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Abstract

Two classes of topological superconductors and Majorana modes in condensed matter systems

are known to date: one, in which disorder induced by impurities strongly suppresses topological su-

perconducting gap and is detrimental to Majorana modes, and the other, where Majorana fermions

are protected by disorder-robust topological superconductor gap. In this work we predict a third

class of topological superconductivity and Majorana modes, in which topological superconductivity

and Majorana fermions appear exclusively in the presence of impurity disorder. Observation and

control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying

system leading to a gap in a single-particle or quasiparticle spectra. Disorder introduces states

into the gap and enables conductance and proximity-induced superconductivity via the in-gap

states. We show that disorder-enabled topological superconductivity can be realized in a quantum

Hall ferromagnet, when helical domain walls are coupled to an s-wave superconductor. Solving a

general quantum mechanical problem of disorder-induced bound states in a system of spin-orbit

coupled Landau levels, we demonstrate that disorder-induced Majorana modes emerge at phase

boundaries in a specific case of a quantum Hall ferromagnetic transition in CdMnTe quantum wells

at a filling factor ν = 2. Recent experiments on transport through electrostatically controlled in-

dividual domain wall in this system indicated the vital role of disorder in conductance, but left an

unresolved question whether this could intrinsically preclude generation of Majorana fermions and

other non-Abelions. The proposed resolution of the problem demonstrating emergence of Majorana

fermions exclusively due to impurity disorder in experimental setting of domain walls in quantum

Hall ferromagnets opens a path forward. We show that electrostatic control of domain walls in an

integer quantum Hall ferromagnet allows manipulation of Majorana modes. Similar physics can

possibly emerge for ferromagnetic transitions in the fractional quantum Hall regime leading to the

formation and control of higher order non-Abelian excitations.
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INTRODUCTION

Non-abelions in solid state systems, such as Majorana fermions, parafermions or Fi-

bonacci anyons, result in topologically degenerate ground state characterized by non-Abelian

statistics and provide paths to topological fault-tolerant quantum computing [1, 2]. Exotic

states with non-Abelian excitations are predicted to emerge in correlated states in the frac-

tional quantum Hall regime in two-dimensional electron, bilayer and hole gases [3–9], in

p-wave 3He [10], and in hybrid superconductor/topological insulator [11, 12] and supercon-

ductor/semiconductor [13–16] systems. Topological superconductors can be divided into

two broad classes: one, in which disorder induced by impurities strongly suppresses topolog-

ical superconducting gap and can be detrimental to non-Abelions [17–23], and the other, in

which non-Abelian excitations are protected by a disorder-robust topological superconduc-

tor gap [24–28]. In this work, we present a third class of topological superconductivity and

Majorana fermions, which appear exclusively in the presence of disorder within an otherwise

gapped energy spectrum.

Observation and control of Majorana fermions and other non-Abelions often requires a

symmetry of an underlying system leading to a gap in a single-particle or a quasiparticle

spectra. An example is a quantum Hall system proximity-coupled to a superconductor,

where Majorana fermions [29], parafermions [30], and Fibonacci fermions [31] are predicted

to be formed in the presence of interacting counter-propagating edge channels. Experiments,

though, indicate strong level repulsion and opening of a large exchange gap for interacting

edge channels with the same orbital quantum numbers[32]. A promising alternative is a

quantum Hall ferromagnetic transition, where coupled counter-propagating chiral states at

the boundaries of ferromagnetic domains form helical domain walls [33], perfect precursors

for the formation of topological channels in the presence of superconducting interactions.

However, even when helical domain walls are formed from almost orthogonal states with

different orbital quantum numbers and opposite spins in integer and fractional QHE regimes,

spin-orbit interactions open small spectral gaps in bulk Landau level spectrum [32] and in the

spectra of electrostatically induced edge states [34]. These gaps suppress electron transport

at low temperatures [32, 35], but in short helical domain walls transport can be carried by

the in-gap states [34].

Here we demonstrate that disorder-induced in-gap states in electrostatically defined he-
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lical domain walls can lead to topological superconductivity when coupled to an s-wave

superconductor. We solve a general quantum mechanical problem of impurity states in the

presence of Landau quantization and spin-orbit interactions, and derive impurity states in

the electrostatically induced domain wall. We then map the system of these states on the

generalized Kitaev chain [24, 36], and calculate the phase diagram for the existence of topo-

logical superconductivity and Majorana fermions. Finally, we demonstrate that with a local

control of the QHFm transition it is possible to induce, move, exchange, fuse and braid

Majorana modes.

We consider a specific case of a 2D electron gas formed in asymmetrically Mn-doped

CdTe quantum wells, where local electrostatic control of a quantum Hall ferromagnetic

transition and a single helical domain wall manipulation have been recently reported[34].

However, these experiments indicated the vital role of disorder in conductance through

electrostatically controlled individual domain wall in this system, and raised the question

whether this intrinsically precludes generation of Majorana fermions and other non-Abelions

in quantum Hall ferromagnets or non-Abelions are still feasible. We resolve this problem

affirmatively, showing that disorder is crucial for generating non-Abelions. Our conclusions

should be applicable to any system where quantum Hall ferromagnetic transition can be

locally controlled, such as, e.g., a 2D hole gas in Ge[37]. Quantum Hall ferromagnetic

transitions in the integer and fractional QHE regimes have been observed in 2D gases in

many semiconductors, including GaAs [35, 38], AlAs [39], InSb [40], CdMnTe[41, 42], Si [43]

and graphene[44], and their electrostatic control has been shown [32, 45].

