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Abstract

Dynamic force microscopy (DFM) utilizes the dynamic response of a resonating
probe tip as it approaches and retracts from a sample to measure the topography
and material properties of a nanostructure. We present recent results based on
nonlinear dynamical systems theory, computational continuation techniques and
detailed experiments that yield new perspectives and insights into DFM.

A dynamic model including van der Waals and Derjaguin-Müller-Toporov contact
forces demonstrates that periodic solutions can be represented as a catastrophe
surface with respect to the approach distance and excitation frequency. Turning
points on the surface lead to hysteretic amplitude jumps as the tip nears/retracts
from the sample. New light is cast upon sudden global changes that occur in the
interaction potential at certain gap widths that cause the tip to “stick” to, or tap
irregularly the sample. Experiments are performed using a tapping mode tip on a
graphite sample to verify the predictions.
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1 Introduction

The study of the variation of interaction force with separation between an
atomic force microscope tip and sample is of fundamental importance in
nanoscience. Traditionally this is performed in the static mode where the
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deflection of the cantilever is monitored as it approaches and retracts from
the sample. Dynamic force microscopy (DFM) uses a resonating tip to ap-
proach and retract from the sample. The measurement of the amplitude and
phase of the resonating tip during approach and retraction has been used to
measure viscoelastic losses in the sample [1], material properties of samples in
liquids [2], and in air [3]. Because the tapping mode phase response is sensi-
tive to sample elasticity, it can be used to image multi-component specimens
with negligible difference in topography but substantial difference in elastic-
ity. Developing a fundamental understanding of DFM response also aids the
optimization of tapping mode phase imaging for multi-component samples [4]
and soft biomolecules [5].

The underlying dynamics of the resonating microcantilever during approach
and retraction is highly nonlinear and has been investigated by a number of
authors [4,6–9]. The main conclusions of these previous works can be sum-
marized as (i) sharp jumps can occur at certain separations in the vibration
amplitude and phase response as the resonating tip approaches the sample,
(ii) these jumps can occur during retraction at different separations leading
to reproducible hysteresis, (iii) the occurrence of these jumps is excitation fre-
quency dependent, that is, for some frequency no jumps may occur while for
frequencies just above and below resonance hysteresis occurs but at different
tip sample separations, (iv) it has been demonstrated that the presence of
jumps indicates a switching between two different co-existing periodic solu-
tions, one operating in the attractive interaction force regime and another in
the repulsive force regime, and (v) the magnitude of the jumps in the phase
response (which are a measure of the phase imaging contrast) during approach
and retraction are dependent on the cantilever stiffness, adhesion and sample
elasticity.

The above literature, however, does not describe the behavior of DFM at very
small separations when the tip can stick to the sample or vibrate irregularly.
Moreover the previous studies do not include all time dependent terms that are
inherent in the dither excited microcantilever and also are based on numerical
simulations which cannot detect unstable solutions. The first contribution of
the present work is to address these outstanding issues rigorously, using models
that include all time dependent terms and modern continuation tools to track
stable and unstable periodic motions. Another group of papers addresses the
the nonlinear response of the tapping mode AFM microcantilever with fixed
approach distance but with varying frequencies [10–13]. To date, however, a
clear connection has not been established between the nonlinear response ob-
served during the fixed approach distance, varying frequency scenario and the
nonlinear response for fixed frequency, varying approach distance (DFM) sce-
nario. In this regard, the second contribution of this paper is to explain this
connection using the concept of bifurcation sets. Finally, we perform exper-
iments using a Si tip and HOPG sample to demonstrate a close agreement
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between theoretical predictions and experimental response.

2 Modeling and equilibrium solutions

2.1 Tip-sample interactions and equation of motion

To analyze the tip-sample interaction in DFM, van der Waals and Derjaguin-
Mueller-Toporov (DMT) contact [14] forces (FvdW , FDMT ) between a sphere
(tip apex) and a flat surface (sample) are assumed. We use van der Waals
forces when tip is separated from the sample (Figure 1(a)).

