PHYS460, Test 1, Fall 2015

You must show work to get credit. Possible integrals you might need are in the back cover of the book.
(1) (5 pts) A particle is in the potential well that has the form $V(x)=C x^{4}$ where $C>0$. Describe the features of the eigenstates and/or eigenvalues. You will get 1 pt for each independent feature that is correct, but you will be deducted 1 pt for each feature that is wrong.
(2) (5 pts) For this problem, you are scientific advisor for the science fiction movie Shelby's Conundrum where the premise is $\hbar=1 \mathrm{~J}$ s. The hero, Shelby McShelby III, measures the position and velocity of a pack of killer gerbils ($M_{\text {gerbil }}=1000 \mathrm{~kg}$) that are all in the same (angry) quantum state (don't ask why; I didn't say it was a good movie). He measured: 8.1 m 4 times, 8.3 m 10 times, 8.4 m 4 times, and 8.5 m 2 times for the position and $-0.50 \mathrm{~m} / \mathrm{s} 4$ times, $-0.51 \mathrm{~m} / \mathrm{s} 12$ times, and $-0.52 \mathrm{~m} / \mathrm{s} 4$ times for the velocity. (a) Are these measurements consistent with the quantum mechanics of Shelby's world? (b) Would you use your real name in the movie credits?
(3) (5 pts) A particle experiences a constant force in the $-x$ direction. There is an infinite wall at $x=0$ so that the particle is only measurable at $x>0$. Give the wave function at some random energy $E>0$ as a power series in x through the term proportional to x^{5}.
(4) (5 pts) The wave function $\Psi(x, 0)=C \exp (-\alpha|x|+i b x)$ where α, b, and C are positive real constants and $-\infty<x<\infty$. Compute the expectation value of \hat{x} and the expectation value of \hat{p}.
(5) (10 pts) You have a potential $V(x)=-\alpha[\delta(x-a)+\delta(x+a)]$. Determine the ground state wave function and the transendental equation for the ground state energy.
(6) (10 pts) You have an electron in an infinite square well with $0<x<a$. The wave function $\Psi(x, 0)=B x^{2}(a-x)$. Compute the average energy that you would measure. Compare your result to the ground state energy.
(7) (10 pts) You have a mass that experiences the potential $V(x)=(1 / 2) M \omega^{2} x^{2}$. The wave function at $t=0$ is $\Psi(x, 0)=D x(1-4 \sqrt{M \omega / \hbar x}) \exp \left(-M \omega x^{2} /[2 \hbar]\right)$. (a) Compute the average energy you would measure. (b) Compute $\Psi(x, t)$.

