PHYS460, Test 2, Fall 2014

You must show work to get credit!!!!!!

(1) (5 pts) Sketch the $P_{\ell}^{m}(x)$ function in the relevant range of x for the case of $\ell=7, m=4$. Point out all of the relevant features for that ℓ, m.
(2) (5 pts) In T. Li, et al, Phys. Rev. Lett. 109, 163001 (2012), they proposed an experiment that would consist of a ring of 100 trapped ${ }^{9} \mathrm{Be}^{+}$ions. As a first step, they will trap one ion. You can approximate the ion motion as confined to a ring of radius 50 nm in the $x y$-plane. What are the lowest 3 energy levels in Joules and in Kelvins?
(3) (5 pts) You have a 1D potential with the form $V(x)=0$ for $|x|>a$ and $V(x)=$ $-(1 / 10) \hbar^{2} \pi^{2} /\left(2 M[2 a]^{2}\right)$ for $|x|<a$. There is one bound state. Give the bound state energy in the form $E=-f \hbar^{2} \pi^{2} /\left(2 M[2 a]^{2}\right)$ with your value of f good to 2 significant digits. Make sure to clearly write down your algorithm.
(4) (5 pts) Laser cooling and trapping techniques have progressed to the point where a quantum hamster with mass M_{h} is in the ground state of an infinite square well potential, $V(x)=0$ for $0<x<a$ and $V(x)=\infty$ elsewhere. (a) What is the probability to measure the hamster's momentum between p and $p+d p$? (b) Is it ethical to expose an innocent hamster to laser cooling and trapping techniques?
(5) (10 pts) The 3D potential energy for a quark can be (crudely) approximated as linearly increasing with distance from the origin. For a specified energy $E>0$, give the first 4 nonzero terms in the power series expansion (in r) of the radial part of the wave function for $\ell=2, m=-1$. Do not worry about normalization or whether E is an eigenenergy.
(6) (10 pts) For classical particles, the equations for the angular momenta are $d \vec{L} / d t=\vec{N}$ where the torque $\vec{N}=\vec{r} \times \vec{F}(\vec{r})$. (a) For a quantum particle, find $d\langle\vec{L}\rangle(t) / d t=\langle ? ? ?\rangle$. (b) Evaluate the right hand side when the potential energy is spherically symmetric.
(7) (10 pts) You have a 2×2 Hamiltonian with elements $H_{11}=3 V, H_{22}=-3 V$, and $H_{12}=4 V$. (1 pt) (a) What is the matrix element H_{21} ? Give the reason for your answer. (3 pt) (b) Determine the two eigenenergies. (3 pt) (c) Determine the two eigenstates. (3 pt)
(d) At time $t=0$, the state is $|\Psi(0)\rangle=|1\rangle$. Determine $|\Psi(t)\rangle$.
$P_{7}^{4}()^{2} \uparrow$ antisymmetric about 0

$$
3 \text { nodes }=l-m
$$

, $i^{\left.2 v^{2}\right)}$ The Hamiltonian is $H=\frac{L_{z}^{2}}{2 M R^{2}}=-\frac{\hbar^{2}}{2 M R^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}$
2? iv er
The eigenstates are $\frac{1}{\sqrt{2 \pi}} e^{i m \phi}$ with eigenvalues $\frac{\hbar^{2} m^{2}}{2 m R^{2}}$
The lowest 3 energy levels are $0, \hbar^{2} / 2 M R^{2}, 4 \hbar^{2} / 2 M R^{2}$

$$
\begin{aligned}
& M=9 \cdot 1.66 \times 10^{-27} \mathrm{~kg}=1.49 \times 10^{-26} \mathrm{kq} \\
& \hbar^{2} / 2 \mathrm{mR}=\frac{\left(\frac{1.055 \times 10^{-34} \mathrm{JJ} \mathrm{~J}^{2}}{2} 1.49 \times 10^{-26} \mathrm{~kg}\left(50110^{-9 \mathrm{~m}}\right)^{2}=1.49 \times 10^{-28} \mathrm{~J}=1.08 \times 10^{-5} \mathrm{~K}\right.}{E=0,1.49 \times 10^{-28} \mathrm{~J}, 5.96 \times 10^{-28} \mathrm{~J}} \\
& \quad 0,1.08 \times 10^{-5} \mathrm{~K}, 4.32 \times 10^{-5} \mathrm{~K}
\end{aligned}
$$

3)

$$
\begin{aligned}
& \text { Need to satisfy } E_{q} .2 .154 \quad K=l \tan l a \\
& K=\sqrt{-2 m E / \hbar^{2}}=\sqrt{z M f t^{2} \pi^{2} / z M(2 a)^{2} \hbar^{\prime}}=\sqrt{f} \frac{\pi}{2 a} \\
& l=\sqrt{2 m\left(E+V_{0}\right) / \hbar^{2}}=\sqrt{2 m\left(\frac{1}{10}-f\right) \hbar^{2} \pi^{2} / 2 m(2 a)^{2} l^{l}}=\sqrt{10-f} \frac{\pi}{2 a}
\end{aligned}
$$