MAJORANA MODES IN A HELICAL DOMAIN WALL

In Mn-doped CdTe quantum wells external magnetic field B aligns spins of Mn2+ ions

and generates an additional exchange contribution to the electron spin splitting due to

interactions between conduction electrons and d-shell electrons localized on Mn[46]. This

s-d exchange splitting has a sign opposite to the bare Zeeman splitting for electrons in

the conduction band, leading to multiple level crossings at high magnetic fields[41]. The

ferromagnetic transition of interest occurs at a crossing of states with opposite polarizations

belonging to the first two Landau levels (n = 0, ↑) and (n = 1, ↓) at a filling factor ν =

2. In asymmetrically Mn-doped quantum wells the strength of the s-d exchange can be
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electrostatically controlled [32] and it is possible to form an unpolarized and a fully polarized

states under different gates,as shown schematically in Fig. 1.
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FIG. 1. a) Electrostatic gates V1 and V2 control magnetization M1 and M2 caused by the electron

exchange interactions with Mn impurities. A spatial gradient of magnetization J1 and a potential

gradient Ex result in the formation of edge-like states between the gates (red and blue). Vertical

arrows along edge states show spin polarization of electrons, which is opposite for edge-like states as

a result of quantum Hall ferromagnetic transition. Between the gates edge-like states have opposite

velocities. Hybridized, they form a helical domain wall. b) Energy profile of electron states in the

absence of spin-orbit interactions. Due to different polarization of red and blue states, the electron

system at ν = 2, which also include electrons in the ground Landau level (black), are unpolarized

on the left and polarized on the right.

In order to describe a helical domain wall formed between the gates we consider the edge-

like states in a quantum Hall system induced by an electrostatic potential V (z, x) uniform

along the y-direction and varying between V1 and V2 in the x-direction between the two

gates, Fig. 1. The electron Hamiltonian is given by

H = − 1

2m∗

(
−i~∇− eA

c

)2

+ eExx+
1

2
σz(g

∗µBB + J0 + J1x) , (1)

where A is a vector potential of a magnetic field B = ∇ × A, which is directed along

negative z, B = |Bz|, m∗, e and g∗ are electron effective mass, charge, and g-factor, ~σ

is the Pauli matrix vector, σz is its z-component, µB is the Bohr magneton, and Ex =

−∇x

∫
Ψ∗(z)V (z, x)Ψ(z)dz is an electric field in x-direction caused by the gradient of the

gate-induced potential V (z, x). In the mean field approximation, s-d exchange interactions

are represented by a uniform part J0 and a gate-induced variation of the s-d exchange J1x

[47]. J1 constitutes a spin-dependent electric field in x-direction. As was demonstrated in

[32], using a combination of front and back gates and in conditions of a non-uniform doping
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of the quantum well by Mn2+ ions along the growth direction z, it is possible to achieve

almost uniform 2D electron density but induce significant J1 � eEx, [47]. While considering

nonzero Ex will not change our essential results, we will keep only J1 effective spin electric

field and take Ex = 0.

In this model, the electron eigenvalues and wavefunctions are

En,s,ky = ~ωc
(
n+

1

2

)
+ ~kyvs −

m∗v2
s

2
− s

2
(g∗µBB + J0) (2)

ψn,s,ky = un

(
x− ky`2 +

vs
ωc

)
eikyyχs , (3)

where ωc = eB/(m∗c) is the cyclotron frequency, ky is the y-component of the wavevector ~k,

un are the Landau wavefunctions, s = ±1 is for spins up and down, χ1 = χ↑ = (1, 0)T and

χ−1 = χ↓ = (0, 1)T . The spin-dependent drift velocity vs = s · v, where v = cJ1/2eB. At

ν = 2 the edge-like states, Eq. 2, are localized near the spectral crossing of (n = 0, ↑) and

(n = 1, ↓) states and can propagate between the two gated regions with opposite velocities.

A non-magnetic disorder cannot cause scattering between two edge-like states (3) due to

their opposite spins. However, two edges with opposite velocities originating from neighbor-

ing Landau levels are coupled by spin-orbit interactions, similar to the coupling of edges in

a 2D topological insulator introduced by an in-plane Zeeman field. The specific mechanism

of such coupling is Rashba (but not the Dresselhaus) spin-orbit interactions, described by a

2D Hamiltonian HR = γREz(~k × ~σ)z. Here Ez is the component of the electric field perpen-

dicular to the 2D plane, and γR is the Rashba coefficient. The resulting spin-orbit coupling

hR =
∫
ψ∗0,1,kyHRψ1,−1,kydxdy is given by

hR =
√

2
γREz
`

e−
m2`2

~2 v2
[
1− m2`2

~2
v2

]
, (4)

where ` = (eB/~c)−1/2 is the magnetic length.

In the presence of this spin-orbit coupling, the effective single-particle Hamiltonian in the

basis of the (n = 0, ↑) and (n = 1, ↓) states (2) near their spectral crossing is given by

He = hkyvσz − hRσx . (5)

Thus, this single-particle system, which serves as a setting for the proximity-induced topo-

logical superconductivity, is rather unusual: in contrast to the nanowires and topological

insulators, where spin-orbit interactions result in the level crossing and the Zeeman interac-

tion provides a gap, here the Zeeman interaction is responsible for the crossing at k = 0 while
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FIG. 2. Panel a) Spin texture as seen by the ground state in a system of two induced edge

states originating from LL1 spin down and LL0 spin up states and coupled by Rashba spin-orbit

interactions near spectral crossing. Exchange interactions of electrons are taken into account.