FvdW (z) = −AR

6 z2
, (for z > a0) (1)

where A is the Hamaker constant, R is tip radius, and z is the instantaneous
tip-sample gap. When the tip contacts the sample (Figure 1(b)), according to
the DMT contact model

FDMT (z) = −AR

6 a2
0

+
4

3
E∗√R (a0 − z)3/2 , (for z ≤ a0) (2)

where E∗ is the effective elastic modulus which is determined by

1

E∗ =
1− ν2

tip

Etip

+
1− ν2

sample

Esample

,

where Etip, νtip, and Esample, νsample are respectively the Young’s modulus and
Poisson’s ratio of tip and sample. a0 is the intermolecular distance [12] at
which contact is initiated. The interaction force as a function of approach dis-
tance is plotted in Figure 2 using Equations (1) and (2) for specific sample-tip
properties listed in Table 1. The attractive (negative) interaction is primarily
due to the van der Waals forces while the repulsive interactions arise from the
DMT contact forces.

2.2 Nonlinear static equilibrium

First the static cantilever deflection without dynamic excitation is computed
by solving for the equilibrium gap between tip and sample (η∗ in Figure 5(a))
in the presence of the nonlinear interaction forces. Let Z be the approach
distance (see Figure 5). The equilibrium gap can be calculated as a function
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of approach distance Z through balance of the cantilever restoring force and
the tip-surface interaction forces.

k(Z − η∗) = Fi(η
∗), (3)

where k is the bending stiffness coefficient of the microcantilever, and Fi is
the total tip-sample interaction forces combined by FvdW and FDMT . Solving
the equation (3) for different Z yields the equilibrium gap between the tip
and sample η∗, as a function of Z. The Liapunov stability of an equilibrium
is computed easily using the Lagrange-Dirichlét theorem 1 .

Figure 3 shows the equilibrium solutions for the tip deflection and their stabil-
ity. For the nonlinear equilibrium solutions, we use the values listed in Table 1.
As is well known the tip snaps into contact on approach and snaps off on re-
traction. This divides problem into two regimes: monostable far from sample
and bistable close to sample where two stable and one unstable equilibria co-
exist.

The dynamics of the microcantilever in monostable and bistable region are
significantly different with distinct nonlinear behaviors and unique instabil-
ity mechanisms. This will be demonstrated in the following sections in detail
using a single mode discretization of the microcantilever-sample system. How-
ever to illustrate the point at this stage, the total potential energy wells of
the discretized model are plotted in Figure 4 for Z = 5 nm and 30 nm corre-
sponding respectively to bistable and monostable region. The total potential
energy is an asymmetric two-well potential in bistable region (Figure 4(a)),
while it is a single well potential in monostable region (Figure 4(b)). In both
cases the tip-sample contact leads to non-smoothness of the potential well.
The equilibrium closer to the sample corresponds to a state where the tip is
effectively stuck to the sample. Note also that the forced vibration responses
of the tip in these two potential wells are expected to be very different.

2.3 Dynamic equation

The dynamic equation of motion of tip deflection u(t) about its equilibrium
subject to base harmonic motion Y sin Ωt from the dither piezo can be de-
rived through a single mode discretization of the continuous cantilever model.
Writing the equations of motion of the vibrating microcantilever in a non-
inertial reference frame attached to the base of the microcantilever leads to

1 The stability can be determined by examining the sign of the second derivative of
the total potential energy (sum of the cantilever elastic energy and the interaction
potential) evaluated at that equilibrium.
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the following representation of the vibrations about the equilibrium

ρcAcü(x, t) + EcIc(u
′′′′(x, t) + w∗′′′′(x))

= Fi(Z − w(L, t))δ(x− L) + ρcAcΩ
2Y sin Ωt.

(4)

The equation (4) is highly nonlinear, and non-autonomous and its discretiza-
tion may be achieved suitably through a projection of the dynamics onto the
linear modes of the system. However, the linear modes and frequencies of
the microcantilever about its static equilibrium are different from those of a
microcantilever located far from the sample surface [15]. Using the Galerkin
method [16], the vibration modes and frequencies of the microcantilever with
the spring-coupled end [17] about the chosen nonlinear equilibrium (a specific
position on the stable equilibrium solution in Figure 3) are computed.

