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Universal decoherence due to gravitational
time dilation
Igor Pikovski1,2,3,4*, Magdalena Zych1,2,5, Fabio Costa1,2,5 and Časlav Brukner1,2

The physics of low-energy quantum systems is usually studied without explicit consideration of the background spacetime.
Phenomena inherent to quantum theory in curved spacetime, such as Hawking radiation, are typically assumed to be relevant
only for extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum
mechanics in the presence of gravitational time dilation and show that the latter leads to the decoherence of quantum
superpositions. Time dilation induces a universal coupling between the internal degrees of freedom and the centre of mass
of a composite particle. The resulting correlations lead to decoherence in the particle position, even without any external
environment. We also show that the weak time dilation on Earth is already su�cient to a�ect micrometre-scale objects.
Gravity can therefore account for the emergence of classicality and this e�ect could in principle be tested in future matter-
wave experiments.

One of the most striking features of quantum theory is the
quantum superposition principle. It has been demonstrated
in numerous experiments with diverse systems, such as

neutrons1, atoms2 and even large molecules3. However, quantum
superpositions are not observed on everyday, macroscopic scales.
The origin of the quantum-to-classical transition is still an active
field of research. A prominent role in this transition is commonly
attributed to decoherence4,5: owing to interaction with an external
environment, a particle gets entangled with its environment and
loses its quantum coherence. Many specific models have been
studied in which a particle interacts with its surroundings, such
as a bath of phonons6, photons7,8, spins9,10 and gravitational
waves11–13. An alternative route to explain classicality is taken in so-
called wavefunction collapse models, which postulate an inherent
breakdown of the superposition principle at some scale without any
external environment14–16. Suchmodels are often inspired by general
relativity, but they rely on a fundamental modification of quantum
theory. In contrast, here we derive the existence of decoherence due
to time dilation without any modification of quantum mechanics
and which takes place even for isolated composite systems.We show
that even the weak time dilation on Earth is already sufficient to
decohere micro-scale quantum systems.

We consider standard quantum mechanics in the presence of
time dilation, with the focus on gravitational time dilation which
causes clocks to run slower near a massive object. In the Methods,
we derive the Hamiltonian governing the quantum dynamics of a
composite system on an arbitrary, static background spacetime (and
show that the same result is obtained as a limit of a quantum field
model). As we consider slowly moving particles and weak gravita-
tional fields (that is, to lowest order in c−2, where c is the speed of
light), the results can also be obtained directly from themass–energy
equivalence17: any internal energy contributes to the total weight of a
system and thus also couples to gravity. Given any particle ofmassm
and an arbitraryHamiltonianH0 that generates the time evolution of

its internal degrees of freedom, gravity couples to the total rest mass
mtot=m+H0/c2—that is, gravity also couples to internal energy.
The interaction with the gravitational potential Φ(x) is therefore
mtotΦ(x)=mΦ(x)+Hint, whereHint=Φ(x)H0/c2. This interaction
term is just another formulation of gravitational time dilation (the
same argument applies to inertial mass as well, so one recovers both
the special relativistic and gravitational time dilation governed by
Hint = 0(x , p)H0/c2, with 0(x ,p)=Φ(x)−p2/2m2). For example,
if the particle is a simple harmonic oscillator with frequency ω,
the above interaction with gravity effectively changes the frequency
according to ω→ω(1+Φ(x)/c2). This is the well-tested18,19 gravi-
tational redshift to lowest order in c−2. When the energy is treated
as a classical variable the time-dilation-induced interaction Hint
yields only this frequency shift. However, in quantum mechanics
the internal energy H0 and the position x are quantized operators,
thus time dilation causes an additional, purely quantummechanical
effect: entanglement between the internal degrees of freedom and
the centre-of-mass position of the particle20. Even though the time
dilation on Earth is very weak, it leads to a significant effect for
composite quantum systems, as we will show below.

Before deriving in full generality the time evolution of the centre
ofmass of an arbitrary composite system subject to time dilation, we
consider a simplified model where a particle has N/3 constituents
that are independent three-dimensional harmonic oscillators.
Such a model equivalently describes N internal harmonic modes
of the particle. The internal Hamiltonian for this system is
H0=

