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When particles in a Penning trap are subject to a magnetic multipole field, those beyond a critical
radius will be lost. The critical radius depends on the history by which the field is applied, and can
be much smaller if the particles are injected into a preexisting multipole than if the particles are
subject to a ramped multipole. Both cases are relevant to ongoing experiments designed to trap
antihydrogen. © 2008 American Institute of Physics. �DOI: 10.1063/1.2899306�

I. INTRODUCTION

Two collaborations, ALPHA1 and ATRAP,2 are attempt-

ing to trap antihydrogen �H̄� at CERN. The experiments are
broadly similar; both use adjacent Penning traps to confine

the H̄ constituents, positrons �e+�, and antiprotons �p̄�. The
Penning traps use strong solenoidal axial magnetic fields,
Bzẑ, to confine the constituents radially, and electrostatic
wells to confine the constituents axially. Penning traps have
been used for many years, and the behavior of particles in
these traps is relatively well understood. Particles can sur-
vive for hours, sometimes days, in these traps; long confine-
ment times are guaranteed by the azimuthal symmetry of the
traps.3

Unlike the H̄ constituents, H̄ itself is uncharged; conse-

quently, it is not confined by Penning trap fields. To trap H̄,

both collaborations intend to take advantage of H̄’s perma-

nent magnetic moment, which can be used to confine the H̄
in a magnetic minimum. By superimposing a minimum-B
field over the Penning trap, the collaborations hope to simul-

taneous hold and mix e+ and p̄, and create and trap H̄. De-
tailed descriptions of the experiments can be found
elsewhere.2,4

The minimum-B fields can cause particle loss. In this
paper, we describe criteria that determine when such loss
occurs. We use single-particle models in this paper. Such
single-particle models accurately describe the motion of p̄’s
in many of the experiments performed to date. For example,
in the companion paper,5 the p̄ energies are on the order of
several eV, while the self-electrostatic potentials are on the
order of mV. Thus, the p̄ orbits in Ref. 5 are unaffected by
collective effects and the single-particle model is appropri-
ate; the p̄ densities would have to increase by three orders of
magnitude for collective effects to matter. For e+’s, which are
typically much denser in the experiments, and for mixed
e+− p̄ plasmas, self-consistent fields may play a significant
role. Nonetheless, fully self-consistent particle-in-cell �PIC�
simulations6 of dense p̄ plasmas agree with the analytic

single-particle models described here. An analytic fully self-
consistent description of dense non-neutral plasmas in a
strong magnetic multipole field is not yet available.

II. FIELD STRUCTURE

The minimum-B fields are created by axial magnetic
mirrors added to the trap ends and a radial magnetic multi-
pole added to the trap center. Unfortunately, the multipole
fields break the azimuthal symmetry. Long e+ and p̄ trapping
times are no longer guaranteed. Whether the Penning traps
will still function adequately with these extra fields has been
controversial.6–15 Three types of multipole fields have been
proposed: Quadrupole fields16,17 such that the field at the
center of the trap �ignoring the mirrors at the ends� is given,
in cylindrical coordinates �r ,� ,z�, by

B = Bzẑ + Bw
r

Rw
�r̂ cos�2�� − �̂ sin�2��� , �1�

sextupole fields,15 which will not be further discussed in this
paper, and octupole fields4,18 given by

B = Bzẑ + Bw� r

Rw
�3

�r̂ cos�4�� − �̂ sin�4��� . �2�

Here Bw is the multipole field at the trap wall radius Rw. As
the multipole field adds quadratically to the axial field, Bw

must be comparable to Bz to generate a significant minimum.
Note that particles that hit the wall at Rw are lost.

Under many circumstances, the H̄ constituents, the p̄’s
and e+’s, closely follow field lines. Consequently, it is helpful
to visualize the shape of the field lines. For the quadrupole,
the field lines originating from a circular locus of points in
the plane transverse to ẑ form a twisted bowtie �see Fig. 1�.9

By definition, the bowtie is circular in the center, arbitrarily
located at z=0, and it becomes ever more elliptical away
from the center. The major axes of the ellipses are oriented
along the x̂ axis for positive z, and along ŷ for negative z.
The shape formed by the octupole is similar, with the ellip-
tical ends being replaced by four-fluted cylinders. The flutes
at one end are now rotated by 45° relative to the other end,
rather than 90° as is the case for quadrupoles.
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So long as we use a pure axial plus transverse multipole
field, the field is independent of z. Then �� ·B=0, where ��

is the differential operator in the plane perpendicular to ẑ.
Thus, the area enclosed by a set of field lines penetrating a
plane perpendicular to ẑ is independent of z; the cross-
sectional area of the surfaces in Fig. 1 is invariant. Note that

the mirror fields required to trap the H̄ axially break this
invariance. For the ALPHA experiment, however, the mirror
coils are sufficiently axially distant that the cross-sectional
area is approximately invariant.