Consider now the situation when the excitation frequency Ω in equation (4)
is close to the lowest natural frequency ω1 of the microcantilever about its
elastostatic equilibrium. Under near-resonant forcing, only one mode of the
microcantilever is assumed to participate in the response

u(x, t) = Φ1(x)q1(t), (5)

where Φ1(x) is the first eigenfunction of the cantilever about the chosen equi-
librium and q1(t) is the time dependent generalized coordinate. Substitution
of equation (5) into equation (4), and on taking inner products of the re-
sulting equations with Φ1(x) yields the the dimensionless ordinary differential
equation of motion of the tip

d2η̄

dτ 2
+ D(z̄)

dη̄

dτ
+ η̄ = −C1 + F̄i (z̄) + BΩ̄2ȳ sin Ω̄τ, (6)

where

η̄ =
u(L, τ)

η∗
, ȳ =

Y

η∗
, Ω̄ =

Ω

ω1

, τ = ω1t, B =
Φ1(L)

∫ L
0 Φ1dx

∫ L
0 Φ2

1dx
,

D(z̄) =





D1, (for z̄ > ā0)

D2, (for z̄ ≤ ā0)

F̄i(z̄) =





C1/z̄
2, (for z̄ > ā0)

C1/ā
2
0 + C2 (ā0 − z̄)3/2 , (for z̄ ≤ ā0)
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D1 =
1

Q
, C1 = − AR Φ2

1(L)

6 (η∗)3 ω1
2ρcAc

∫ L
0 Φ2

1dx
, C2 =

4E∗√Rη∗ Φ2
1(L)

3ω1
2ρcAc

∫ L
0 Φ2

1dx
,

z̄ = 1− η̄(τ)− ȳ sin Ω̄τ, and ā0 =
a0

η∗
.

Note that equations (4) and (6) are written in a non-inertial frame attached to
the moving base, and the instantaneous gap z̄ clearly depends on base motion
ȳ sin Ω̄τ . Therefore the base excitation appears as an external forcing term as
well as in time dependent terms in the interaction forces Fi. These additional
terms have mostly been ignored in the literature [10–13,18–21]. Finally note
that the modal damping D(z̄) has been included in the discretized model.
The modal damping is piecewise constant and models the different dissipation
mechanisms acting on the microcantilever while it is in or out of contact with
the sample. While the damping due to surrounding air has been modelled
traditionally as a linear viscous term, the dissipation mechanisms during con-
tact are far more complicated [22,23] and involve the consideration of liquid
bridges and phonon scattering. In order to retain the simplicity of the dis-
cretized model while retaining to an extent the difference between dissipation
mechanisms in air and during contact, we introduce a two step modal damp-
ing. D1 is the modal damping coefficient in air and can be calculated from
the Q factor of linear vibration far from the sample, while D2 is the resultant
modal damping during the duration of tip contact with the sample.

2.4 Tip-sample properties

All the key system parameters needed for the static equilibria as well as
for the nonlinear dynamics computations are listed in Table 1. Some of sys-
tem parameters listed in Table 1 are obtained from the linear vibration ex-
periments performed far from the sample, while other properties are taken
from the literature. Resonance frequency f1 and Q factor are obtained from
the experimental frequency response of the microcantilever without sample.
The tip radius R, cantilever stiffness k, and cantilever geometric dimensions
(length, width, and thickness) are taken from the manufacturer’s catalog
(http://www.olympus.co.jp) of the microcantilever (OMCL-AC240TS) used
in the experiment. Cantilever material density ρc, Young’s modulus Ec and ef-
fective elastic modulus E∗ are based on typical values for silicon and graphite
using Poisson’s ratio of 0.3 [24]. The Hamaker constant A between Si and
HOPG is derived from the values of silicon-air and graphite-air Hamaker con-
stants which are found in the literature [25]. Further, the intermolecular dis-
tance a0 is fitted from the static force-approach distance curve. The modal
damping is implemented using the piecewise constant model described earlier.
Accordingly D1 = 0.015 (from the Q factor in linear vibration response far
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from the surface) and D2 = 4.0 during contact (this value is used in order to
fit the frequency extent of the saturated amplitude region in one set of exper-
iments). It may be emphasized here that none of the chosen parameter values
used for the computation except a0 and D2 are fitted to match the nonlinear
experimental data.