∑N
i=1 ~ωini, where ni are the number operators for the ithmode

with frequency ωi. The centre of mass (with x and p being its
vertical position and momentum, respectively) of the whole system
is subject to the gravitational potential Φ(x). For a homogeneous
gravitational field in the x-direction we can approximateΦ(x)≈gx ,
where g =9.81m s−2 is the gravitational acceleration on earth. The
total Hamiltonian of the system is therefore H=Hcm+H0+Hint,
whereHcm is someHamiltonian for the centre of mass of the particle
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Figure 1 | Gravitational time dilation causes decoherence of composite quantum systems. a, Illustration of a TPPF20 molecule that has recently been used
for matter-wave interference3. Here we illustrate a vertical superposition of size1x in Earth’s gravitational potentialΦ(x)=gx. b, The frequencies ωi of
internal oscillations are modified in the gravitational field—that is, ωi→ωi(x)=ωi(1+gx/c2)—which correlates the internal states and the centre-of-mass
position of the molecule. c, Phase-space representation of the ith constituent, which is in a thermal state with average occupation n̄i≈kBT/~ωi. In the
coherent-state representation of the internal states, the frequency of each coherent state depends on the position of the whole molecule and thus di�ers
between the two superposed amplitudes by an amount ωi1τ . Even for small time dilations, this causes decoherence of the molecule with N constituents
after a time τdec, given in equation (3).

and the gravitational time-dilation-induced interaction (to lowest
order in c−2) between position and internal energy is

Hint=Φ(x)
H0

c2
=~

gx
c2

(
N∑
i=1

ωini

)
(1)

To demonstrate decoherence, we first consider the case when
the gravitational contribution to time dilation is dominant such
that the velocity contributions can be neglected. A typical such
case is a particle at rest in superposition of two vertically distinct
positions x1 and x2 and a height difference 1x = x2 − x1. The
centre of mass is in the state |ψcm(0)〉 = (1/

√
2)(|x1〉 + |x2〉). The

internal degrees of freedom are in thermal equilibrium at local
temperature T , thus each ith constituent is described by the
thermal density matrix ρi=(π n̄i)

−1
∫
d2αi exp(−|αi|

2/n̄i)|αi〉〈αi|,
where we used the coherent-state representation with the
average excitation n̄i = (e~ωi/kBT − 1)−1 and where kB is the
Boltzmann constant. The total initial state is thus given by
ρ(0) = |ψcm(0)〉〈ψcm(0)| ⊗

∏N
i=1 ρi. Gravitational time dilation

now couples the centre-of-mass position of the system to
the internal degrees of freedom ρi via the Hamiltonian in
equation (1). The off-diagonal elements ρ12 = 〈x1|ρ|x2〉 = ρ∗21,
which are responsible for quantum interference, evolve to
ρ12(t)= (2π n̄i)

−1eimg1xt/~∏N
i=1

∫
d2αie−|αi |

2/n̄i |αie−iωi(x1)t〉〈αie−iωi(x2)t |,
where ωi(x) = ωi(1 + gx/c2). The frequencies of the internal
oscillators depend on the position in the gravitational field, in
accordance with gravitational time dilation (see also Fig. 1). To
see decoherence of the centre of mass, we trace out the internal
degrees of freedom. The quantum coherence can be quantified by
the interferometric visibility V (t)=2|ρ(12)cm (t)|=2|

∏N
i=1Tri[ρ12(t)]|,

which becomes V (t) = |
∏N

i=1[1 + n̄i(1 − e−iωitg1x/c2)]−1|. This
expression can be simplified for the typical case ωitg1x/c2� 1.
In the high-temperature limit we also have n̄i≈ (kBT/~ωi), so that
the frequency dependence completely drops out from the visibility.
In this case, the reduction of quantum interference is given by
V (t)≈ (1+ (kBTg1xt/~c2)2)−N/2. For times t 2�Nτ 2

dec this can be
written as

V (t)≈e−(t/τdec)2 (2)

where we defined the decoherence time

τdec=

√
2
N

~c2

kBTg1x
(3)

The above equation shows that gravitational time dilation causes
superpositions of composite systems to decohere. The decoherence
rate derived here scales linearly with the superposition size 1x , in
contrast to other decoherence mechanisms, which typically show
a quadratic scaling21. Also, decoherence due to gravitational time
dilation depends on the number of oscillating internal states of the
system, N . The suppression of quantum effects takes place even
for completely isolated systems, provided that the superposition
amplitudes acquire a sufficient proper time difference. In the
high-temperature limit the frequencies of the internal oscillations
drop out entirely from the final expression, therefore it is not
necessary to have fast-evolving internal states. Note that the
decoherence derived here depends on the constants ~, c, kB and
the gravitational acceleration g : it can therefore be considered a
relativistic, thermodynamic and quantum mechanical effect.

