The principle of AR excitation is

most transparent in the case of a single particle in an anhar-

monic well. AR excitation in this case only works when

there is a monotonic relation between the amplitude and fre-

quency of an oscillator, and for specificity it is assumed to be

monotonically decreasing. A fixed frequency perturbation at

linear resonance (x0) results in a limited excitation since, as

the particle is excited, its oscillation frequency changes with

amplitude and consequently loses phase lock with the drive.

An AR perturbation instead starts at a frequency above x0

and is chirped towards a lower frequency. As the frequency

passes through x0, the particle becomes phase-locked to the

perturbation, provided certain conditions are satisfied. The

amplitude of the oscillator motion changes such that its fre-

quency automatically matches that of the perturbation.

Fajans and Friedland14 gave an analytic treatment of the AR

excitation process for an oscillator with an equation of

motion of

€z þ x2
0 1� 4

3
bz2

� �
z ¼ �cos

�
hDðtÞ

�
¼ �Re

�
eihDðtÞ

�
; (1)

and derived the conditions that must be met in order for

phase-locking to occur. Here, � denotes the drive amplitude,

hDðtÞ ¼ x0t� at2=2 the drive phase angle, �a the rate of

change of the drive frequency, or chirp rate, and b the nonli-

nearity of the oscillator. The motion starts at a large negative

t with z ¼ _z ¼ 0, and the perturbation passes through the

linear frequency at t ¼ 0. The derivation starts by separating

the fast and slow motion of the oscillator:

zðtÞ ¼ Re
�

aðtÞeihPðtÞ
�
; (2)

where aðtÞ is the slowly varying time-dependent oscillator

amplitude and hPðtÞ is the phase. The amplitude aðtÞ and

phase difference dðtÞ � hP � hD vary on a timescale

� 1=x0.

For t near zero, and ignoring higher harmonics, substi-

tuting Eq. (2) into Eq. (1) gives

_I ¼ � �ffiffiffi
2
p

x0

ffiffi
I
p

sinðdÞ; (3)

_d ¼ at� x0bI � �

2
ffiffiffi
2
p

x0

1ffiffi
I
p cosðdÞ; (4)

where IðtÞ � a2ðtÞ=2. By expanding dðtÞ around p, the

locked, stable phase, one can show14 that for phase-locking

to occur,

� > �cr � 2
ffiffiffi
2
p ffiffiffiffiffiffi

x0

b

r
a
3

� �3=4

(5)

must be satisfied.

Generalizing the single particle dynamics above to the ex-

citation of an antiproton bunch in a nested Penning–Malmberg

trap is not trivial. Ignoring collective response, a test particle

alone will not exhibit AR excitation since the net electrostatic

well (including the antiproton self-field) does not have a mon-

otonic relationship between amplitude and frequency. Barth

et al.15 presented theoretical results showing that the self-field

causes the plasma to remain coherent during an AR perturba-

tion. The experimental observation of AR phase-locking and

excitation in the collective regime was first presented by

Andresen et al.16

III. NUMERICAL MODEL

The AR injection process is highly nonlinear and

involves the interaction of two species moving on very dif-

ferent timescales, which makes its numerical simulation

non-trivial. Some simplification is afforded by the presence

of a strong (1 T) solenoidal magnetic field. The process of in-

terest—the excitation of the axial oscillation of antiprotons

by an external perturbation—happens on the timescale of the

antiproton axial bounce period, which, according to Table I,

is much shorter than the mean free time between collisions

of antiprotons. Indeed, the antiproton mean free time is com-

parable to the duration of an entire AR chirp in a typical sim-

ulation ð�1 msÞ. The antiproton bunch can therefore be

regarded as approximately collisionless. The antiproton cy-

clotron radius is much smaller than the radial size of the

plasma, and its cyclotron motion has a much shorter period

than its axial bounce motion, meaning that the antiprotons

move at well-defined radii, little radial transport occurs, and

the parallel and perpendicular motions are well separated.

The effective antiproton–positron collision frequency is

coincidentally similar to that of antiproton–antiproton

043510-3 Amole et al. Phys. Plasmas 20, 043510 (2013)
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collisions for the typical plasma parameters shown in Table I

and is therefore neglected. The antiproton bunch is thus

regarded as a collection of cylindrical shells, with their axes,

defined as the z-direction, lying parallel to the magnetic field

of the Penning trap.17 The antiprotons (or more accurately,

their guiding centers) in each shell move only in the z-direc-

tion as free particles influenced by the z-component of the

total electrostatic field, and their motion is described by a

ðz; vzÞ phase space distribution which evolves according to

the Vlasov equation. Particles in different tubes are coupled

through the antiproton self-field, which is found by solving

the Poisson equation using the antiproton charge density in

each shell.