III. CHARGED PARTICLE LOSS

Particles confined by the electrostatic well within the
multipole bounce back and forth while following the mag-
netic field lines. If any of the field lines extend to the trap
wall within the length set by the electrostatic well, the par-
ticles will follow them there and be lost. This “ballistic” loss
was first identified with electrons in a quadrupole magnet.13

There exists a critical radius, rc, which characterizes the bal-
listic loss process; particles that are initially beyond the criti-
cal radius are lost ballistically, while particles that are within
the critical radius are not lost immediately. �The critical ra-
dius can be, but is not always, a function of the azimuthal
angle �. See the discussion later in the paper.� Particles
within the critical radius will eventually be lost by diffusion.
Diffusive loss occurs in the absence of multipole fields, but
the multipole fields will increase the diffusion coefficient.9

They will also decrease the radius to which the particles have
to diffuse before they are lost from Rw to rc. The net effect
will be enhanced diffusive loss.

Thus, the critical radius characterizes the loss processes.
The path taken by a field line is a function of its initial
azimuthal angle, and is complicated by the field lines’ propa-
gation in � as well as r. However, the fastest outward going
field lines remain at the same angle, and it is easy to calcu-
late their path. For a quadrupole, these field lines are at
�=0, � and propagate like13

r�z� = r0 exp�Bw

Bz

z

Rw
� , �3�

while for an octupole they are at �=0, � /2, �, and 3� /4 and
propagate outward like

r�z� =
r0

�1 − 2
Bw

Bz

r0
2

Rw
2

z

Rw

, �4�

where r0 is the initial radius at z=0. By inverting these equa-
tions, we can find the critical radius rc from the condition
Rw=r�z=Leff ;r0=rc�, where Leff is the effective length of the
trap. These equations define the fastest outward propagating
field lines, which occur only at the specific angles. Field
lines that originate at other angles do not propagate outward
as fast; indeed, some field lines propagate inward. This has a
qualitatively small effect in a quadrupole as the other field
lines converge toward the fastest outward propagating field
lines. As can be seen in Fig. 2�a�, the majority of field lines
propagate outward nearly as much as the maximally outward
propagating field lines. In an octupole, Fig. 2�b�, this effect is
less pronounced. For strong enough octupole fields, the out-
ward transport peaks are cusp-like. Even in an octupole,
however, the critical radius defined by the maximally out-
ward propagating field lines is a good parameter for charac-
terizing the loss. Particles that are not initially on these field
lines will quickly find themselves rotated to them by the
E�B drifts caused by the radial electrostatic fields at the
trap ends and the self-electric fields, if any, in the interior of
the trap.

The critical radius depends on the effective trap length
Leff. Two cases are common in typical experiments. In the
first case, particles are held in a fixed region of the trap while
the multipole field is ramped on. Previously, we used PIC
simulations6 to show that, in this case, the effective trap
length, Leff, is half the end-to-end bounce length L of the
particles in the trap.14 Here we show that this result is a
consequence of constraints imposed by adiabatic invariants.
In the second case, particles held in a short trap are injected
into a longer trap, with a preexisting multipole field. This
procedure has been used to mix p̄’s with e+’s.19 Here, the
effective trap length Leff can approach the full length of the
trap L, and we explore the consequences of such expansions.

IV. RAMPING MULTIPOLE

In the absence of the multipole fields, particles stay at a
fixed radius, say r00, and bounce end-to-end while slowly
orbiting the trap axis. An individual particle will cover the
surface of a cylindrical shell. As the multipole is turned on
this surface will deform, but is subject to certain constraints.

FIG. 1. �Color online� Magnetic field lines for a transverse quadrupole �top�
and octupole �bottom�, superimposed on a uniform axial field. For each
configuration, the vectors on the left represent the directions of the axially
invariant multipole and axial field components. The surface is created by
following the field lines from a centered circular locus, and the lines shown
within the surfaces are field lines.
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�Here, we assume that the particles are bouncing quickly
relative to their rotation time around the trap.� First, symme-
try requires that surfaces at equal, but opposite, distances
from the trap center be identical when rotated through the
symmetry of the multipole: 90° for a quadrupole and 45° for
an octupole. Further, symmetry requires that the center cross
section retain the complete symmetry of the multipole. A
circular cross section, of course, retains this symmetry, but
simulations show that rotations around the trap axis deform
the cross section into a curve with fourfold symmetry �squar-
ish� for a quadrupole, and eightfold symmetry for an
octupole.6 Finally, as the particles drift around the central
axis, their orbit’s intersections with the central transverse
plane �Poincaré map� trace a closed curve. This curve en-
closes a cross-sectional area. The magnetic flux � through
this cross section comes solely from the time-invariant axial
field; the multipole field does not contribute to � as it is
tangential to the transverse plane. The third adiabatic invari-
ant of plasma physics20 requires that � be conserved if the
octupole is ramped on slowly compared to the end-to-end

bounce time. �Experimental constraints ensure that this con-
dition is easily met.� Thus, the area of the central cross sec-
tion �indeed any cross section� is invariant as the multipole
field is ramped, and remains equal to the area of the initial
cross section.