The effect is very general and originates from the total proper
time difference between superposed world lines. Quantum systems
with internal degrees of freedom are affected on arbitrary spacetime
metrics, as long as a proper time difference is accumulated.
To highlight this, consider a particle moving in superposition
along two arbitrary world lines with proper time difference 1τ
(Fig. 2). The two superposed amplitudes can interfere when the
world lines meet. Owing to time dilation, the internal energy is
effectively altered by H0(1+0/c2), with 0(x , p)=Φ(x)− p2/2m2

(see also Methods). Each amplitude therefore evolves with
U (t)=exp[−(i/~)

∫
dt(Hcm+(1+(0/c2))H0)] along the respec-

tive world lines. H0 does not depend on x , p and t and, for clarity,
we restrict the analysis to semi-classical paths—that is, constrained
to have coordinates x̄1(t), p̄1(t) and x̄2(t), p̄2(t) along the two
world lines, respectively (as in Fig. 2c). The interference visibility
is then V = |Tr[e−i/~

∫
dt(1+0(x̄1 ,p̄1)/c2)H0ρ0ei/~

∫
dt(1+0(x̄2 ,p̄2)/c2)H0 ]|.

As dτ=dt
√

gµν ẋµẋν≈dt(1+0/c2), the interference visibility
is simply

V =|〈e−iH01τ/~〉| (4)

where 1τ = τ1− τ2 is the proper time difference between the two
world lines and the expectation value is taken with respect to the
initial state. This result is manifestly coordinate invariant and shows
that decoherence occurs if a proper time difference is present,
and if the internal states are not eigenstates of internal energy.
Equation (3) is recovered as a special case of the general formula
above (expanding to lowest order in 1τ , assuming N internal
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Figure 2 | A composite particle in superposition will decohere owing to time dilation. The figure shows two superposed world lines in di�erent situations
and spacetimes (here c= 1). a, A particle in superposition at two di�erent fixed heights above the earth, as considered in the main text (the dashed lines
represent arbitrary small non-stationary contributions necessary to perform an interferometric experiment). The centre of mass will decohere after a time
τdec as given in equation (3). In general, the full evolution of the centre of mass is given by equation (5). b, A particle undergoing uniform acceleration g in
flat spacetime will experience the same time dilation and thus the same decoherence as in case a. Equivalently, the diagram describes the previous
situation from the point of view of a freely falling observer. c, A composite particle with internal Hamiltonian H0 in an arbitrary spacetime will decohere if
the two superposed trajectories di�er in proper time. The visibility of quantum interference V reduces depending on the proper time di�erence1τ ,
see equation (4).

harmonic oscillators such that 1E2
0 = 〈H 2

0 〉 − 〈H0〉
2
≈Nk2BT 2 and

neglecting the p-dependent term yields equation (3)). For the special
case of a pure two-level system, equation (4) also reproduces the
effect discussed in ref. 20, which can be interpreted as due to the
which-way information acquired by a clock. In contrast, which-way
information is never available for thermal states (a more detailed
discussion can be found in the Supplementary Information).
Equation (4) shows, however, that time dilation affects any state that
is not an eigenstate of H0. The coupling is universal, which follows
directly from the universality of time dilation. Thus the decoherence
is as universal as time dilation itself, in the sense that all composite
quantum systems are affected, independently of the nature and kind
of their internal energy H0.

We now consider the full time evolution in the presence of
time dilation that takes any arbitrary internal Hamiltonian H0 and
centre-of-mass Hamiltonian Hcm into account. To this end, we
derive a master equation that describes the quantum dynamics of
a composite system on a background spacetime to lowest non-
vanishing order in c−2 (see Methods for details). The resulting time
evolution of the centre of mass in the presence of special relativistic
and gravitational time dilation is

ρ̇cm(t) = −
i
~

[
Hcm+

Ē0

c2
0(x ,p),ρcm(t)

]

−

(
1E0

~c2

)2∫ t

0
ds [0(x ,p), [e−iHcms/~0(x ,p)eiHcms/~,ρcm(t)]] (5)

where0(x ,p)=Φ(x)−p2/2m2. The first term describes the unitary
evolution of the centre of mass due to an arbitrary Hamiltonian
Hcm, which is completely general and can also include external
interactions (as, for example, those necessary for keeping the
particle in superposition or realizing an interference experiment)
as well as relativistic corrections to the centre-of-mass dynamics.
The correction dependent on Ē0=〈H0〉 stems from the relativistic
contribution to the mass. The second term causes the suppression
of off-diagonal elements of the density matrix and is responsible
for the decoherence. It is proportional to 1E2

0 =〈H 2
0 〉− 〈H0〉

2, the
fluctuations in internal energy, or equivalently the heat capacity
Cv =1E2

0/kBT 2 (the high-temperature limit of the model that we
used previously corresponds to the Einstein solid model). The
integral captures the fact that decoherence depends on the overall

acquired proper time difference during a particle’s evolution. For
stationary particles, and if the centre-of-massHamiltonianHcm does
not induce significant changes to the off-diagonal elements on the
decoherence timescale, themaster equation becomes approximately