The Vlasov equation governing the evolution of each

cylindrical shell is solved numerically using operator split-

ting. The individual advection operators are discretized using

the flux balance method18 together with the piecewise para-

bolic reconstruction method19 (PPM). The antiproton self-

field is solved for using a numerical Green’s function.

The positron plasma, on the other hand, is highly colli-

sional on the antiproton axial bounce timescale. It is effec-

tively Debye-shielded, and each positron executes about ten

axial bounces in the time an antiproton has undergone one. It

is observed experimentally that the positron radial profile

does not change appreciably after the AR perturbation. The

positron plasma is thus approximately in a self–consistent

axial thermal equilibrium with the total electrostatic poten-

tial; i.e., the positron plasma adjusts itself axially along field

lines to satisfy the Poisson–Boltzmann equation at all times,

but the radial profile of the positron plasma remains

unchanged.

The Poisson–Boltzmann equation for the positron

plasma is solved numerically in the zero–temperature limit

by the so–called water–bag model. The water-bag solver

takes an experimentally measured positron radial profile and

voltages on the electrodes as input and solves for the axial

profile that gives a perfect Debye shielding of the z-compo-

nent of the total electric field within the profile. This total

field is then used in the acceleration term in the antiproton

Vlasov equation. In cases where the applied voltage is strong

enough that the positron plasma starts to escape, a more so-

phisticated Vlasov-based solver, which models the evapora-

tive escape and radial redistribution process and solves for

the self-consistent distribution of the remaining population,

is used.

The effects of the octupole and mirror fields that com-

prise the neutral trap are ignored in this model, since their

effect on particle orbits is small. At 1 mm from the axis, the

octupole field is Oð10�4 TÞ, superimposed on the background

solenoidal field of 1 T. Within the axial extent of the possible

orbits of either species, the mirror trapping force is equiva-

lent to a 0.002 V deep well for particles with a perpendicular

energy of 250 K, which is superimposed on the �5 V deep

electrostatic well. The model chiefly predicts the axial (lon-

gitudinal) energies of injected antiprotons, ignores E� B

rotation and assumes the perpendicular degrees of freedom

were well-separated and the energies in these degrees of

freedom remain unchanged throughout the manipulations.

IV. COMPARISONS WITH NUMERICAL AND ANALYTIC
MODELS

In this section, the PPM Vlasov model is compared with

(1) the analytic model (Eqs. (3)–(5)), (2) a leap-frog single

particle pusher that neglects the self-field of the antiproton

bunch (treats it as a single particle), but evolves it under the

same positron, vacuum and AR perturbation fields as in the

PPM Vlasov model, and (3) a 1D, single-shell, collisionless

spectral Vlasov–Poisson solver used by Barth et al.,15 which

solves a 1D Poisson equation with an idealized cutoff repre-

senting radial variation.

A. Time-resolved AR excitation

The different models are applied to the AR excitation of

a 250 K, 10 000 antiproton bunch with a radius of �0:7 mm.

The particles are confined by an anharmonic electrostatic

well with a linear bounce frequency of 412.7 kHz as shown

in Fig. 1. The antiproton bunch is excited by an AR perturba-

tion applied to an electrode to the right of the bunch. The

perturbation frequency changes linearly from 420 kHz to

200 kHz at a chirp rate of �200 MHz=s, and an amplitude of

0.14 V. A 10–period transition is present before the start of

the chirp, where the perturbation amplitude is linearly

increased from 0 to its full amplitude, at the starting fre-

quency. A similar transition is present at the end of the chirp.

A wait time of 20 periods (measured in terms of the stopping

frequency, during which no perturbation is applied) is pres-

ent before the simulation is terminated. The results from the

different models are displayed in Fig. 2, showing similar

behavior between the models, in terms of both the energy

and the phase of the antiproton bunch. The analytic model

prediction shows a slightly higher excitation at later times

since it includes only the 4th order non-linearity of the

TABLE I. Typical plasma conditions and parameters just before injection

manipulations. The uncertainties in particle numbers refer to the shot-to-shot

fluctuation of the species. The plasma dimensions are defined by the region

enclosed by the equi-density contour in r–z space that encloses 90% of the

total material, and the density is defined by the average therein. The Debye

lengths and plasma oscillation periods are derived from this average density.