For the system under consideration, we use the values listed in Table 1. Use
of these parameter values yields the nondimensionalized, discretized model
(Equation (6)) of the single mode response about the chosen equilibrium with
specific coefficients: (i) D1 = 0.015, D2 = 4.0, C1 = 3.15037 × 10−6, C2 =
3.31287× 102, B = 1.71955, and ȳ = 0.0145 in monostable region (at Z = 60
nm); and (ii) D1 = 0.015, D2 = 4.0, C1 = 5.5134 × 10−3, C2 = 95.515,
B = 1.71983, and ȳ = 0.175 in bistable region (at Z = 5 nm).

3 Experimental and computational techniques

3.1 Experimental techniques

To demonstrate the effects of nonlinearities on the DFM response, a com-
mercially available air-AFM produced by NanoTecTMwas chosen to perform
these experiments. An OlympusTMdiving-board silicon cantilever(resonance
frequency 52.4 kHz, Q ≈ 66.7) was employed. The experimental setup is dis-
played in Figure 6. In order to perform experiments on the nonlinear response
of the cantilever, it is necessary to have control of the approach distance as
the frequency of excitation is systematically varied. The amplitude and phase
of the cantilever response must be rapidly measured as a function of the exci-
tation frequency. In general, this is difficult to achieve in commercial scanning
probe systems and requires the use of a flexible software system. In our case,
we used the WSxM software available from NanoTecTM.

The standard AFM control system is used to bring the tip to a distance ∼200
nm above the sample while operating the AFM in non-contact mode. After
the initial coarse approach, the frequency response of the cantilever is mea-
sured systematically as a function of decreasing approach distance. This is
accomplished by rerouting the control of the Z segment of the AFM’s piezo-
tube to a digital-to-analog converter (DAC) onboard the lock-in amplifier.
The DAC provides the voltage required to control the Z expansion of the
piezotube. The expansion of the piezotube as well as the driving frequency
of the cantilever are controlled by the lock-in via a general-purpose interface
bus (GPIB) controller. The GPIB software controls the voltage step applied
to the high voltage power supply of the piezotube, the frequency used to drive
the cantilever, and the measurement of the cantilever oscillation.
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Two types of experiments were performed. In the first for each tip-sample
approach distance, the excitation frequency (Ω) is increased from a starting
frequency to a final frequency (Ωi → Ωf ) across microcantilever’s linear reso-
nance frequency (ω1). Then the frequency is decreased across resonance from
Ωf to Ωi. For each frequency increment (∆f), the amplitude and phase of
the cantilever oscillation referenced to the excitation frequency are measured
by the lock-in amplifier. Following this approach, the tip-sample approach
distance is reduced in increments until the cantilever oscillation displays non-
linear resonance behavior, indicating that the tip is tapping the sample. By
plotting the amplitude and phase response of the cantilever as a function of
Z, it is possible to map out the entire non-linear response of the cantilever.

In the second type of experiment, the amplitude of the cantilever oscillation
at a fixed frequency of excitation Ω was measured as a function of tip-sample
approach distance Z. For this experiment the flexible NanoTecTMcontrol sys-
tem (now controlling the Z-piezotube) was used to simultaneously measure
the static deflection of the cantilever and the cantilever oscillation amplitude
(via the lock-in amplifier) as the cantilever tip was brought into contact with
the sample surface. This procedure generated both the force vs. Z and ampli-
tude vs. Z curves. These measurements were made for a number of different
oscillation frequencies between ω1 ± 2 kHz.

3.2 Computational techniques

AUTO 97, a publicly available continuation and bifurcation program for differ-
ential equations is used to continue periodic orbits of the equation (6). AUTO
97 uses sophisticated pseudo-arc length continuation and accurate Floquet
multiplier calculations to follow both stable and unstable periodic solutions.
Bifurcations of periodic orbits including period doubling and periodic folds
(global saddle-node bifurcations) can be detected and continued conveniently
in AUTO 97. The response often contains higher harmonics and the phase of
the response with respect to the excitation is then computed using the first
harmonic of the response. To avoid the mathematical complications in the
computation of Floquet multipliers due to non-smooth interaction forces at
z = a0, we use a smooth, cubic interpolation in a thin “boundary” layer about
z = a0.