Gated areas are shown in yellow, while the edge channels are propagating through the green

region. Panel b)- Average spin projection on x-direction (blue), y−direction (red) and z-direction

(black) directions in the ground state.

spin-orbit interactions open a gap in the spectrum. The states (5) exhibit helical electron

spin texture similar to the Néel domain walls. We have calculated the texture numerically,

Fig.2, taking into account exchange interactions between electrons.

In order to see how non-Abelian quasiparticles can emerge in CdMnTe quantum Hall

system, we consider superconductor proximity-induced electron pairing. To illustrate the

potential of this system for hosting Majorana modes, we will first assume that the Fermi level

is outside the spin-orbit gap and crosses edge-like states forming the helical domain wall.

We then consider a proximity effect induced by superconducting Ohmic contacts directly
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coupling edge-like states to an s-wave superconductor and inducing an order parameter

∆(x, y). Pairing the states of Hamilonian (5) is described by the projected order parameter

∆k =
∫
dxdyψ0,↑,ky∆(x)ψ1,↓,ky . Due to the opposite velocities of the coupled edge-like states,

the ∆k is sizable even in the approximation of a constant ∆(x, y) = ∆ despite different

Landau indices for the two edges:

∆k = ∆e−
m2`2

2~2 v2
√

2m`

~
v. (6)

The corresponding Bogoliubov-de Gennes ( BdG) equation Hψ(x, y) = Eψ(x, y), where

ψ(x, y) = (u↑, u↓, v↓,−v↑)T , is defined by

H =


~kv − µ− Ek −hR ∆k 0

−hR −~kv − µ− Ek 0 ∆k

∆∗k 0 −~kv + µ− Ek −hR
0 ∆∗k −hR ~kv + µ− Ek

 (7)

Its four eigenvalues are:

Ek = ±
√

∆2
k + µ2 + ~2k2v2 ± 2

√
∆2
kh

2
R + µ2h2

R + ~2k2v2 , (8)

where µ is the chemical potential measured from the crossing point energy in the absence

of Rashba coupling. The system becomes gapless for k = 0 and ∆2
k=0 + µ2 = h2

R, and at

|hR| <
√

∆2
k=0 + µ2, exhibits a topologically non-trivial superconducting phase. Formally,

the emergence of a topological superconducting phase is somewhat similar to the case of

a topological insulator in proximity to an s-wave superconductor [48], but because it is

Zeeman splitting that gives level crossing and spin-orbit interactions that leads to the gap

here, restriction on the topological phase is defined by the value of the spin-orbit coupling

rather than by the Zeeman splitting. It is important to notice that for the chemical potential

outside the superconducting gap, i.e., µ > hR, the induced superconducting order is always

topological. Furthermore, topological superconductivity exists even in the absence of a

spin-orbit coupling at hR = 0. Majorana fermions are localized at the contacts between

an s-superconductor and a domain wall area. This Majorana system can be affected by

non-magnetic disorder: in contrast to chiral states (3), eigenstates of Hamiltonian (5) in the

presence of the spin-orbit coupling are subject to backscattering similarly to edge states in

topological insulators in the presence of Zeeman spin splitting. Backscattering must lead
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to reduction of domain wall conductance compared to conductance of domain walls formed

by chiral states (3), as supported by experimental data on resistance on the flanks of the

quantum Hall ν = 2 plateau in experiments [34]. Thus, for Majorana modes emerging in

helical domain wall with the Fermi level positioned outside the spin-orbit gap in the domain

wall but inside the quantum Hall gap in the adjacent 2D regions, impurity scattering becomes

detrimental in much the same way as for chiral states in semiconducting wires. Majorana

fermions are expected to arise only in a very high mobility quantum Hall samples with small

impurity scattering. However, even in this case, due to rather narrow interval of energies,

2D regions show finite conduction at the lowest temperatures, complicating the Majorana

setting.

For chemical potential µ inside the spin-orbit gap, there exists a signigicant distiction

between the present setting and Majorana modes in topological insulators in the presence of

Zeeman splitting. In topological insulators, a superconductuctor is often assumed to cover

the whole area above the edge states at the sample boundary as opposed to a small contact

at the side of the domain wall envisioned here. Correspondingly, certain proximity pairing

effect exists throughout topological insulator when µ is inside the gap, which is characterized

by a trivial superconducting phase. In the present setting only very small area defined by

a penetration of the wavefunction into an insulating gapped domain wall near the contact

can bear some trace of superconductivity, while the rest of the domain wall is generally an

insulator. However, as shall see, impurities drastically change this situation.

TOPOLOGICAL SUPERCONDUCTIVITY GENERATED BY DISORDER

In order to obtain a well-controlled Majorana setting, the electron transport has to be

conducted exclusively along the helical domain wall. To achieve this, the quantum Hall

ferromagnetic transition should be tuned very close to ν = 2, where the bulk 2D conduction

vanishes. In this case µ lays inside the spin-orbit gap and conduction is exponentially

suppressed at low temperatures in wide regions. However in short helical domain wall

channels conduction remains finite, and it was concluded that the in-gap impurity states

provide the conduction path [34]. We now show that in the presence of superconducting

proximity effect, the helical domain walls with in-gap states can be mapped into a generalized

disordered Kitaev chain [24, 36] where a topologically non-trivial superconducting order and
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Majorana bound states emerge.