ρ̇cm(t) ≈ −
i
~

[
H̃cm+

(
m+

Ē0

c2

)
gx ,ρcm(t)

]
−

(
1E0g
~c2

)2

t[x , [x ,ρcm(t)]] (6)

In the unitary part we have separated for clarity the Newtonian
gravitational potential (that is, Hcm= H̃cm+mgx): it is evident that
the potential couples to an effective total mass mtot=m+ Ē0/c2
that includes the average internal energy, which becomes
Ē0=〈H0〉≈NkBT for the previously considered model with N
thermal internal harmonic oscillators. This is in accordance with
the notion of heat in general relativity (in Einstein’s words22:
‘a piece of iron weighs more when red-hot than when cool’),
the relation to the Tolman effect is briefly discussed in the
Supplementary Information. The non-unitary part now depends
only on the stationary x-contributions (see also Fig. 2a). The
decoherence timescale is found from the solution to equation (6),
which for the off-diagonal terms ρ(12)cm is approximately (to order
O(~−2)): ρ(12)cm (t)∼ρ(12)cm (0)e−(t/τdec)

2 , with τdec =
√
2~c2/(1E0g1x).

The loss of visibility thus agrees with equation (2) and the
decoherence timescale reduces to equation (3) for the specific
model used previously. The master equation due to gravitational
time dilation, equation (6), is similar in form to other master
equations typically studied in the field of decoherence4,21, but
does not include any dissipative term. Thus time dilation provides
naturally an ‘ideal’ master equation for decoherence that suppresses
off-diagonal terms in the position basis for stationary particles. For
non-stationary systems, decoherence is governed by equation (5)
and the pointer basis derives from a combination of x and p.
Position and momentum are therefore naturally driven into
becoming classical variables. The evolution in the presence
of gravitational time dilation is inherently non-Markovian,
because the overall acquired proper time difference is crucial.
This results in a Gaussian decay (rather than an exponential
decay as in Markovian models) of the off-diagonal elements
and the decoherence time depends directly on the fluctuations
in internal energy. This again highlights the interplay between
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thermodynamics, relativity and quantum theory that is relevant for
this effect.

To estimate the strength of the decoherence due to time
dilation, we make use of equation (3) and consider a human-
scale macroscopic system at room temperature. Assuming that
the system has Avogadro’s number of constituent particles which
oscillate, we set N ∼ 1023, which amounts to a gram-scale system.
For a superposition size of 1x = 10−6 m, the decoherence time
(3) becomes

τdec≈10−3 s

Remarkably, even though the gravitational time dilation is very
weak, its resulting decoherence is already substantial on human
scales and not just for astrophysical objects. Macroscopic objects
completely decohere on Earth on a short timescale owing to
gravitational time dilation. In contrast to other decoherence
mechanisms, this effect cannot be shielded and decoherence
will occur whenever there is time dilation between superposed
amplitudes. But, as any other decoherence in quantum theory, the
effect is in principle reversible: as is apparent from equation (4),
‘revivals’ of coherence will occur after a sufficiently large proper
time difference is accumulated, dependent on the frequencies of the
internal degrees of freedom.However, the corresponding recurrence
times typically scale exponentially with the size of the system23, thus
time dilation can cause decoherence which is irreversible ‘for all
practical purposes’ if interfering paths have a proper time difference.
This will be increasingly difficult to control in experiments with
large, composite systems, and is simply unavoidable for systems not
under experimental control.

From the perspective of quantum theory, decoherence due to
time dilation is fully analogous to any other decoherence source.
The loss of coherence takes place because of correlations with
degrees of freedom that are not accessible—here, internal degrees of
freedom of the composite system. The unique aspect of the effect
described here is that the correlations are induced by relativistic
time dilation, and would not take place in Newtonian gravity. Thus,
to understand this effect it is necessary to invoke quantum theory
and time dilation stemming from Earth’s gravitational field. The
phenomenon arises already in weak, stationary spacetimes and
decoheres composite systems into the position basis, even if they
are isolated from any external environment. It is thus of a different
nature from that of decoherence due to scattering with gravitational
waves11–13. Importantly, the time-dilation-induced decoherence is
entirely within the framework of quantum mechanics and classical
general relativity. No free ‘model parameters’ enter and unitarity
is preserved on a fundamental level. This is in stark contrast to
hypothetical models where gravity leads to spontaneous collapse
of the wavefunction and that require a breakdown of unitarity14–16
or include stochastic fluctuations of the metric24. Our results
show that general relativity can account for the suppression of
quantum behaviour for macroscopic objects without introducing
any modifications to quantum mechanics or to general relativity.