The mean free time is the mean time between effective collisions estimated

from the non-magnetized Coulomb collision model.

Antiproton Positron

Number 16,000 6 5% 3� 10665%

Density ðm�3Þ 3� 1012 7� 1013

Temperature (K) 250 40

Self-field (V) 0.05 2

Length (mm) 4 23

Radius (mm) 0.7 0.9

Debye length (mm) 0.6 0.05

Cyclotron radius (mm) 0.02 2� 10�4

Mean free time (ls) 700 0.8

E� B drift period (ls) 70 10

Axial bounce period (ls) 3 0.3

Plasma oscillation period (ls) 3 0.01

Cyclotron period (ls) 0.07 4� 10�5
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confining well, while the other models use a more accurate

solution of the physical potential.

B. Perturbation amplitude threshold for pickup

In Fig. 3, the analytic prediction for the critical drive am-

plitude �cr (Eq. (5)) is compared with the single particle model

and the PPM Vlasov model. The set up is identical to that

shown in Fig. 1, with a 250 K, 10 000 antiproton bunch sub-

jected to different AR perturbations. These perturbations start

from 420 kHz with the 10-period ramp-up, and end at 360 kHz

with the 10-period ramp-down, but with various amplitudes

and the chirp rates. At each chirp rate on the horizontal axis of

Fig. 3, multiple simulations with different drive amplitudes

are executed, and a sudden jump in the final averaged antipro-

ton energy is observed when the drive amplitude exceeds the

critical value. This critical drive amplitude is plotted in the

vertical axis of Fig. 3, together with the analytical prediction.

Good agreement between the models is again observed.

V. COMPARISONS WITH EXPERIMENT

The results of experimental runs are compared with pre-

dictions of the PPM Vlasov model and the single particle

model. In the first comparison, an antiproton bunch is sub-

jected to AR perturbations in an anharmonic well without

neighboring positrons, and the resultant antiproton axial

energy gain is analyzed. In the second comparison, an anti-

proton bunch is subjected to AR perturbations next to a posi-

tron plasma. Some fraction of the antiprotons obtains

sufficient energy to enter the positron plasma, and a smaller

fraction goes on to form antihydrogen atoms. The distribu-

tion of the KE of the injected antiprotons predicted by simu-

lation is compared with the number of antihydrogen atoms

as measured from experiment.

A. Final antiproton energy distribution versus drive
amplitude and stopping frequency

A 250 K, �4000 antiproton bunch is prepared in the

anharmonic well shown in Fig. 1, which has a linear fre-

quency of 412.7 kHz. The particles are subjected to various

AR perturbations, all of which start from 420 kHz, have a

chirp rate of �200 MHz/s and include the 10-period ramp-up

and ramp-down. In the first series of runs, the stopping fre-

quency is fixed at 360 kHz, and the drive amplitude varies

between 0 V and 0.161 V. In the second series, the drive am-

plitude is fixed at 0.15 V and the stopping frequency varies

between 355 kHz and 390 kHz. From the simulations, the

final energy of the antiprotons post-perturbation can be

derived from the final phase space distributions/single parti-

cle states straight-forwardly. Experimentally, the final energy

of the antiproton bunch is measured by lowering one side of

the confining potential in 10 ms, which is much slower than

the Oð10 lsÞ axial bounce period. Those antiprotons with the

highest energy escape first, followed by the lower energy

population, and they annihilate on the end of the trap. The

time-dependent annihilation signal is registered by a scintil-

lator detector. Since the axial adiabatic invariant

J ¼
Þ

m�pvz dz, where m�p is the antiproton mass, is approxi-

mately conserved during the slow lowering of the confining

potential, the one-to-one correspondence between energy in

the well and escape time is known. The annihilation signal

as a function of time is thus mapped to a distribution as a

function of energy in the well.20 The final energies obtained

from the models and the experiment are compared in Fig. 4.

The centers of charge of the bunch predicted by the models

agree well with experimental measurements, but the PPM

Vlasov model predicts a somewhat broader energy distribu-

tion than observed in experiment.