The periodic orbits of equation (6) for the fixed approach distance, varying
frequency case are computed using the excitation frequency as a primary con-
tinuation parameter in AUTO. However, it is practically impossible to obtain
the DFM responses for the fixed frequency, varying approach distance case in
AUTO using the approach distance Z as a primary continuation parameter.
This is because the equilibrium gap η∗ and the natural frequencies and mode
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shapes of the microcantilever need to be computed separately for each Z. To
address this problem, we compute for each Z separately, the the response for
the fixed approach distance, varying frequency case as described earlier. Fi-
nally, these responses for different Z can be assembled together to compute
the nonlinear behavior in DFM.

4 Nonlinear response and bifurcation sets

4.1 Response in monostable region

First let us consider the experimental and computed response in the monos-
table region. The peak-to-peak amplitude and phase of the response of a Si tip
on a HOPG sample at 60 nm separation are obtained following the procedure
in section 3.1. The results are shown in Figure 7. In Figure 7 discontinuities
can be observed in the amplitude and phase at specific driving frequencies and
finite jumps occur on and off a “saturated” amplitude branch. The cantilever
response on this branch is highly nonlinear with higher harmonics of the ex-
citation present in the response as the tip impacts the sample. The jumps
J1, J2, J3, and J4 in Figure 7 render hysteretic the response of the cantilever
when the driving frequency is swept up and down.

The computed results in AUTO using system parameters from Table 1 are
shown in Figure 8. The amplitude and phase (of the first harmonic of motion
with respect to base motion) as a function of excitation frequency for the
specific value of ȳ = 0.0145 chosen in the experiment.

The initial softening and subsequent hardening of the forced vibration response
then leads to the occurrence of periodic folds or global saddle node (SN)
bifurcations [26] at points SN1, SN2, SN3, SN4 in Figure 8. Each bifurcation
corresponds to the creation or the destruction of a pair of a stable (indicated by
solid lines) periodic orbit and an unstable periodic orbit (indicated by dotted
lines). This leads directly to the observed jumps and hysteretic behaviors in
Figure 7 because as a frequency sweep is performed in Figure 8, the response
follows a stable solution up to a bifurcation point where it jumps to another
stable branch which lies in its basin of attraction. This response is typical
of the monostable region. The physical reasons for this nonlinear response
have been discussed in detail in recent work of the authors [27] and are not
discussed here. It suffices to note that the softening nonlinear response is due
to the attractive van der Waals forces and the hardening part of the response
is due to the nanoscale contact mechanics.

The computational results reproduce very closely the experimentally observed
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response (Figure 7). As the frequency is increased from below resonance, the
computed periodic solution follows the stable branch and jumps into another
stable branch at SN1 and SN3 in Figure 8. Likewise during a frequency sweep-
up the experimentally measured response in Figure 7 follows the solid dots
leading to jumps at J1 and J3. Similarly the computed response during a
decrease of excitation frequency from above resonance jumps at SN4 and SN2
(Figure 8) and the experimentally measured response during frequency sweep
down (circles in Figure 7) encounters jumps at J4 and J2.

Clearly there is a good agreement between theory and experiment as far as
amplitude response and the locations of the jumps is concerned. However,
differences in computed and experimental phase response are noticeable and
are most likely a reflection of inadequate modeling of dissipation during con-
tact. It may be noted that during tapping mode the response contains higher
harmonics also, and the phase is computed with respect to the first harmonic.

4.2 Response in bistable region

Next consider the response in the bistable region which is located closer to
the surface. Note that the bistable region for the experimental tip was small
so that inherent thermal drifts during the experiment caused the tip to stick
to the sample before the near resonance response was measured. In this case
therefore it is difficult to perform the nonlinear response experiments. Instead
the computed response in Figure 9 is presented from 0 to 80 kHz for the
specific value of ȳ = 0.175 at the approach distance Z = 5 nm.