If the central cross section remained exactly circular,
then the particles’ radii at z=0 would remain fixed at their
initial radius r00. Particles would be lost if they hit the wall
when traversing the half-length of the trap when starting at
r00. Thus, the critical radius rc can be found from Eqs. �3�
and �4� by using an effective length Leff equal to half the trap
length L /2,14

rc = Rw exp�−
1

2

Bw

Bz

L

Rw
� �5�

for a quadrupole and

rc =
Rw

�1 +
Bw

Bz

L

Rw

�6�

for an octupole.
The earlier PIC simulations6 showed that the center cross

section does not deform very much, and that Leff equals L /2
to a very good approximation. We reproduce this result with
single-particle simulations in Fig. 3. Note that the rotations
make the critical radius sharp; virtually all particles beyond
the critical radius are lost, and virtually all particles within
the critical radius are retained.

In the absence of any other physical effects, the conser-
vation of area result proved above requires the density to be
invariant with z. If the density is initially uniform over a
solid cylinder, it will remain uniform. �The density of a cold
plasma in thermal equilibrium held in a pure axial field will

FIG. 2. �Color online� The radius after one pass across the trap as a function
of initial angle � for �a� a quadrupole and �b� an octupole. In �a�,
Bwz /BzRw=4 �solid�, 1 �long dash�, and 0.25 �short dash�. The radius is
normalized to the initial radius. In �b�, the values of Bw are adjusted so that
the maximum expansion is the same as in case �a�, namely Bwr0

2z /BzRw
3

=0.49983, 0.4322, and 0.197. �Note that the first value is very close to the
critical value of 0.5 at which the solution is not analytic.� For strong qua-
drupoles, the one-pass radius is substantially less than the initial radius for
only a small fraction of the initial angles.

FIG. 3. �Color online� Critical radius as a function of the multipole field at
the wall Bw for a ramping multipole field. Particle simulation results are
shown by the lines, and the results of inverting Eqs. �5� and �6� are shown
by the dots. In the simulation, the critical radius was determined by uni-
formly filling the trap with particles and ramping the multipole field. The
normalized critical radius is the square root of the fraction of particles that
have not hit the trap wall. The solid simulation lines include the effect of
rotations; the dashed lines do not. The critical radius is normalized by the
wall radius, L /Rw=5 and Bz=1 T.
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be uniform except near the plasma edge.21� However, there
are at least two effects that will vary the density. First, in the
presence of a multipole field, the electrostatic potential along
the magnetic field lines will not be constant. �It is constant
inside the plasma in a pure axial field.� If there is some
collisional mechanism, the particle will distribute themselves
along individual field lines according to the Boltzmann rela-
tion. Even in the absence of collisions, adiabatic trapping
will force the particles to distribute themselves in a quasi-
Boltzmann fashion.22 In either case, particles will be denser
at the end of the field line to which they are attracted. Sec-
ond, mirroring effects will repel particles from higher mag-
netic field regions. If the particles are dense enough for their
self-electric fields to be important, the effects of mirroring
are complicated and not yet understood for multipolar
fields.23–25

Note that the simulations presented here include the ef-
fects of the electrostatic background field. We used a fairly
sharp, hard-wall potential to tightly control the orbit length.
The simulation generally used the guiding center approxima-
tion, but was checked by comparison to the full equations of

motion. Thus, mirroring and E�B drifts were included. The
simulation does not include effects due to collisions or to the
self-electric field of the particles. In the experiments, the p̄
self-electric fields are generally small and can be safely ne-
glected. The e+ fields are not small, and could affect the
results presented here. However, earlier PIC simulations,6

which include the self-electric fields, found very similar criti-
cal radii.

V. SIDE INJECTION INTO A PREEXISTING
MULTIPOLE

There is less symmetry when particles are injected into a
preexisting multipole field, and the results are more compli-
cated. We will assume that the initial, pre-injection, trap
length is sufficiently short that the particles can be taken to
start uniformly distributed in a cylinder of radius r00 despite
the already present multipole field. We further assume that
the particles start at a near uniform position of z=−L /2.
Some of the particles will follow the fastest expanding field
lines all the way to z=L /2. Thus, the critical radius rc0

for the first loss associated with the initial distribution at
z=−L /2 will be determined by the effective length Leff=L
�see Fig. 4�.