To consider a superconducting proximity effect in the helical domain walls with the

Fermi level inside the spin-orbit gap in the spectrum of edge states, we first solve a general

quantum-mechanical problem of impurity-induced states in a magnetic field in the presence

of spin-orbit interactions. We then find impurity states in the domain wall in the presence

of the mean field gradient of exchange interactions between electrons and Mn ions J1.

Effect of spin-orbit coupling on Landau level impurity states

Our goal here is to get analytic results for the impurity-induced states. We model poten-

tial variations from remote ionized impurities as short-range potentials with a bound state

energy Eb at zero magnetic field. We then solve the system, in which impurity potential is

added to Hamiltonian Eq.(1).

Short-range impurities in quantizing magnetic field were considered in [49, 50]. It is

convenient to use the wavefunctions of an unbounded electron in a symmetric gauge in a

uniform magnetic field,

ψ0
n,m,s(r, ϕ) =

√
n!

(n+m)!2m+1π`
e

(
imϕ+ i

4
r2

`2
sin(2ϕ)− r2

4`2

) (r
`

)m
Lmn

(
r2

2`2

)
χs , (9)

corresponding to degenerate states with energy E0
n,m,s = ~ωc

(
n+ 1

2

)
+ sVz, s = ±1, Vz is

the spin splitting that includes band Zeeman effect and mean field exchange splitting due

to the electron spin interaction with Mn spins, Lmn denotes the Laguerre polynomials, r and

ϕ are the polar coordinates, n ≥ 0 and m ≥ −n are integers, and χ1 = χ↑ = (1, 0)T and

χ−1 = χ↓ = (0, 1)T are the spinors.

Following [49, 50] we begin with considering a single impurity at the origin in the presence

of the Landau quantization. The short-range impurity does not affect states with m 6= 0 as

their wavefunction is zero in the origin, and all states with m 6= 0 are still described by the

wavefunctions given by Eq. (9) and the corresponding eigenenergies E0
n,m 6=0,s. The states

with m = 0 are bounded by the impurity and the energy and wavefunctions of these states

are:

E0
n,0,s = ~ωc

(
n+

1

2
− δn

)
+ sVz (10)

ψ0
n,0,s =

|Γ(−n+ δn)|√
πΨ′(−n+ δn)

(−1)n

r
Wn+ 1

2
−δn,0

(
r2

2

)
χs , (11)

10



where W is the Whittaker function and Ψ is the digamma function. In a high magnetic field

limit the impurity split-off δn is given by

δn =

∣∣∣∣Ψ(n+ 1)− ln
|Eb|
~ωc

∣∣∣∣−1

, (12)

For states with δn � 1 the digamma function in Eq. (12) is much smaller than the logarith-

mic part and δn = 1/ ln(~ωc/|Eb|) ≡ δ is independent of n. To simplify our analysis, we will

consider this approximation; our conclusions, however, are quite general and this restriction

is not crucial.

We now include the Rashba Hamiltonian HR using the basis set that includes the or-

thonormalized wavefunctions Eq. (9) for m 6= 0 and wavefunction determined by Eq. (11)

for m = 0. The non-zero matrix elements (neglecting terms of order of O(βδ/~ωc) and O(δ2)

) are

〈ψn,m−1,↑|HR |ψn−1,m,↓〉 =
β
√

2n

`
= ∆so

√
n , (13)

where β = γREz. ∆so coinsides with hR given by Eq. (4) at n = 1 when J1 is neglected, i.e.,

at v = 0.

The effect of spin-orbit interaction on Landau electron states and impurity bound states

in quantized magnetic field is two-fold. First, for all states except the lowest n = 0 Landau

level with spin down, spin-orbit interaction leads to an additional repulsion of Landau states

(n, [m 6= −1, 0], ↑) and (n+ 1, [m 6= −1, 0], ↓) and results in energy series

En,m,s = ~ωcn+ s

√
2nβ2

`2
+

(
1

2
~ωc − Vz

)2

, m 6= −1, 0 , (14)

where n ≥ 1, and s = ±1 describes spin states. The nondegenerate state with n = 0 has

energy E0 = ~ωc/2−Vz, and is a ground state for ∆so � ~ωc considered here. In Eq.(14), for

a pair of states at a given n, s = 1 characterises the electron state with bigger energy, while

state with lower energy is characterized by s = −1. State (n, s = 1) originates from state

(n, ↓) in the absence of spin-orbit coupling, while the state (n, s = −1) originates from the

state (n−1, ↑). Except for the exclusion of states with m = 0 and m = −1 this is the Rashba

spectrum for conduction electrons [51]. Energy separation δE = E1,m,+1 − E1,m,−1 arising

from cyclotron splitting as well as spin splitting due to Zeemann, exchange and spin-orbit

interactions is given by

δE = 2

√
2β2

`2
+

(
1

2
~ωc − Vz

)2

. (15)
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At Zeeman energy Vz = g∗µBB + J0 = ~ωc/2, energy states (n, s = 1) and (n, s = −1), and

particularly (n = 1, s = 1) and (n = 1, s = −1) energy states are degenerate in the absence of

spin-orbit interactions, but are splitted in its presence, with energies E± = ~ωc±∆so. Second,

spin-orbit interaction couples (n − 1,m = 0, ↑) impurity-bound state with (n,m = −1, ↓)

Landau level state, as well as (n,m = 0, ↓) impurity-bound state with (n − 1,m = −1, ↑)