The nonlinear amplitude response in Figure 9 is softening only and it desta-
bilizes through period doubling (PD) bifurcations. Also the softening of the
response leads to the occurrence of global saddle node (SN) bifurcations at
points SN1 and SN2 in Figure 9. Period doubling bifurcations, which are not
detected in the monostable region for the chosen parameter values, can oc-
cur leading to the generation of subharmonics in the response [18,28]. The
extremely softening response with period doubling and global saddle node bi-
furcations in the bistable region creates a frequency range between SN1 and
PD2 wherein no stable periodic orbits exist about the chosen equilibrium. In
this region of instability the tip can escape the local potential well to execute
complex cross well dynamics or stick to the sample (i.e. be captured by the
other coexisting equilibrium). To demonstrate this effect MATLAB simula-
tions are performed at excitation frequencies 59.212 kHz and at 60.784 kHz in
the bistable region with an approach distance of 5 nm (see Figure 9). Specif-
ically initial conditions are taken from the AUTO computed stable periodic
solution at 60.784 kHz and from the unstable periodic solution at 59.212 kHz.
The corresponding phase portraits of the simulations are shown in Figure 10
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(a) and (b). In both phase portraits the initial condition is indicated by a solid
dot. In Figure 10 (b) the chosen initial condition leads to a stable periodic so-
lution about the equilibrium located further from the surface. However the
initial conditions starting on the unstable periodic solution in Figure 10 (a)
eventually escape the potential well and execute a periodic motion about the
equilibrium closer to the surface. The amplitude of this resulting periodic mo-
tion is exactly that of the base excitation Y . This together with the fact that
these equations are written in a co-moving frame imply that the tip simply
escapes the local potential well and sticks to the sample.

The response in the bistable region therefore is completely different from that
in the monostable region.

4.3 Bifurcation sets

Thus far the nonlinear response of the microcantilever has been discussed for
representative approach distances in the monostable and bistable regions. Con-
sider now the ensemble of measured and computed nonlinear responses at all
intervening approach distances. Figure 11 show the experimental and com-
puted amplitude and phase response for excitation frequency varying across
resonance, for different approach distances, while maintaining constant the
excitation amplitude Y . Note that the excitation amplitude ȳ in equation (6)
is nondimensionalized with respect to the equilibrium gap between the tip and
the sample. Thus while Y is held constant at different approach distances, ȳ
proportionally increases as the cantilever is brought closer to the sample.

First when the approach distance Z is large over 100 nm, the response is
linear as shown in Figure 11. However as the tip approaches the sample, it
starts tapping the sample in the monostable region. The saturated amplitude
region and the corresponding bifurcations can be clearly seen in Figure 11(c,
d), which agrees well with the experimental response in Figure 11(a, b). When
the tip is brought closer to the sample, it is in the bistable region. The response
in this region shows a softening nonlinear response and includes destabilizing
period doubling bifurcations as shown in section 4.2.

To describe the different regimes of nonlinear response better in the approach
distance Z and the excitation frequency Ω parameter plane, the bifurcation
points can be projected onto Z−Ω parameter space. The loci of the resulting
saddle node and period doubling bifurcations projected on Z − Ω parameter
parameter space are the bifurcation sets of the system. Note that the loci
of the period doubling bifurcations are expected to appear in the bistable
region. Figure 12(a) shows the global structure of the bifurcation sets, while
Figure 12(b) is a detailed view of the bifurcation sets near resonance in the
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Z−Ω parameter space. Several observations can be made from the bifurcation
sets:

(1) All the saddle node bifurcation sets SNS1, SNS2, SNS3, and SNS4 appear
near resonance. However, SNS1 and SNS2 corresponding to the soften-
ing nonlinear response are created simultaneously below resonance, while
SNS3 and SNS4 are created above resonance.

(2) The saddle node bifurcation sets SNS2 and SNS4 merge near zero fre-
quency as Z decreases in the bistable region. As Z decreases further from
this point, only SNS4 exists in the low frequency range. This indicates
that SNS2 is likely “pinched-off” from the main resonant branch onto an
isola.

(3) The saddle node bifurcation set SNS3 is suddenly discontinued as Z de-
creases in the bistable region. This also supports the previous suggestion
of the existence of an isola of periodic motions which cannot be detected
computationally on the primary resonant branch while using the excita-
tion frequency as the lone continuation parameter.

(4) The period doubling bifurcation sets PDS exist only in the bistable region
for the chosen parameter values. One branch of PDS is located very close
to SNS4 and follows SNS4. This suggests that there is a rapid variation
of Floquet multipliers near the onset of SN4.