Note that the experimental data in Fig. 4 have been fitted

to correct for experimental systematics. (i) There is a time

synchronization mismatch between the voltage controller for

the electrodes and the silicon vertex detector, expected to be

within 0.1 ms, introducing a possible offset between the

escape time reported by the detector and the actual escape

time with respect to the voltage changes being made on the

electrodes during a dump. This is accounted for by a time

shift of the detector signal such that the detector count from

the 0 V drive amplitude experiment in Fig. 4(b) corresponds

to an average energy in well of 0 eV. This time offset is then

fixed for all other experimental measurements of energy dis-

tributions. (ii) The experimental drive amplitude quoted

FIG. 2. Time evolution of (a) the energy and (b) phase angle of the antipro-

ton distribution, as predicted by different numerical and analytic models.

The phase difference is defined as hP � hD, where hP is the phase angle of

the center of charge of the distribution, and hD the phase angle of the AR

perturbation.

FIG. 3. Critical perturbation amplitude for varying chirp rates. The predic-

tion of the analytic model and the results from the single particle and PPM

Vlasov model are compared.
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hitherto is the amplitude on the electrode, which is 0.54

times the amplitude at the waveform generator, due to the

wiring impedance between the generator and the electrodes.

This conversion factor is derived by fitting the horizontal

position of the jump in Fig. 4(a) between the experiment and

the simulation. This factor is then used in the analysis of all

other experimental runs.

B. Injection ratio versus stopping frequency

Figure 5 shows the experimental setup injecting antipro-

tons into a positron plasma. A 250 K, 16 000 antiproton

bunch is placed in a nested well next to a 40 K, 3� 106 posi-

tron plasma, and subjected to an AR perturbation. The anti-

proton well has a linear frequency of 297.4 kHz, and the

perturbation starts at 325 kHz with a 10-period ramp-up to

an amplitude of 0.08 V. It is then chirped down to 250 kHz at

�120 MHz=s, and ends with a 10-period ramp-down. A frac-

tion of the antiprotons gain enough energy to enter the posi-

tron plasma. Due to Debye shielding, the total potential

within the positron plasma is a constant (in z), and therefore

each of the injected antiprotons moves across the positron

plasma at a constant speed. The simulated distribution of the

axial KE of the injected antiprotons as they travel through

the positron plasma after the AR perturbation is plotted in

Fig. 6(a), together with several phase space snapshots of the

antiproton distribution at various times during the AR pertur-

bation in Fig. 6(b).

FIG. 4. The final energy of an antiproton bunch after various AR perturbations, as measured in the experiment and predicted by the single particle and the

PPM Vlasov models. (a) The final antiproton energy after AR perturbations of various amplitudes and a fixed stopping frequency of 360 kHz. (b) The final

antiproton energy after AR perturbations of various stopping frequencies and a fixed amplitude of 0.15 V. (c) The energy distribution of an antiproton bunch af-

ter a typical AR perturbation in a—the delta function for the single particle result indicates the inability of the model to simulate a distribution. The experimen-

tal data have been corrected for systematics—see main text.

FIG. 5. Potentials and geometry for injecting antiprotons into a positron

plasma. (a) The physical setup of the experiment, with the pink electrode

connected to the AR signal generator. (b) The external potential created by

the electrodes at r ¼ 0, and the effect of the positron space charge. (c) A

close-up of b, showing the effect of the antiproton space charge.

FIG. 6. (a) The simulated distribution in speed of injected antiprotons as

they travel across the positron plasma, conditioned on the radius. The blue

dotted curve shows a reference thermal distribution of antiprotons at 800 K,

which has the same area under the curve as the r < 0:72 mm curve. The total

number of injected antiproton is 7400 (out of the 16000 initial antiprotons).

(b) Simulated antiproton distributions at various t during an AR perturbation.

The AR chirp starts at t ¼ 0. The contours are lines of constant total energy,

and increase by 0.25 eV (2900 K) per contour. At each time, the ðz; vzÞ phase

space at r ¼ 0 is displayed, together with the ðx; zÞ charge density.