Landau level state. Such coupling introduces level repulsion within these pairs of coupled

states, which results in the splitting of the m = −1 levels off the angular-momentum–

degenerate Landau levels. Therefore, we now have two bound states for each spin-resolved

Landau level, defined by two linear combinations of m = 0 and m = 1 states; the exception

is a single bound state associated with the lowest (n = 0, ↓) Landau level. Energies of the

two series of bound states at n > 0 are given by:

E+
n,ς = ~ωc

(
n− δ

2

)
+ ς

√(
~ωc

1− δ
2
− Vz

)2

+
2nβ2

`2
, (16)

E−n,ς = ~ωc
(
n− δ

2

)
+ ς

√(
~ωc

1 + δ

2
− Vz

)2

+
2nβ2

`2
, (17)

where ς = ±1 denotes two different superpositions of m = 0 and m = −1 states for a given n

in each of the series. Impurity-bound states E+
n,ς originate from (n,m = −1, ↓) Landau level

states, and states E−n,ς originate from (n − 1,m = −1, ↓) Landau level states. The electron

and impurity-bound energy levels in quantized magnetic field in a quantum well in the

presence of Rashba interactions are shown in Fig. 3. As follows from Eqs. (16,17), splitting

of levels with opposite ς in the same series, e.g., δE∗ in Fig.3 is bigger than splitting δE

between coupled Landau levels due to additional level repulsion caused by impurity split-off

~ωcδ.

At Zeeman energy V ∗z = g∗µBB + J0 = ~ωc/2, levels of series E+
n,ς and E−n,ς become

degenerate. In particular, the double degenerate level

E∗n=1,+ = ~ωc
(

1− δ

2

)
+

1

2

√
4h2

R + (~ωcδ)2 (18)

corresponding to ς = 1 lies in between (n = 1, s = 1) and (n = 1, s = −1) levels, and a

double degenerate level at ς = −1 with energy

E∗n=1,− = ~ωc(1−
δ

2
)− 1

2

√
4h2

R + (~ωcδ)2 (19)

lies below (n = 1, s = −1) level. Remarkably, degenerate impurity-bound states with energy

E∗n,+ have opposite spins, and states E∗n=1,− also have opposite spins. This is a consequence
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FIG. 3. Electron energy spectrum in quantized magnetic field in the presence of attractive impurity

center and spin-orbit interactions. Splitting of the degenerate in m (n = 1, s = 1) and (n = 1, s =

−1) levels is caused by the cyclotron splitting and spin splitting due to Zeemann, exchange and

spin-orbit interactions. Each impurity results in two energy levels given by Eqs. (16,17) due to two

linear combinations of m=0 and m=-1 states for each of the spin-resolved Landau levels. Impurity-

bound state E+
1,1 is shown in blue, E−1,1 is shown in red, E+

1,−1 is shown in magenta and E−1,−1 is

shown in green. Only one impurity induced state is present for (n = 0, ↓) Landau level, which is

not affected by spin-orbit coupling, shown in black.

of degeneracy between (n − 1, ↑) and (n, ↓) Landau levels when spin-orbit interactions are

not included.

Wavefunctions of degenerate Landau levels and impurity split-off states in the bulk in

the presence of spin-orbit interactions for arbitrary n > 0 and Vz = V ∗z can be written as:

ψn,m,ς =
1√
2

(
ψ0
n,m,1 − ςψ0

n−1,m+1,−1

)
, m 6= −1, 0 , (20)

ψ1
n,m,ς =

1√
2

(
%

(−1)mς,n
β,δ ψ0

n,m,1 − ς%
(−1)m+1ς,n
β,δ ψ0

n−1,m+1,−1

)
, m = −1, 0 , (21)

where wavefunctions ψ0
n,m,s are defined by Eq.(9), and

%±1,n
β,δ =

√√√√1± ~ωc`δ√
(~ωc`δ)2 + 8nβ2

. (22)
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FIG. 4. Electron energy spectrum in quantized magnetic field in the presence of attractive impurity

center and spin-orbit interactions, in the case of compensation between cyclotron splitting and the

sum of the Zeemann and exchange interactions leading to degeneracy of (n = 0, ↑) and (n = 1, ↓)

Landau levels given by Eq.(10). The splitting 2∆so of the (n = 1, s = 1) and (n = 1, s = −1)

unbound states is due to Rashba coupling only. Impurity levels from series + and - in Eqs. (16,17)

become degenerate, so that E+
1,1 = E−1,1 and E+

1,−1 = E−1,−1 (shown as coincidence of blue and red

and coincidence of magenta and green). Splitting between pairs of degenerate levels δE∗ is due to

both Rashba coupling and level repulsion caused by impurity split-off ~ωcδ.

For n = 0, the eigenstates are defined by Eqs. (10, 11): ψ1
0,m,1 = ψ0

0,m,1 and E1
0,m,1 = E0

0,m,1.