We now discuss a possible direct experimental verification of the
derived decoherence mechanism. The gravitational time dilation is
well tested in classical physics18,19, but the quantized Hamiltonian
(1) has not yet been studied experimentally. In particular, an ex-
periment to study the induced quantum entanglement of internal
degrees of freedom with the centre-of-mass mode, first proposed
in ref. 20, has not yet been realized. To confirm this quantum
mechanical interaction one can use controllable internal states in
matter-wave interferometry20, or use Shapiro-delay in single photon
interference25 (a related effect for entangled photon pairs was also
discussed in ref. 26). Such an experimental verification of the quan-
tum Hamiltonian (1) would be a strong indication for the presence
of the decoherence described here. To test directly the decoherence
due to time dilation it is necessary to bring relatively complex
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Figure 3 | Decoherence due to gravitational time dilation as compared to
decoherence due to emission of thermal radiation for sapphire
microspheres. In the green region time dilation is the dominant
decoherence mechanism. The left axis shows various sphere radii r
(corresponding to particle numbers N= 107 to N= 1018) for a fixed
superposition size1x, whereas the right axis shows various superposition
sizes for a fixed particle radius. The dashed lines correspond to the
respective time dilation decoherence time scales as in equation (3).
Sapphire was chosen for its low emission at microwave frequencies.

systems into superposition. This can in principle be achieved with
molecule interferometry3,8, cooled microspheres27,28 or with micro-
mechanical mirrors29. The latter, however, is expected to be limited
to very small separations only (of the order of 1 pm) and is therefore
less suitable. To see decoherence caused by time dilation, other deco-
herencemechanisms will need to be suppressed: The scattering with
surrounding molecules and with thermal radiation requires such an
experiment to be performed at liquid helium temperatures and in
ultrahigh vacuum7. Furthermore, the emission and absorption of
thermal radiation by the system8 will be a competing decoherence
source. For the parameter regime studied here, emission of radia-
tion is expected to be the dominant decoherence effect, with the
decoherence time4,7 τem = (

∫
dkk2c g (k)σeff(k)1x2)−1, where g (k)

is the mode density of the wavevectors k, and σeff(k) the effective
scattering cross section. To see the time-dilation-induced decoher-
ence, we require that the decoherence due to emission of radiation
is weaker than due to time dilation—that is, τdec . τem. To get
quantitative estimates, we rely on the harmonic oscillator model
introduced previously and show in Fig. 3 the parameter regime
where time-dilation-induced decoherence can in principle be dis-
tinguished from decoherence due to thermal emission, focusing
on micro-scale particles at cryogenic temperatures (sapphire was
chosen owing to its lowmicrowave emission at low temperatures30).
The emission of radiation can be further suppressed if the mode
density is reduced, which can ease the restrictions on temperature.
However, we note that the simple model for the composition of the
system, necessary to estimate the time dilation decoherence rate, is
very crude and at low temperatures we expect the model to break
down. Given a specific system, the time dilation decoherence can be
estimated more accurately by measurement of the internal energy
fluctuations through the heat capacity. Although an experiment to
measure decoherence due to proper time is very challenging, the
rapid developments in controlling large quantum systems3,27,28 for
quantum metrology and for testing wavefunction collapse mod-
els16,29 will inevitably come to the regime where the time-dilation-
induced decoherence predicted here will be of importance. In the
long run, experiments on Earth will have to be specifically designed
to avoid this gravitational effect on quantum coherence. As a final
remark, we note that owing to the universality of time dilation, all
dynamical processes contribute to this decoherence, even those that
are typically experimentally inaccessible (such as nuclear dynamics,
which has not been taken into account in our treatment). Thus time
dilation decoherence could also serve as a tool to indirectly study
dynamical processes within composite systems.

NATURE PHYSICS | VOL 11 | AUGUST 2015 | www.nature.com/naturephysics 671

© 2015 Macmillan Publishers Limited. All rights reserved© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nphys3366
www.nature.com/naturephysics


ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3366

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Hamiltonian for gravitational time dilation.We present a Hamiltonian
formalism useful to describe the dynamics of low-energy quantum systems with
internal degrees of freedom subject to time dilation. We further show an explicit
example of a quantum field in curved spacetime whose dynamics reduces to the
same Hamiltonian in the appropriate limit.

We consider the time evolution of a composite quantum system in the
low-energy limit on a generic spacetime, described by a metric gµν with signature
(−+++). We restrict the treatment to static metrics with ∂0gµν=0 and g0i=0,
where Latin indices refer to the spatial 3-components. The typical systems we
consider are low-energy quantum systems (such as atoms, molecules, nanospheres,
and so on) with internal energy levels (such as electronic, rotational, vibrational) in
a weak gravitational field and under small accelerations. For such systems, one can
assume that the relative distances between their constituents are sufficiently small,
such that variations of the metric over their extension can be neglected. In this case
one can assign a single position degree of freedom to the centre of mass of the
system, which in the classical limit describes a single world line. In other words, we
consider the limit in which the system can be effectively considered as ‘point-like’
with internal degrees of freedom. This is directly analogous to the notion of ideal
clocks in relativity, which measure time along a well-localized world line.