043510-6 Amole et al. Phys. Plasmas 20, 043510 (2013)

Downloaded 22 Apr 2013 to 131.204.44.50. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



In the experiment, the KE distribution of the injected

antiprotons cannot be measured directly. Instead they cool

by collisions with positrons, and some go on to form antihy-

drogen atoms. Most of the antihydrogen atoms are not con-

fined by the magnetic minimum trap. They drift and

eventually annihilate on contact with the electrode wall. The

pion tracks from antiproton annihilations are reconstructed

from the silicon vertex detector, and the total number of

annihilations within a 1 s window after the perturbation is

deduced from the detector records. The number of annihila-

tions, divided by the number of antiprotons present before

the AR perturbation (estimated by the intensity of the AD

beam on each run), is plotted in black in Fig. 7(c), against

the stopping frequencies used in various experiments. This

ratio indicates the fraction of antiprotons that enters the posi-

tron plasma and successfully forms antihydrogen atoms.

Figures 7(a) and 7(b) show the simulated fraction of antipro-

tons which successfully injects and has a KE or radius below

various values. For instance, the “KE <100 K” curve in Fig.

7(a) plots the fraction of antiprotons, out of the original 16

000, that successfully enters the positron plasma and travels

across it with a KE below 100 K as a function of the AR

stopping frequency. Qualitatively, the simulation shows that

a chirp stopping below �290 kHz is necessary for injection.

The injected fraction increases as increasingly long chirps

are used, but the fraction injected at lower KE (<100 K)

slowly saturates when the stopping frequency is below

�240 kHz. The simulation also shows that antiprotons at

smaller radii are injected earlier, while those at the outer

radii require a longer chirp to reach injection. It is also

observed that stopping frequencies much lower than 200 kHz

(not shown in Fig. 6) causes the KE distribution of the

injected antiprotons to broaden, which is expected since the

perturbation, having no frequency relation to the bounce

orbits of the injected population, only acts as a heating sig-

nal. The number of antihydrogen atoms formed, as measured

in the experiment, increases with the length of the AR pertur-

bation, before saturating at a stopping frequency of

�250 kHz (see Fig. 7(c)). This roughly agrees with the simu-

lation. However, a detailed model of antiproton–positron

collisional cooling and recombination is necessary to predict

the number of antihydrogen atoms formed from the r–z–vz

distribution of injected antiprotons produced from the simu-

lation, which is beyond the scope of this paper.

VI. INJECTION LIMITS

The main adjustable parameters of an antihydrogen pro-

duction scheme via AR excitation in a nested

Penning–Malmberg trap are the numbers, radial sizes and

temperatures of the positron plasma and antiproton bunch, as

well as the ending frequency, chirp rate and amplitude of the

AR perturbation. To maximize the production of trappable

antihydrogen atoms, it is instructive to know which of the

parameters the antihydrogen yield is most sensitive to, and

what limit these parameters pose. Within the confines of the

PPM Vlasov model, one can predict the KE distribution of

injected antiprotons as a function of the initial antiproton pa-

rameters; the results are relatively insensitive to positron pa-

rameters since the positron plasma is assumed to evolve

according to the quasi-static water-bag model. The depend-

ence of trappable antihydrogen yield on positron parameters

enters through equilibration and recombination, which is

beyond the scope of the PPM Vlasov model. Still, some

qualitative assumptions can be made to connect the injected

antiproton KE distribution to the trapped antihydrogen yield.

We assume the trappable antihydrogen atoms come mainly

from the low-KE portion of the injected antiprotons (defined

as <500 K; other definitions yield similar results), since the

portion with significantly higher KE would have a small

recombination cross-section with the positrons.10,21 At best,

these high-KE antiprotons have no impact on the number of

trappable antihydrogen atoms produced. At worst they lead

to the heating of the positron plasma and delay recombina-

tion, which leaves time for the low-KE antiprotons to equili-

brate with the relatively hot positrons, thus reducing the

antihydrogen yield.

The impact these antiproton and AR parameters have on

the fraction of antiprotons injected at below 500 K is shown

in Fig. 8. Different antiproton bunches with various initial

numbers and temperatures are fed into the model in the con-

figuration shown in Fig. 5. At each initial number and tem-

perature, various AR perturbations are applied. The optimal

stopping frequency and perturbation strength, defined as that

which yields the highest fraction of antiprotons injected with

KE <500 K, are identified. The corresponding fraction of

FIG. 7. (a) The simulated fraction of antiprotons injected into the positron

plasma conditioned on their injected KE, using AR perturbations of various

stopping frequencies. (b) Same as a, except the curves are conditioned on

the radius. (c) The number of antiprotons from experiment that successfully

inject into the positron plasma and form antihydrogen atoms, divided by the

estimated initial number of antiprotons, at various stopping frequencies. The

error bars indicate the statistical error of the experimental measurement, and

do not include the detector calibration uncertainty (�621%) which is sys-

tematic to all the data points.
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antiprotons injected below various KEs is then plotted as a

function of initial antiproton number and temperature. (The

starting frequency and chirp rate are kept constant at

325 kHz and �120 MHz/s, respectively, to keep the parame-

ter space manageable.)