Impurity states in a helical domain wall

So far we discussed the bulk Landau levels and the bulk impurity states in the presence

of spin-orbit coupling. In the presence of the spin-dependent electric field J1 in a narrow

range of coordinate x, which leads to the formation of a helical domain wall, these bulk

states change in a two-fold way. First, Landau levels with multiple degeneracy in angular

momenta (20) form linear combinations that correspond to an edge-like states (2), which

are gapped by spin-orbit interactions and described by the effective Hamiltonian (5). Two
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FIG. 5. Electron spectrum in the presence of impurities in a helical domain wall of width W . In

the presence of compensation between cyclotron energy and the sum of Zeemann and exchange

energies for electrons in the helical domain wall, splitting between red-blue and green-magenta

doublets of impurity levels in the center of the channel is due to spin-orbit interactions. Electron

edge states there are also separated only by the spin-orbit coupling. Red and blue levels (and green

and magenta levels) are separated in energy due to angular momentum splitting arising because

of the effective spin-dependent electric field J1. One impurity doublet (red-blue) falls into the

spin-orbit gap between edge states arising from (n = 1, s = 1) and (n = 1, s = −1) 2D Landau

states (dashed lines). The other doublet (green-magenta) is below the spin-orbit gap. Only a single

non-degenerate level (black solid segment) is split off (n = 0, ↓) Landau level shown by the lower

black dashed line.

doublets of impurity states also evolve, Fig.5: one doublet with ς = +1 falls into the gap

between spin-orbit split edge-like states, and the other doublet with ς = −1 is below the

spin-orbit gap. The second effect of the effective spin-dependent electric field J1 is angular

momentum splitting of the in-gap impurity states. The angular momentum splitting of the

E∗1,+ double degenerate level (18) for an impurity centered at the origin in the area of the
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FIG. 6. Schematic view of the conducting channel with proximity induced superconductivity (blue

contact), with attractive impurity potential (red)

helical domain wall, is given by

L =
2~2v2

`
√

(~ωcδ`)2 + 8β2

. (23)

Angular momentum splitting L arises in the second order in the effective spin-dependent

electric field J1, and therefore is quadratic in v.

Chain of impurity states

Our goal is to study a chain of in-gap states, Fig. 6. For impurity potentials centered

at Rk = (Xk, Yk), their separation along the y-direction is assumed much larger than the

width of a helical domain wall. Therefore the chain can be considered as one-dimensional,

with Rk = (Xk = 0, Yk). Also, in high magnetic field |Rk −Rk−1| � `. We will assume that

impurity centers may have slightly different binding energies and therefore different impurity

split-offs δ, e.g., because of their varying z-coordinate in a doping layer and therefore varying

separation from the quantum well. We will denote the split-off for an impurity centered at

Rk as δk. Angular momentun splittings Lk for impurity sites centered at Rk also differ from

site to site:

Lk =
2~2v2

`
√

(~ωcδk`)2 + 8β2

. (24)
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The wavefunctions of electrons bound to a single impurity are given by

ψ(k)
m (r) = ψ1,m,−1(r−Rk)e

iXky/`
2

= ψ1,m,−1(r−Rk). (25)

Considering a chain, we orthogonolize these wavefunctions assuming that only overlap be-

tween wavefunctions of electrons centered on the nearest neighbors is essential. The or-

thonormalized wavefunctions are:∣∣∣ψ̃(k)
m

〉
'
∣∣ψ(k)

m

〉
− 1

2

0∑
m1=−1

∣∣ψ(k+1)
m1

〉
Sk+1,k
m1,m

−1

2

0∑
m2=−1

∣∣ψ(k−1)
m2

〉
Sk−1,k
m2,m

, m = −1, 0 , (26)

where the overlap integrals of the electron wavefunctions on isolated centers located at R′k

and Rk are given by

Sk
′,k
m′,m =

〈
ψk

′

m′

∣∣∣ψ(k)
m

〉
. (27)

We seek the wavefunctions of the Hamiltonian of the chain

H = − 1

2m∗

(
−i~∇− eA

c

)2

+ Vzσz +
∑
k

U(r,Rk) (28)

in the form

Ψ =
∑
m,k

amk

∣∣∣ψ̃(k)
m

〉
, m = −1, 0 . (29)

Then the effective Hamiltonian Hmk,m′k′ acting on coefficients amk is defined by remormalized

single-impurity site energies ˜Emk =
〈
ψ̃km

∣∣∣H ∣∣∣ψ̃km〉 and tunneling matrix elements wm
′,m

k′,k =〈
ψ̃k

′

m′

∣∣∣H ∣∣∣ψ̃km〉. The leading contribution to tunnelling arises from matrix elements

wm,mk+1,k ' δ̃k+1,k(−1)m+1P β
k+1,k

1

4

(
Yk+1,k√

2`

)2m+2

e−
Y 2
k,k+1

4`2 , (30)

w−1−m,m
k+1,k ' δdk+1,kQ

β
k+1,k

1

4

Yk+1,k√
2`

e−
Y 2
k,k+1

4`2 , (31)

where

P β
k+1,k = 1− ~ωc`δ̃k+1,k√

(~ωcδ̃k+1,k`)2 + 8β2

, (32)

Qβ
k+1,k =

β√
(~ωcδ̃k+1,k`)2 + 8β2

, (33)

δ̃k+1,k = (δk + δk+1)/2 is an average split-off of the neighboring impurity centers, δdk+1,k =

δk− δk+1, and Yk+1,k = Yk+1−Yk . These expressions are obtained by expanding the overlap

matrix elements and keeping only the leading terms in 1/Yk+1,k, e
−Y 2

k+1,k and δd.
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Superconducting coupling

We project electron interactions due to the proximity-induced superconducting paring

H∆ = ∆
∫
ψ̂†↑ψ̂

†
↓ + h.c., onto the Hilbert space of bound states ψ

(k)
m . As we are interested

here is a single superconducting contact to a quantum Hall system, phase of the order

parameter is unimportant and we take ∆ > 0 without the loss of generality. The effective

Hamiltonian for the superconducting pairing with a chain of impurity states then reads

H∆ '
∑
k

∆̃kc
†
k,0c
†
k,−1 +

∑
m,m′=−1,0

∆m,m′

k,k+1c
†
k,mc

†
k+1,m′ + h.c. , (34)

where

∆̃k = ∆
1− γ0δk√

8
(35)

∆m,m
k,k+1 = ∆i(4m+ 3)

(
Yk,k+1√

2`

)2m+1

Qβ
k+1,ke

−
Y 2
k+1,k

8`2 (36)

∆−1−m,m
k,k+1 = ∆(−1)m(4m+ 3)

(
Yk,k+1√

2`

)2(
P β
k+1,k +m− 1

2

)
e−

Y 2
k+1,k

8`2 , (37)

γ0 ' 1.89258 is a numerical constant, and m = −1, 0.