The rest energy Erest of the system is defined as the invariant quantity

pµpµ=gµνpµpν=−(Erest/c)2 (7)

corresponding to the total mass–energy as measured by a comoving observer. Here
pµ is the system’s total 4-momentum in arbitrary coordinates (we restrict to
coordinates which keep the stated assumptions for the metric). The dynamics of
the system can be described in terms of the evolution with respect to an arbitrary
time coordinate t . The generator of the coordinate-time translations follows from
equation (7) and is given by the Hamiltonian

H=cp0=
√
−g00(E2

rest+c2g ijpipj) (8)

If the particle is at rest with respect to a static observer, the energy is
H=
√
−g00Erest. This ‘redshift factor’ is also sometimes expressed in terms of the

time-like Killing vector kµ as
√
−kµkµ=

√
−g00. The rest energy Erest is the total

Hamiltonian of the system in its local comoving frame. The static rest mass
contributionmc2 can be explicitly separated, and the remaining part is just the
Hamiltonian of the internal degrees of freedom, which we denote by H0. The full
dynamics of internal and external degrees of freedom is thus governed by the total
Hamiltonian (8), with

Erest=mc2+H0 (9)

Relativistically, there is no distinction between ‘rest mass’ and ‘rest energy’. In fact,
the largest contribution to the rest massm of the systems we consider, for example,
a molecule, is already given by binding energies between atoms, nucleons, quarks
and all other constituents (at an even more fundamental level, masses of
fundamental particles are reducible to interaction energies with the Higgs field,
according to the standard model of particle physics). The natural choice for the
split (9) is dictated by the energy scale: if some degrees of freedom are ‘frozen’, their
contribution to the rest energy can be incorporated in the mass term. The split
between mass and internal energy (9) is thus merely conventional, and amounts to
a choice of the zero-energy state of the internal degrees of freedom. The general
expression (9) can also be derived from the action of a particle in the comoving
frame, in which the time coordinate coincides with the proper time: S=

∫
Lrestdτ ,

where Lrest=Lrest(qi,q′i) is the Lagrangian describing the internal degrees of freedom
with coordinates qi and q′i=dqi/dτ . Changing to the lab frame this expression
becomes S=

∫
Lrest(qi, q̇it ′)τ̇dt , with τ̇=dτ/dt=

√
gµν ẋµẋν and t ′=dt/dτ . The

Legendre transform yields the Hamiltonian for the system, which gives exactly the
expression (8) with

Erest=
∂Lrest

∂q′i
q′i−Lrest (10)

If the internal dynamics is irrelevant, we simply have Lrest=−mc2 and Erest=mc2.
But in general any arbitrary internal dynamics governed by Lrest gives rise to the
total energy as in equation (8) with Erest as in equation (10). For example, two
masses on a spring (with total massm, reduced mass µ and spring constant k) in
the comoving frame of the centre of mass are described by
Lrest=µq′2/2−kq2/2−mc2, where q is the relative degree of freedom of the two
masses. This gives Erest=mc2+µq′2/2+kq2/2=mc2+H0, where H0 describes the
dynamical part of the internal degrees of freedom.

To obtain the quantum equations of motion one can replace the 4-momenta in
the full expression (7) with covariant derivatives, which leads to a modified
Klein–Gordon equation with Erest as the invariant total mass (a similar derivation
can be applied to the Dirac equation to describe particles with spin). For energies
small compared to Erest (such that particle creation and other quantum field effects
are negligible), the Klein–Gordon field is treated as a particle in first quantization,
and the low-energy Schrödinger evolution is obtained. Specifically, on a

post-Newtonian background metric with g00=−(1+2Φ(x)/c2+2Φ2(x)/c4) and
gij=δij(1−2Φ(x)/c2), where δij is the Kronecker delta, the Hamiltonian for the
dynamics of a point particle is obtained following ref. 31 (with the addition of
internal degrees of freedom in Erest), resulting in

H = m̄r c2+
p2

2m̄r
+m̄rΦ(x)−

p4

8m̄3
r c2
+

m̄rΦ
2(x)

2c2

+
3

2m̄r c2

(
Φ(x)p2+[pΦ(x)]p+

1
2
[p2Φ(x)]