So the Eq. 2.154 becomes $\quad \sqrt{f}=\sqrt{\frac{1}{0}-f} \tan \left(\sqrt{\frac{1}{10}-f} \frac{\pi}{2}\right)$
Algorithm guess f, put in right hand side, use to find new ff

$$
f_{\text {new }}=\left(\frac{1}{10}-f_{012}\right) \tan ^{2}\left(\sqrt{10-f_{010}} \frac{\pi}{2}\right)
$$

Knowing $0<f<1 / 10$, you can find $\sqrt{f}-\sqrt{\frac{1}{10}-f} \tan \left(\sqrt{\frac{1}{10}-f} \frac{\pi}{2}\right)=0$ to 1% with ~ 5 guesses at f
an From Eq. 3.53

$$
\begin{aligned}
& C(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{0}^{a} e^{-i p^{x} / \hbar} \sqrt{\frac{2}{a}} \sin \left(\frac{\pi x}{a}\right) d x \\
& =\frac{1}{\sqrt{2 \pi+}} \frac{1}{2 i} \sqrt{\frac{2}{a}} \int_{0}^{a} e^{i\left(\frac{\pi}{a}-P / n\right) x}-e^{-i\left(\frac{\pi}{a}+P_{n}\right) x} d x \\
& =\frac{1}{\sqrt{2 \pi} \hbar} \frac{1}{2 i} \sqrt{\frac{2}{a}}\left\{\frac{1}{i\left(\frac{1}{a}-p / t\right)}\left[e^{i\left(\frac{\pi}{a}-P_{4}\right) a}-1\right]-\frac{1}{-i\left(\frac{\pi}{a}+P / a\right)}\left[e^{-i(\pi / a+P / a) a}-1\right]\right\} \\
& =\frac{1}{2 \sqrt{\pi \hbar a}}\left[\frac{e^{-i P a / \hbar}+1}{\pi / / a / \hbar}+\frac{e^{-i p a / \hbar}+1}{\pi / 2+p / \pi}\right] \quad \text { ale } e^{i \frac{\pi}{\hbar} a}=-1 \\
& =\frac{1}{\sqrt{\pi \hbar \hbar}} e^{-i p a / 2 \hbar} \cos \left(\frac{p a}{2 \hbar}\right) \frac{2 \pi / a}{(\pi / a)^{2}-(p / \hbar)^{2}} \\
& |C(p)|^{2} d p=\frac{\cos ^{2}\left(\frac{p a}{3 \hbar}\right)\left(4 \pi / a^{2}\right)}{\pi \hbar a a\left[\left(\pi / a^{2}\right)-(p / a)^{2}\right]^{2}} d p
\end{aligned}
$$

Is any hamster truly innocent?
$V^{2}+v^{t h}$ 5) The solution $\psi=\frac{u_{1} r}{r} Y_{2}^{-1}(\theta, \varphi)$
From Eq 4.37

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[\alpha \cdot r+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u
$$

For $\quad l=2 \quad u=a_{0} r^{3}+a_{1} r^{4}+a_{2} r^{5}+a_{3} r^{6}$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m}\left[3 \cdot 2 a_{0} r+4.3 a_{1} r^{2}+5.4 a_{2} r^{3}+6.5 a_{3} r^{4}\right]+\alpha a_{0} r^{4}+\alpha a_{1} r^{5}+\alpha a_{2} r^{6}+\alpha a_{3} r^{3} \ldots \\
& +\frac{\hbar^{2}}{2 m}\left[3.2 a_{0} r+3.2 a_{1} r^{2}+3.2 a_{2} r^{3}+3.2 a_{3} r^{4}\right]=E a_{0} r^{3}+E a_{1} r^{4}+E a_{2} r^{5}+E a_{3} r^{6} \ldots
\end{aligned}
$$

OCr) $-\frac{\hbar^{2}}{2 m} 3 \cdot 2 a_{0}+\frac{\hbar^{2}}{2 m} 3 \cdot 2 a_{0}=0 \Rightarrow a_{0}=1$
$O\left(r^{2}\right) \quad-\frac{\hbar^{2}}{2 m} 4 \cdot 3 a_{1}+\frac{\hbar^{2}}{2 m} 3 \cdot 2 a_{1}=0 \quad \Rightarrow \quad a_{1}=0$
$O\left(r^{3}\right) \quad-\frac{\hbar^{2}}{2 m} 5 \cdot 4 a_{2}+\frac{\hbar^{2}}{2 m} 3 \cdot 2 a_{2}=E a_{0} \Rightarrow a_{2}=-E a_{0} /\left(14 \hbar^{2} / 2 m\right)=-E /\left(14 \hbar^{2} / 2 m\right)$
ok tor
stop hen
$O\left(r^{4}\right)$

$$
-\frac{\hbar^{2}}{2 m} 6 \cdot 5 a_{3}+\frac{\hbar^{2}}{2 m} 3 \cdot 2 a_{3}+\alpha a_{0}=E a_{1} \Rightarrow a_{3}=+\alpha /\left(24 \hbar^{2} / 2 m\right)
$$