The self-field of the antiprotons tends to equalize the

electric field felt by different parts of the bunch during the

perturbation.15 The fraction of antiprotons that can be

excited by the AR perturbation is therefore a function of the

density of the bunch,15 which is, in turn, determined by

the initial number and temperature. This explains the drop in

the injected fraction on the upper left corner in the plots

in Fig. 8: the thermal spreads of these bunches are too great

compared with their self-field to remain coherent during the

AR perturbation, and some parts of these bunches fail to

be excited.

The low-KE injected fraction decreases as the antiproton

number increases. This is caused by a mixing of the antipro-

ton’s self-field into the KE of the injected antiprotons, due to

the electrostatic interaction between the main bulk of the

positrons and antiprotons. The overall injected fraction does

not decrease since the other antiprotons are injected into the

positron plasma at higher KE. This trend means the absolute

number of antiprotons injected at low KE increases sub-

linearly with an increasing initial number of antiprotons.

That the low-KE injected fraction does not significantly

improve once the initial antiproton temperature reaches

below �250 K indicates the spread of the KE distribution of

the injected antiprotons is dominated by space charge

effects, rather than by the initial temperature, once the latter

is below �250 K. The AR injection technique fails to make

full use of the low temperatures of the initial bunch.

VII. INCREMENTAL INJECTION

Various schemes to overcome the limitations of AR

injection have been investigated using the PPM Vlasov

model, and one of these ideas, the so-called incremental

injection technique, offers some interesting injection charac-

teristics. This type of scheme has been studied in ALPHA

before,22,23 but under different plasma conditions and with a

somewhat different procedure. In this scheme, an antiproton

bunch is positioned next to a positron plasma in the configu-

ration shown in Fig. 5. An AR perturbation, with an ampli-

tude of 0.08 V and starting at 325 kHz, is then applied to

excite the axial oscillation of the antiproton bunch, but is

stopped before injection. The voltage on the AR electrode is

subsequently decreased linearly to reduce the voltage separa-

tion between the positron and antiproton wells, thereby

injecting the already-excited antiproton bunch into the posi-

tron plasma. (The rate of the linear ramp is assumed to be

slow enough that the positron plasma can redistribute radi-

ally through diffusion in case of evaporative escape.) The

main tunable parameters in this scheme are the stopping fre-

quency of the AR perturbation and the stopping voltage of

the linear ramp. For a fixed stopping frequency, the optimal

ramp depth — that which yields the highest injection ratio at

KE <10 K, a choice that will be justified later — is deter-

mined by running multiple simulations. This optimal ramp

depth depends on the stopping frequency, but typically lies

within �6 to �7 V. The resultant optimized injection statis-

tics are shown in Fig. 9, for a stopping frequency between

FIG. 8. Contours showing the fraction of antiprotons injected by an AR per-

turbation into the positron plasma with KE below the indicated value on

each subfigure, as a function of the initial antiproton number and tempera-

ture. Each antiproton bunch with a specific initial number and temperature is

injected using the optimal AR perturbation that leads to the highest injection

ratio at KE <500 K—i.e., these contours reflect the best-case capability of a

conventional AR perturbation.

FIG. 9. The simulated, conditional fraction of antiprotons injected into the

positron plasma using incremental injection with different stopping frequen-

cies, and two initial antiproton numbers. The rightmost frequency (325 kHz)

corresponds to an AR chirp of zero length, with the chirp length increasing

towards the left of the horizontal axis. (a) The fraction of antiprotons

injected, out of an initial 16 000, conditioned on their KE in the positron

plasma. (b) Same as a, except that the ratios are conditioned on radius. (c)

The fraction of antiprotons injected, out of an initial 160 000, conditioned on

their KE in the positron plasma. (d) Same as c, except that the ratios are con-

ditioned on radius.
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250 and 325 kHz (with the upper limit corresponding to a

zero-length AR perturbation). The sudden shift in injection

behavior at around 290 kHz is expected, since that is where

the AR perturbation passes the linear resonance of the anti-

proton well (297.4 kHz) and starts to excite the antiproton

bunch.