)
(11)

where [pΦ] acts only on the potential and we introduced m̄r :=Erest/c2 to keep the
expansion to order c−2 explicit (in deriving the Hamiltonian there is an ambiguity
in the ordering of the pΦ(x) terms, but which does not affect the results for time
dilation). For an eigenstate |Ei〉 of the internal Hamiltonian H0 the rest energy in
the Hamiltonian (11) can be treated as a parameter m̄r=m+Ei/c2. For arbitrary
internal states and owing to the linearity of quantum mechanics, Erest has to be
treated as an operator acting on the internal degrees of freedom according to (9).
The Hamiltonian (11) thus describes the full quantum dynamics of the system,
including internal and external degrees of freedom. Expanding the result to first
order in H0/mc2, we find

H=Hcm+H0

(
1+

Φ(x)
c2
−

p2

2mc2

)
=Hcm+H0

(
1+

0(x ,p)
c2

)
(12)

where Hcm includes all terms acting on the centre of mass to this order of
approximation (and can also include any other interaction, such as the
electromagnetic interaction31,32). The term 0(x ,p)=Φ(x)−p2/2m2 captures the
time dilation, which effectively shifts the internal energy. An alternative route to get
equation (12) is to directly expand equation (8) in orders of c−2 and canonically
quantize the result, which yields the same Schrödinger equation with relativistic
corrections. The term proportional toΦ(x) stems from

√
−kµkµ=

√
−g00,

whereas the p2-term stems from the spatial gij components of the metric. The
former captures gravitational time dilation and the latter is the velocity-dependent
special relativistic time dilation. In total, equation (12) describes the special and
general relativistic corrections to the dynamics of a quantum system with internal
degrees of freedom, to lowest order in c−2. Note that the coupling between internal
and external degrees of freedom is completely independent of the nature and kinds
of interactions involved in the internal dynamics H0. This is a consequence of the
universality of time dilation, which affects all kinds of clocks, irrespectively of their
specific construction.

The description above is well suited for low-energy particles on a background
spacetime. The same results can also be obtained from a field theory description
and, to highlight this, we consider an explicit example in which the effective
Hamiltonian is derived starting from a quantum field. We consider a
Klein–Gordon field of massm, in a state approximately localized in some region of
space. The position of the region of space represents the ‘centre of mass’, whereas
the field describes the ‘internal degrees of freedom’ of our system. The dynamics of
the field is given by the action

S=−
1
2

∫
d4x
√
−g
[
gµν

∂φ

∂xµ
∂φ

∂xν
+m2φ2

]
(13)

where g is the determinant of gµν and we use units with c=1. To simplify the
discussion, we consider a system at a fixed height above Earth. The effect already
appears by expanding the metric at the first order: gij=δij, g00=−[1+2Φ(x)],
whereΦ(x) is the Newtonian potential. In this case the determinant is g=g00 and
g 00
=1/g00, so we can rewrite equation (13) as

S=−
1
2

∫
d4x
√
−g00

[
(∂tφ)

2

g00
+|∇φ|2+m2φ2

]
Once the coordinates are fixed, we can write S=

∫
dtL and single out the

Lagrangian

L=
1
2

∫
d3x
[
(∂tφ)

2

√
−g00
−
√
−g00(|∇φ|2+m2φ2)

]
To pass to the Hamiltonian picture, we need the conjugate momenta

π(x) :=
δL

δ∂tφ(x)
=

1
√
−g00

∂tφ(x)

The Hamiltonian in these coordinates is given by H=
∫
d3x π(x)∂tφ(x)−L.

Substituting ∂tφ(x)=
√
−g00π(x), we get

H=
1
2

∫
d3x
√
−g00[π(x)2+(|∇φ|2+m2φ2)] (14)

We are in particular interested in a system of small size sitting at a fixed space
coordinate x̄ above Earth. This can be modelled by confining the field to a small
box of volume V around x̄ , so that the space integral (14) can be restricted to that
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volume. If the potential is approximately constant within the volume,Φ(x)≈Φ(x̄)
for x∈V , we can take it out of the integral and obtain

H≈
√
−g00(x̄)H0=

√
1+2Φ(x̄)H0 (15)

where the rest Hamiltonian is given by H0=(1/2)
∫
V d

3x[π(x)2+|∇φ|2+m2φ2
],

which is just the usual Klein–Gordon Hamiltonian in a finite volume in Minkowski
spacetime. The factor in front of H0 in equation (15) is responsible for the
gravitational redshift: all energies, when measured according to coordinate time,
are rescaled with respect to those measured locally at the position of the system. We
can see this explicitly by considering a cubic box of side l=V 1/3, for which the rest
Hamiltonian can be diagonalized as

H0=
∑

k

Eka†
kak

where, restoring units, Ek=c
√
k2+m2c2, kj=(2π~/l)nj for nj∈N, j=1,2,3 and a†

k
(ak) creates (annihilates) a boson with momentum k (neglecting the constant
vacuum energy). For a particle at a distance x above Earth, we can set√
−g00(x)≈1+Φ(x)/c2≈1+gx/c2, where g is the gravitational acceleration. The

Hamiltonian (15) thus becomes

H≈
(
1+

gx
c2
)∑

k

Eka†
kak (16)

Equation 16 shows the same coupling between position and internal energy as
described in the main text (equation (1)). It is valid for a system at rest in the
chosen coordinate system—that is, with vanishing external momentum. The
contribution of the external momentum is recovered by moving to an arbitrary
coordinate system, yielding the coupling (12).