Single impurity site in the presence of superconducting pairing

In order to address the topological superconductivity and Majorana fermions in a chain

of impurity states, we first consider a single site in the presence of superconducting coupling

within the Bogoliubov-DeGennes formalism. We restrict the Hilbert space to ψ1
1,0,−1 and

ψ1
1,−1,−1 near impurity site k with coordinates Rk. We denote electron creation operators for

these states c†k,+1 and c†k,−1. Then the effective Hamiltonian is given by

Hk =
∑
i,j

(εk + Lkσz)i,jc
†
k,ick,j + i∆̃kĉ

†
k,i (σy)i,j ĉ

†
k,j − i∆̃kĉk,i (σy)i,j ĉk,j , (38)

where µ is the chemical potential, and on-site energies are

εk = −~ωc
δk
2

+
1

2

√
(~ωcδk)2 + 8

(
β

`

)2

− µ , (39)

where ∆̃k is defined by Eq. (35). We diagonaize this Hamiltonian using the Bogoliubov

transformation

âk,± = ±
√√√√1 +

εk√
ε2
k + |∆̃k|2

ei
π
4 ĉk,±1 +

√√√√1− εk√
ε2
k + |∆̃k|2

ei
π
4 c†k,∓1 (40)
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that gives eigenvalues µk ± Lk, where

µk =

√
∆̃2
k + ε2k. (41)

Topological superconductivity in a chain of impurity-bound states

We now study a chain of impurity-bound sites placed at Rk = (0, Yk). We denote

Rk,k+1 = Rk+1 − Rk. The Hamiltonian of the chain is defined by the single site energies,

superconducting coupling and inter-site tunneling:

Hc =
∑
k

Hk +
∑
k,i,j

wi,jk+1,kĉ
†
k+1,iĉk,j +

∑
k,i,j

∆i,j
k+1,kc

†
k+1,iĉ

†
k,j + h.c , (42)

where wi,jk+1,k are given by Eqs. (30), (31) and ∆i,j
k+1,k are given by Eqs. (36) and (37).

Analogous to [25], we project the Hamiltonian Hc onto the subspace of fermionic excitations

given by ak,− on each site. These excitations are defined by Eq.(40). Then the effective

Hamiltonian is

H =
∑
k

[
(µk − Zk) â†k,−âk,− + tkâ

†
k+1,−âk,− + ∆̄kâ

†
k+1,−â

†
k,−

]
+ h.c. , (43)

where in the leading approximation

tk = ∆

√
2

4

(
Yk+1,k√

2`

)2

rk,δ

√
1 + r2

k,δ

(
P β
k+1,k −

3

4

)
e−

Y 2
k+1,k

8`2 , (44)

∆̄k = ∆
3

16

(
Yk+1,k√

2`

)3√
1 + r2

k,δ

(√
1 + r2

k,δ − 1
)
Qβ
k+1,ke

−
Y 2
k+1,k

8`2 , (45)

µk+1,k = (µk + µk+1) /2 and rk,δ = ∆̃/µk+1,k.

The term proportional to ∆̄k constitutes a p-type superconducting pairing. We therefore

arrived at a generalized version [24, 25] of the Kitaev chain [36]. Except possibly for the(
P β
k+1,k − 3

4

)
factors appearing in the definition of an effective tunneling amplitudes tk, tk

and a superconducting pairing ∆̄k do not change sign from site to site. tk becomes zero

when ~ωcδk = β/`
√

15. However, µ can be adjusted so that tk > 0 in a chain of impurity

sites.

We thus arrive to the realization of a sign ordered Kitaev chain [24] that supports two

Majorana localized modes at its ends if |µk−Lk| < max(tk+1, ∆̄k+1). Although this criterion

creates an impression that it can possibly be satisfied even at Lk = 0, it is important to keep
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FIG. 7. Spectra of 100 realizations of a chain of 5 localized states with superconducting coupling.

The total length of the chain is 200 nm. Bound states energies ∈ [µ− kBT, µ+ kBT ], where T =

0.1K. Minimal separation of centers of localized states is 25 nm, ∆ = 0.1meV, γR = 0.44meVnm

µ = 32µeV. In-gap states that disappear with increasing velocity (transition from red to green)

signify the existence of the Majorana bound states (red).

in mind that non-zero Lk > kBT is an important factor that prevents fermion doubling.