From Fig. 9(a), the total (unconditioned) injection frac-

tion of antiproton is observed to increase as a longer AR

chirp is used. Figure 9(b) further shows that the increase in

the injected fraction comes from improved injection frac-

tions at the outer radii. This can be explained as follows:

when only a short chirp is used, the antiprotons reside, more

or less, at the bottom of the antiproton well. The antiproton

well becomes shallow as the electrode is ramped. However,

this decreasing antiproton well depth is not constant across

all radial shells. This is not due to the fall-off of the vacuum

field (the antiproton bunch only has a radius of �0:8 mm,

which is much smaller than the 22.3 mm radius of the elec-

trode wall), but rather to the fall-off of the positron self-field.

This fall-off causes the outer radial shells to have a higher

antiproton well depth than the inner ones (see Fig. 10).

When the antiproton well depth at the centre reaches zero

(or, more accurately, reaches the level of the thermal spread

of the antiprotons), the antiprotons on that shell start to

inject, but the outer shells are still confined. Continuing the

ramp further will not help inject the outer radii antiprotons.

Instead, positrons start to evaporate since the left wall of the

positrons (being also the antiproton well) now has a hole at

small r. This self-adjusting process of the positrons causes

the shape of the antiproton well to remain constant so long

as there is still a significant remnant positron population. The

AR perturbation helps the antiprotons at the outer radii over-

come the residual well by giving them more energy before

the linear ramp begins, thereby allowing their injection.

However, Fig. 9(a) shows that this increase in the total

injection fraction comes mostly from an increase in the frac-

tion at high KE; the low KE injection fraction actually

decreases, indicating a strong broadening in the KE distribu-

tion of the injected antiprotons due to the application of the

AR perturbation. This broadening becomes more pronounced

with more antiprotons (see Fig. 9(c)). Depending on the

detailed equilibration and recombination dynamics between

positrons and antiprotons, a purely linear ramp without any

AR pre-excitation (the rightmost limit in Fig. 9) is eventually

going to produce more trappable antihydrogen atoms than a

ramp with an AR pre-excitation, as the initial antiproton

number increases. This is possible because the injected frac-

tion at the outer radii increases with antiproton number. The

enhanced space charge of the antiproton bunch fills the resid-

ual antiproton well at the outer radii and causes the antipro-

tons on those radii to inject in higher numbers in a pure

linear ramp. Using antiproton space charge to overcome the

residual well rather than pre-exciting with AR also prevents

the KE broadening associated with AR.

Finally, Fig. 11 shows the performance of a pure linear

ramp injection (without AR pre-excitation) when applied to

antiproton bunches of various initial numbers and tempera-

tures. The final ramp depth for each antiproton bunch is opti-

mized to give the highest injection fraction at KE < 10 K.

Table II gives some statistics that compare the AR and the

linearly ramp injection scheme under some representative

plasma parameters. As argued above, the low-KE injection

ratio improves with higher initial antiproton number due to

the space charge filling of the residual antiproton well.

(However, the converse is also true: low-KE injection per-

formance deteriorates for lower number antiproton bunches.

At below �20k antiprotons, the AR injection technique

offers a better performance than the pure linear ramp

FIG. 10. The external potential seen by the antiprotons during a linear ramp

of the AR electrode shown in Fig. 5. The numbers displayed in each subfig-

ure are the electrode’s voltage and the number of remaining positrons, the

rest being lost to evaporative escape.

FIG. 11. Contours showing the fraction of antiprotons injected into the posi-

tron plasma after a pure linear ramp, against the initial antiproton number

and temperature. The four figures show the fraction of antiprotons injected

at a KE below the indicated value. Each antiproton bunch with a specific ini-

tial number and temperature is injected using the optimal linear ramp depth

that leads to the highest injection ratio at KE smaller than 10 K.

TABLE II. Injection performance of some representative plasma parame-

ters, taken from Figs. 8 and 11. The “Injected, <10 K” row gives the number

of antiprotons injected into the positron plasma at below 10 K. The

“Injected, T fit” row gives the temperature fit of the KE distribution of

injected antiprotons.