The construction of the bifurcation sets predict clearly the response of the
system in the constant excitation frequency, varying approach distance case
(DFM). As one approaches the sample while maintaining fixed the excitation
frequency and dither amplitude, one is traversing the bifurcation sets in Fig-
ure 12(b) along a straight line in the Z −Ω parameter space corresponding to
a fixed excitation frequency.

5 Implications for dynamic force microscopy

The experimental DFM responses (rms amplitude and phase of the first har-
monic) are shown in Figure 13. Figure 13 corresponds to DFM responses with
fixed excitation frequency below resonance, at resonance, and above resonance,
respectively. These results are typical of DFM response near resonance. The
experimental results in Figure 13 are performed with the identical tip and
sample used in the previous experimental results in Figure 11. However, the
excitation amplitude is greater (1.5 times) than that used previously. Nonethe-
less, the previously computed bifurcation sets clearly explain qualitatively the
experimental results observed in DFM (the fixed frequency, varying approach
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distance scenario) as follows:

(1) If the excitation frequency is fixed at linear resonance (here at 52.4 kHz)
while the tip approaches and retracts from the sample, this corresponds in
the Z−Ω parameter space to the straight line A−A shown in Figure 12(b).
Clearly this line does not intersect any bifurcation set in the monostable
region. Therefore no jumps are to be expected as the tip approaches and
retracts from the sample. This result corresponds to the experimental
result in Figure 13(b).

(2) If excitation frequency is slightly greater than resonance (for example,
52.6 kHz), we approach the sample along the line B − B shown in Fig-
ure 12(b). We encounter first SNS4 during approach in the monostable
region. During retraction, SNS3 is encountered in the monostable region.
Thus we can expect two jumps to take place in the monostable region as
the tip approaches and retracts from the sample.

(3) If the excitation frequency is slightly below resonance (for example, 52.0
kHz) then we approach the sample along the following line C −C shown
in Figure 12(b). Clearly we encounter SNS1 first during approach and
SNS2 upon retraction. This leads to the hysteretic jumps in monostable
region as shown in Figure 13(a).

Note that the jumps for the below and above resonance cases, occur at different
approach distance from the sample. Also note that in all three cases above, if
the tip is brought even closer to sample during the approach in the bistable
region, we may cross the period doubling bifurcation set. This leads eventually
to the tip either sticking to the sample or tapping irregularly the sample. The
experiments in Figure 13 indicate that upon reduction of Z into the bistable
region, the tip invariably eventually escapes the potential well to stick to the
sample.

6 Conclusions

In conclusion, because the shape of tip-sample interaction potential well is
fundamentally dependent on Z, the nonlinear response of the tip also depends
on Z. Therefore the dynamics in the monostable and bistable regions are very
different.

The use of computational continuation techniques with realistic parameter
values from experiment and a vdW/DMT contact model - lead to excellent
quantitative comparison between theory and experiment for the monostable
region as far as the amplitude response is concerned. Differences in phase
response indicate the need for better modeling of dissipation during contact.
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The nonlinear response at each Z in the monostable region consists of jumps
or saddle node bifurcations. The frequency at which these bifurcations occur
depends on Z. Bifurcation sets are obtained by plotting the loci of the bifur-
cation points in the approach distance - excitation frequency parameter space.
The nonlinear response in dynamic force microscopy is conveniently predicted
through observation of the bifurcation sets intersected during approach and
retraction.
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Table 1
Constants and properties of the Si microcantilever and HOPG sample used in nu-
merical computation.