Not all particles whose radius is larger than rc0 will be
lost, however. The surviving fraction can be found by tracing
the locus of points at r00 from z=−L /2 to z=0 �see Fig. 5�.
Some particles will have moved in, and some will have
moved out. Those particles that are beyond the critical radius
rc associated with the distribution at z=0, defined by Eq. �5�
or Eq. �6�, will be lost. The surviving fraction will be equal
to the area of the curve traced by this locus that is inside the
critical radius rc, divided by the initial area. Rather than us-
ing the critical radius of first loss rc0 to characterize the loss
process, a better measure is the radius r50% of a uniformly
filled cylinder which would lead to 50% loss. A cylinder of
radius any greater than r50% would lose more than 50% of its
particles, and a cylinder of less than r50% would lose less.
This radius can be found by iteratively solving for the value
of r00 that gives 50% survival, i.e., by solving

FIG. 4. �Color online� Critical radius as a function of the multipole field at
the wall Bw for injection into a preexisting �a� quadrupole and �b� octupole
field. For each multipole, the figures show the radius at which particles are
first lost, rc0, and the radius at which 50% of the particles are lost, r50%. �The
calculated r50%, found via Eq. �7�, was checked at the four green points
shown in each graph by mulitple-bounce particle simulations.� For compari-
son, the figures also show the radius at which 50% of the particles would be
lost for a ramped multipole. The critical radius is normalized by the wall
radius, L /Rw=5 and Bz=1 T.

FIG. 5. �Color online� End view of the relevant surfaces for side injection
into a preexisting quadruple �left� and octupole �right�. Before injection,
particles are held contained on one side inside a circle of radius r00. On their
first pass through z=0 after release, the particles are confined within the
ellipse �quadrupole� or fluted cylinder �octupole� with cutoff tips. Only par-
ticles that are within the critical radius rc will survive subsequent passes.
The density of particles within rD will remain approximately unchanged, but
as the arms of the ellipse �flutes� between rD and rc rotate, the coarse-
grained density in this latter region will decrease.
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1

2
=

1

�r50%
2 �

0

2�

d��
0

min�r�L/2;��,rc�

rdr , �7�

where r�L /2;�� is the radius of particle that starts at position
�r50%, �, z=−L /2�, and follows the field lines to z=0.

Figure 4 plots r50%, and compares it to the equivalent
radius for particles confined in a ramping multipole. �For a
ramping multipole, the 50% loss radius is �2 times the criti-
cal radius rc defined by Eq. �5� or Eq. �6�; all the charge
within rc will be retained, and all the charge between rc and
�2rc will be lost. Thus, assuming constant initial density, half
the charge will be lost.�

For a quadrupole, the 50% loss side-injection critical
radius approaches the first loss radius rc0 at high field. For an
octupole, however, the 50% loss side-injection critical radius
is only slightly less than the 50% loss ramping critical radius.
The one-pass octupole radii cusp shown in Fig. 2 cause this
difference in behavior.

With the ramped field, the density is quasi-uniform. This
is not the case with side injection into a preexisting field. A
new radius rD is defined by following the fastest inwardly
directed field line originating at r00 to z=0 �see Fig. 5�. The
quasicircular disk defined by rD will start, and remain, uni-
formly filled at the original density �ignoring the complica-
tions described above�. Between rD and rc, the initial density
will equal the initial density at some angles and zero at oth-
ers. The particles in this region will orbit the trap axis at
nonuniform rates. The simple initial boundary will deform

into spiral arms �see Fig. 6�. Inside the arms, the density will
remain at the initial density, and outside the arms the density
will remain zero. As the arms elongate, course-graining will
make it appear that the density is independent of angle and
declining with r between rD and rc. Eventually, collisions
will genuinely smooth the density in this region. Thus, the
density profile will be uniform out to rD, smoothly diminish-
ing between rD and rc, and zero beyond rc. Transport across
field lines toward a final global equilibrium state will further
evolve the distribution.

VI. CONCLUSIONS

We have explored the difference between two different
methods of subjecting particles in a Penning trap to a mag-
netic multipole field. Both methods are relevant to trapping
antihydrogen produced by standard mixing schemes.19,26

Fewer particles are lost when the particles are subject to a
ramping field than when the particles are injected into a pre-
existing quadrupole field, but the loss is almost identical for
an octupole. In the absence of complicating effects, the den-
sity of the remaining particles is uniform �assuming the ini-
tial density is uniform� in the first case, but not in the second.

The results presented here do not take into account the
fields from the magnetic mirrors also present in the experi-
ments. For ALPHA,4 the mirror coils are far enough away
that the fields do not significantly change the results.

We have also assumed that the particles bounce quickly
compared to their axial rotation period. This is a good as-
sumption for hot e+’s and p’s, but it is not necessarily satis-
fied for particles that have cooled to 4.2 K. If it is not satis-
fied, the resonant effects described in Ref. 9 may become
important.
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