Master equation due to gravitational time dilation.Here we derive an
equation of motion for the centre of mass of a composite quantum system in the
presence of time dilation. We keep the composition, the centre-of-mass
Hamiltonian Hcm and the relativistic time dilation completely general. The overall
Hamiltonian of the system isHtot=Hcm+H0+Hint, whereH0 governs the evolution
of the internal constituents and Hint=H00(x ,p)/c2 captures the
time-dilation-induced coupling between internal degrees of freedom and the centre
of mass to lowest order in c−2. 0 is a function of the centre-of-mass position x and
momentum p to which the internal states couple owing to special relativistic and
general relativistic time dilation (for the Schwarzschild metric in the weak-field
limit we have 0(x ,p)=Φ(x)−p2/2m2). We start with the von Neumann equation
for the full state ρ̇=−i/~[Htot,ρ] and write Htot=H+Hint, where H=Hcm+H0.
We change frame to primed coordinates, which we define through
ρ ′(t)=eit(H+h)/~ρ(t)e−it(H+h)/~, where
h=h(x ,p)=

∏N
i=1Tri[Hintρi(0)]=0(x ,p)Ē0/c2 with the average internal energy Ē0.

The resulting von Neumann equation is

ρ̇ ′(t) =
i
~
[H ′(t)+h′(t),ρ ′(t)]−

i
~
[H ′(t)+H ′int(t),ρ

′(t)]

= −
i
~
[H ′int(t)−h

′(t),ρ ′(t)]

where h′(t)=h(x ′(t),p′(t)). The formal solution
ρ ′(t)=ρ ′(0)−(i/~)

∫ t
0 ds[H

′

int(s)−h′(s),ρ ′(s)] is used in the equation above, which
yields the integro-differential equation

ρ̇ ′(t) = −
i
~
[H ′int(t)−h

′(t),ρ ′(0)]

−
1
~2

∫ t

0
ds[H ′int(t)−h

′(t), [H ′int(s)−h
′(s),ρ ′(s)]]

We can now trace over the internal degrees of freedom. The state is initially
uncorrelated ρ(0)=ρcm(0)⊗

∏N
i ρi(0) and we take the Born approximation,

keeping only terms to second order in Hint. In this case ρ ′(s) can be replaced
under the integral by ρ ′cm(s)⊗ρi(0) and the master equation for the centre of
mass becomes

ρ̇ ′cm(t) =
N∏
i=1

Tri[ρ̇ ′(t)]

≈ −
1
~2

N∏
i=1

∫ t

0
dsTri{[H ′int(t)−h

′(t), [H ′int(s)−h
′(s),ρ ′(s)]]}

= −

(
1
~c2

)2 N∏
i=1

∫ t

0
dsTri{(H0− Ē0)

2
[0′(t), [0′(s),ρ ′(s)]]}

= −

(
1E0

~c2

)2 ∫ t

0
ds [0′(t), [0′(s),ρ ′cm(s)]]

Here we used the notation1E2
0 =
∏N

i=1Tri{(H0− Ē0)
2
}=〈H 2

0 〉−〈H0〉
2 for the

energy fluctuations of the internal states and 0′(s)=0(x ′(s),p′(s)). Changing back
to the Schrödinger picture, and introducing s→ t− s we obtain the
integro-differential equation:

ρ̇cm(t) = −
i
~

[
Hcm+0(x ,p)

Ē0

c2
,ρcm(t)

]

−

(
1E0

~c2

)2 ∫ t

0
ds[0(x ,p), [0(x ,p),ρcm(t− s)]|s] (17)

where [0,ρcm]|s=e−isHcm/~[0,ρcm]eisHcm/~. Equation 17 is the general equation of
motion for a composite particle of arbitrary composition that undergoes time
dilation. The decoherence of its off-diagonal elements is governed by its internal
energy spread1E0 and by the metric-dependent coupling 0. The former is
1E2

0 ≈N (kBT )2 in the high-temperature limit for N/3 non-interacting internal
harmonic oscillators and the latter is 0=Φ(x)≈gx for stationary particles in the
homogeneous weak-field limit of the Schwarzschild metric.
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