$O\left(r^{5}\right) \quad \frac{-\hbar^{2}}{2 m} 7.6 a_{4}+\frac{\hbar^{2}}{2 m} 3.2 a_{4}+\alpha a_{1}=E a_{2} \Rightarrow a_{4}=-E a_{2} /\left(42+t^{2} / m\right)=E^{2} /\left[\frac{14 \hbar^{2}}{2 m} \frac{422^{2}}{2 m}\right]$
6) $\vec{L}=\vec{r} \times \vec{p}$

From Eq. $3.71, \frac{d\langle\vec{L}\rangle}{d t}=\frac{i}{\hbar}\langle[H, \vec{L}]\rangle$

$$
\begin{aligned}
& {[H, \vec{L}] }=[H, \vec{r} \times \vec{p}]=[H, \vec{r}] \times \vec{p}+\vec{r} \times[H, \vec{p}] \\
& {[H, \vec{l}]=\left[\frac{p^{2}}{2 m}, \vec{r}\right] \times \vec{p}+\overrightarrow{\sqrt{x}}[V, \vec{p}] } \\
&=\frac{\hbar}{i m} \vec{p} \times \vec{p}+\vec{r} \times(i \hbar(\vec{p} V))=-i \hbar \vec{r} \times \vec{F}(\vec{r}) \\
& \Rightarrow \frac{d\langle\vec{l}\rangle}{d t}=\frac{i}{\hbar}(-i \hbar)\langle\vec{r} \times \vec{F}(\vec{r})\rangle=\langle\vec{r} \times \vec{F}(\vec{r})\rangle
\end{aligned}
$$

If V is spherically symmetric $\vec{F}=-\hat{r} \frac{\partial V}{\partial r}$
This, gives $\vec{r} \times \hat{r}=0$

$$
\frac{d\langle\dot{L}\rangle}{d t}=0
$$

ans

$$
H_{21}=H_{12}^{*}=4 V^{*}=4 V \quad\left(V \text { must be real because } H_{i i}^{*}=H_{i i}\right)
$$

To find eigenvalues use $\operatorname{det}\left(\begin{array}{cc}H_{1}-t & H_{12} \\ H_{21} & H_{21}-E\end{array}\right)=0$

$$
\operatorname{det}\left(\begin{array}{cc}
3 V-E & 4 V \\
4 V & -3 V-E
\end{array}\right)=(E-3 V)(E+3 V)-(4 V)^{2}=E^{2}-9 V^{2}-16 V^{2}=E^{2}-25 V^{2}=0
$$

$E_{ \pm}= \pm 5 \mathrm{~V}$ are eigen values
Eigenstate for $E_{+} \quad 3 V c_{1}+4 v c_{2}=5 v c_{1} \Rightarrow 2 c_{2}=c_{1}$
use $c_{1}^{2}+c_{2}^{2}=4 c_{2}^{2}+c_{2}^{2}=5 c_{2}^{2}=1 \Rightarrow c_{2}=1 / \sqrt{5} \quad c_{1}=2 / \sqrt{5}$

Eigenstate for $E_{-} \quad 3 V c_{1}+4 V c_{2}=-5 V c_{1} \Rightarrow c_{2}=-2 c_{1}$ Use $c_{1}^{2}+c_{2}^{2}=c_{1}^{2}+4 c_{1}^{2}=5 c_{1}^{2}=1 \Rightarrow c_{1}=1 / \sqrt{5} \quad c_{2}=-2 / \sqrt{5}$

$$
\begin{aligned}
& E_{+}=5 \mathrm{~V} \quad \psi_{1}=\binom{2 / \sqrt{5}}{1 / \sqrt{5}} \quad E_{-}=-5 \mathrm{~V} \quad \psi_{-}=\binom{1 / \sqrt{5}}{-2 / \sqrt{5}}
\end{aligned}
$$

$$
(\psi(t))=\binom{\frac{4}{5} e^{-i 5 V t / \hbar}+\frac{1}{5} e^{i 5 V t / \hbar}}{\frac{2}{5} e^{-i 5 V t / \hbar}-\frac{2}{5} e^{i 5 v t / \hbar}}=\binom{\frac{4}{5} e^{-i 5 v t / \pi}+\frac{1}{5} e^{i 5 v t / \hbar}}{-\frac{4 i}{5} \sin \left(\frac{5 v t}{5}\right)}
$$