AR injection Linear injection

Initial �p no. 16 k 160 k 160 16 k 160 k 160 k

Initial �p T 250 K 250 K 50 K 250 K 250 K 50 K

Injected, total 11 k 108 k 107 k 4 k 76 k 71 k

Injected, <10 K 1.4 k 2.2 k 9 k 2.7 k 40 k 44 k

Injected, T fit 800 K 2700 K 4500 K 40 K 60 K 40 K
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injection.) One can also see from Fig. 11 that the energy dis-

tribution of the injected antiprotons is much “colder” than its

AR counterpart: there is hardly any difference between the

fractions at KE < 100 K and at KE < 105 K. By having

fewer fast injected antiprotons, the perturbation on the posi-

tron temperature by equilibration is minimized, meaning the

perturbation of positrons on the slow injected antiprotons is

also minimized. Together with the enhanced number of slow

antiprotons, the trappable antihydrogen yield should thus

improve significantly. A quantitative prediction of the yield

requires an accurate model that reflects the competition

between the equilibration and the recombination process,

which is currently being investigated.

VIII. CONCLUSIONS AND OUTLOOK

A primary goal of antihydrogen experiments is to gain

insight into the bayron asymmetry problem and the validity

of CPT symmetry through precision measurements of the

physical properties of antihydrogen atoms, including their

atomic spectrum, charge neutrality and gravity response. To

achieve these measurements, the current state-of-the-art rate

of roughly one anti-atom per attempt must be significantly

boosted to enhance signal-to-noise ratio, improve statistics,

reduce systematics and overcome losses, which is incurred

when further cooling trapped antihydrogen atoms to reduce

Doppler broadening. A hybrid numerical model has been

developed to simulate antiproton and positron dynamics in a

nested Penning-Malmberg trap, with the aim of understand-

ing its impact on the yield of trapped antihydrogen atoms.

Our model treats the antiproton bunch as a series of concen-

tric shells in which the antiprotons (or, more accurately, their

guiding centers) are constrained to move only in the z-direc-

tion. The dynamics of antiprotons in each shell is described

by a 1D ðz; vzÞ phase space distribution function which

evolves according to the Vlasov equation. The positron

plasma is treated quasi-statically in the zero temperature

limit as a water bag plasma. Simulation results were in good

agreement with experimental measurements on the AR exci-

tation and injection of antiprotons.

The model was used to predict the optimal injection effi-

ciency over a range of initial antiproton numbers and temper-

atures using the AR injection scheme. It was found that the

low-KE injection efficiency deteriorates at high (�100k)

antiproton numbers and that the efficiency does not improve

when low temperature (�250 K) antiproton bunches are used

due to space-charge effects. This indicates the AR scheme,

which proved itself sufficient in earlier experiments, would

not scale up well when antiprotons and positrons are mixed

in much greater numbers.

An alternative injection scheme, in which antiprotons

are injected by a linear lowering of the confining electro-

static potential, was then studied and was seen to offer sig-

nificant improvement when used in conjunction with intense,

low temperature antiproton bunches. These bunches could

become available in upcoming experiments and are the focus

of much machine and technique development. This work

illustrates that existing mixing methods might not exploit

new plasma parameter regimes effectively when they

become available, but that new, effective methods exist and

can be studied numerically. Mixing is not yet a limiting fac-

tor in trapping antihydrogen atoms produced from nested

Penning-Malmberg traps, and there are good reasons to fur-

ther develop antiproton accumulation and cooling techniques

before more exotic schemes, like antihydrogen atom accu-

mulation and transfer, need be considered.

An in-depth study of the collisional equilibration and

recombination between antiproton and positron remains to be

done to quantify the number of trapped antihydrogen atoms

resulting from various injection techniques, and experiments to

realize these techniques are necessary to validate the simula-

tions. The numerical model developed can be used to study

other novel injection schemes over a wide range of plasma pa-

rameters, and it is applicable to general Penning-Malmberg

trap techniques and processes like parallel temperature diagnos-

tics, evaporative cooling and longitudinal separation of like-

charged species. New physics can also be incorporated in the

numerical model by, for instance, adding Fokker–Planck terms

to the Poisson-Vlasov equation to model collisions, or by

expanding the phase space dimensionality to include motions

in the perpendicular degree of freedom. The restriction on posi-

tron quasi-static motion can be relaxed by modeling it with the

Vlasov–Poisson–Fokker–Planck equation, though some numer-

ical speed-up is necessary due to time-scale difference.
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