Lk separates two angular momentum/spin species of in-gap states proximity-coupled to

a superconductor. That constitutes a difference between the setting of in-gap Majorana

modes and Majorana modes in a topological insulator. In a topological insulator proximity-

coupled to a superconductor, Majorana modes can emerge at zero Zeeman splitting because

fermion doubling in topological insulator is removed by the chiral character of spin edge

states. However, the in-gap electron states in our setting do not propagate, and are not

characterized by a wavevector. In the absence of J1 defining the velocity v of the edge

states, the states are degenerate in angular momentum and spin simultaneously, which

leads to the fermion doubling. However, the gradient of exchange interactions results in

angular momentum splitting Lk that removes fermion doubling, and leads to the emergence

of topological superconductivity. In Fig. 7, we present numerically calculated spectra of a

short chain of localized states with proximity-induced superconducting coupling. At small
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FIG. 8. Creating and moving a Majorana pair: a) Setting voltage differences between top and

bottom gates to V + δV yields trivial supercronductivity in all domain walls; b) setting voltage to

V on the second bottom gate drives the system into the topological phase in the domain wall above

that gate and induces the Majorana modes at the ends of the domain wall; c) Setting the voltage

to V on the third bottom gate extends the topological region to the domain wall above that gate

and moves one of the Majorana modes to a new boundary between topological and non-topological

state; d) Setting the voltage to V + δV on the second bottom gate moves the first of Majorana

modes to the right. Blue areas are s-superconductors, yellow areas are top gates. Difference of

voltages between two neighboring yellow gates defines the presence of domain wall and the type of

the superconducting order parameter. Red domain walls are in topological superconducting state,

and green domain walls are non-topological superconductors. Grey areas correspond to voltage

differences between neighboring gates insufficient to create a domain wall.

J1 and v (~v/` < 0.3) the chain is characterized by zero modes, but for larger J1 and v

(~v/` > 0.3) states inside the superconducting gap disappear. The condition ~v/` ≈ 0.3

corresponds to the topological phase transition.

Tuning the angular momentum splitting, we can bring the system in and out of the

topological phase, creating and destroying Majorana modes at the end of the chain. Lk, in

contrast to settings described in [24, 25] is unrelated to the value of a magnetic field, but is

defined by velocities of gapped edge channels v, which are controlled by electrostatic gates.
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FIG. 9. Exchanging a pair of Majorana modes using method of moving the Majorana pair.
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FIG. 10. Fusion and recreation of Majorana modes using method of moving the Majorana pair.

Control of Majorana modes

Numerical simulations are performed for heterostructures studied in [34] assuming ∆ =

0.1 meV, γR = 0.44 meV·nm, and µ = 32 µeV. We estimate that the voltage difference

between the gates V = V1−V2 ∼ 129 mV corresponds to the topological condition ~v/` < 0.3

with Majorana fermions formed at the end of the chain, while additional voltage δV ∼ 1 mV

(total voltage difference V +δV ) brings the system to the normal superconducting proximity
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FIG. 11. Braiding Majorana modes achieved using a method of moving the Majorana pair and a

T -junction of domain walls in topological superconducting state.

state.

Thus, using electrostatic gates, we can move Majorana modes, and create and annihi-

late them. Furthermore, reduction of the difference of voltages on electrostatic gates on

the sides of the domain wall area to a voltage below 10 meV (in theory, making it zero)

erases the domain wall altogether, and can also serve as an instrument in manipulating
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reconfigurable network of topological superconductors. Figs. 8, 9, 10 and 11 demonstrate

inducing, moving, exchange, fusion and braiding of Majorana modes. In these figures, blue

areas are s-superconductors and yellow areas are top gates. Difference of voltages between

two neighboring yellow gates defines the presence of domain wall and the type of the su-

perconducting order parameter. Red domain walls are in topological superconducting state,

and green domain walls are non-topological superconductors, while grey areas correspond to

voltage differences between neighboring gates insufficient to create a domain wall. Braiding

of Majorana fermions are achieved using a structure containing T -junction of domain walls

in topological superconducting state, Fig. 11. By moving Majorana modes, two pairs of

such modes are brought to a T-junction as in panel d). Then a T -junction link is cut by in-

creasing the voltage by δV on the gate controlling that link. Gate voltages are then brought

back to the initial configuration. We underscore that all manipulations are expected to be

produced by voltage pulses. Calculated parameters and requirements for the scheme are

realistic and feasible for experiments in near future.

We note that in the schemes Fig.8-11, a superconducting pairing potential ∆ is assumed

spatially uniform in the domain wall areas. In real settings with superconducting contacts on

the sides of the domain walls, the induced superconducting gap is expected to be spatially

dependent, decreasing from the contact area into the sample. Spatially dependent ∆(y)

will re-define boundaries between topological and non-topological superconducting regions.

These boundaries, and Majorana modes residing at boundaries, can be moved with adjusted

gate voltages, when applied gate voltage exceeds the critical value in an area with lower ∆

but is smaller than the critical value in the area closer to the contact.

CONCLUSION

In this work we considered Majorana modes in hybrid s-superconductor - filling factor

ν = 2 quantum Hall ferromagnet domain wall system. We discovered that when the Fermi

level is pinned to a gap between anticrossing spin-orbit coupled edge states, the impurity

disorder in short domain walls generates proximity-induced topological superconductivity

and the Majorana zero modes. Thus, in this case not only topological superconductivity

is disorder robust, but it emerges exclusively due to impurity disorder. Hybrid structures

of s-superconductor with fractional quantum Hall edge states were suggested as possible
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realization of parafermions, which could bring such settings closer to fault-tolerant quantum

computing. Quantum Hall ferromagnet domain walls at fractional filling factors proximity-

coupled to s-type superconductor can also potentially produce parafermions, making studies

of helical domain walls an important area of the field of topological quantum computing.
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