Description Value

Tip radius R = 20 nm

Cantilever length L = 240 µm

Cantilever width b = 64 µm

Cantilever thickness h = 2.1 µm

Cantilever material density ρc = 2300 kg/m3

Cantilever Young’s modulus Ec = 176 GPa

Effective elastic modulus E∗ = 10.4 GPa

Static bending stiffness k = 2.0 N/m

1st natural frequency f1 = 52.4 kHz

Q factor (in air) Q = 66.7

Hamaker constant (Si-HOPG) A = 2.96× 10−19 J

Intermolecular distance a0 = 2.0 Å
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Fig. 1. Two different tip-sample interaction regimes: (a) when the tip is located far
from the sample; and (b) when the tip-sample contact is initiated.
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Fig. 2. Interaction model described by van der Waals and DMT contact forces. The
interaction can be divided into two regimes: van der Waals force regime (Equa-
tion (1)) and DMT contact regime (Equation (2)). Negative interaction implies
attractive force, whereas positive interaction in contact regime represents repulsive
or elastic restoring force.
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Fig. 3. Equilibrium solutions of the nonlinear equilibrium and their stability. The
solid lines represent Liapunov stable solutions while the dashed line indicates an
unstable equilibrium. Tip-sample approach: A → B → C → E → F . Tip-sample
retraction: F → E → D → B → A.
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Fig. 4. Total potential energy wells: (a) asymmetric two-well potential in bistable
region (at Z = 5 nm); (b) single well potential with contact in monostable region
(at Z = 30 nm).
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Fig. 5. Schematic diagram of the cantilever configurations. (a) Initial statically de-
flected configuration under van der Waals tip forces. Z is the approach distance
in the absence of van der Waals forces. (b) Dynamic (current) configuration as
cantilever vibrates about its elastostatic equilibrium.
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Fig. 6. A schematic diagram of the experimental setup for measuring the nonlinear
behavior near resonance of microcantilevers interacting with samples.
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Fig. 7. Experimental amplitude and phase (w.r.t. driving frequency) response of the
silicon tip on HOPG sample. Nonlinear tip amplitude (a) and phase (b) response
with 60 nm tip-sample approach distance (in monostable region). Dots: response
during frequency sweep up; Circles: response during frequency sweep down. The
arrows indicate the abrupt discontinuities in amplitude and phase that are impor-
tant signatures of the nonlinear interaction potential. Tip amplitude indicates the
peak-to-peak tip oscillation amplitude of the microcantilever.
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Fig. 8. The response prediction in monostable region using periodic solution contin-
uation and stability routines in AUTO. Solid/dotted lines indicate stable/unstable
solutions, respectively. In (a), tip amplitude indicates the peak-to-peak tip oscilla-
tion amplitude of the microcantilever. In (b), phase between the first harmonic of
response and the base excitation is computed in AUTO.
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Fig. 9. The predicted response in bistable region (Z = 5 nm) using periodic solu-
tion continuation and stability routines in AUTO. Solid/dotted lines indicate sta-
ble/unstable solutions, respectively. In (a), tip amplitude indicates the peak-to-peak
tip oscillation amplitude of the microcantilever. In (b), phase between the first har-
monic of response and the base excitation is computed in AUTO.
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Fig. 10. Computed phase portraits of tip response in the bistable region (Z = 5
nm). (a) Evolution of initial conditions located on the unstable periodic solution at
59.212 kHz excitation frequency. (b) Evolution of initial conditions located on the
stable periodic solution at 60.784 kHz excitation frequency. In (a), the tip escapes
from the local potential well to stick to the sample.
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Fig. 11. Experimental peak-to-peak amplitude (a) and phase (b) response for various
approach distances of the Si cantilever - HOPG sample system. In (a, b), responses
during frequency sweep up and down are indicated by the same symbol (dot). Com-
putational peak-to-peak amplitude (c) and phase (d) response using AUTO for
various approach distances of the Si-HOPG system. In (c, d), solid/dotted lines
indicate stable/unstable solutions, respectively. Phase in (d) is computed between
the first harmonic of response and the base excitation.
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Fig. 12. (a) Bifurcation sets projected on the approach distance-excitation frequency
(Z−Ω) parameter space. Solid lines indicate the global saddle node bifurcation (or
period folds) sets (SNS), and dotted lines indicate period doubling bifurcation sets
(PDS). (b) Detailed view near resonance. In (b), the vertical lines A-A, B-B, and
C-C indicate the fixed frequency, varying approach distance scenarios at resonance,
above resonance, and below resonance, respectively.
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Fig. 13. Experimental DFM response (rms amplitude and phase) for the fixed fre-
quency, varying approach distance scenario: (a) below resonance (52.0 kHz), (b) at
resonance (52.4 kHz), (c) above resonance (52.6 kHz). Dots: response during tip
approach; Circles: response during tip retraction.
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