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The reentrant integer quantum Hall effects (RIQHE) are due to formation of elec-

tronic crystals. We show analytically and numerically that topological textures in the

charge density distribution in these crystals in the vicinity of charged defects strongly

reduce energy required for current-carrying excitations. The theory quantitatively

explains sharp insulator-metal transitions experimentally observed in RIQHE states.

The insulator to metal transition in RIQHE emerges as a thermodynamic unbinding

transition of topological charged defects.
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Topology and symmetry define states of matter and their response to external forces.

Topological excitations dramatically alter the responses, but are difficult to predict because

they cannot be obtained perturbatively. Here we find novel topological excitations of two-

dimensional (2D) electrons in a perpendicular magnetic field ~B. The spectrum of electrons

in this system is given by Landau levels, and interactions cause a variety of ground states

as a function of ~B. When a filling factor ν = Φ0/Φ is integer or a certain fraction (Φ0 = h/e

is a flux quanta, Φ = B/n is magnetic flux per electron, and n is the electron density),

the Hall resistance is quantized and longitudinal resistance vanishes, the hallmarks of the

integer and fractional quantum Hall effect[1, 2].

Besides the large family of fractional quantum Hall states, the electronic solid phases

form a second distinct class of ground states for the 2DEG. These electronic solids break

the translational and rotational symmetries to various degrees. The most well-known of the

electronic solids is the Wigner solid at large magnetic fields[15]. However, 2DEGs also exhibit

other electronic solids. At ν > 4 charge density wave states arise: the unidirectional stripe

phase is formed near a half-integer ν, while bubble phases in certain ranges of fractional

ν lead to the Hall resistance quantized to the nearest integer, i.e., to the reentrant integer

quantum Hall effect (RIQHE)[1, 6–10]. Bubble phases are insulating: longitudinal resistance

vanishes at low temperatures. At a higher temperatures a non-zero resistivity emerges. The

dc and microwave transport response[11–15] and the temperature dependence[16, 17] of the

bubble phases have been under intense investigation. However the nature of the observed

sharp metal-insulator transition and the physical origin of excitations are not known in these

systems.

In this Letter we propose a theory of metal to insulator transition and uncover topolog-

ical origin of excitations in bubble phases, explaining an experimentally studied magnetic

field-temperature phase diagram of the bubble phase. The critical question is the physical

mechanism of the electron transport. The ground RIQHE state is believed to be a crystal

of bubbles carrying integer number of electrons [1, 2]. Electron hopping between bubbles is

forbidden by the Coulomb blockade, yielding an insulating state [5, 7–10]. Experiments show

that for a given bubble phase, the metal-insulator transition temperature is the highest for

the filling factor at the center of the range of magnetic fields characterizing the bubble crys-

tal and is smaller on the the flanks of this range. These results preclude an interpretation of

the metal to insulator transition as a consequence of melting of the bubble crystal as a whole
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due to dislocations [14, 22]. In such case the transition temperature would behave inversely

proportional to the lattice constant of the bubble crystal, i.e., monotonically from one flank

of the bubble phase range to the other, with no maximum of the transition temperature at

the center. Thus, a different physics is involved here.

What may provide a conduction mechanism are charge defects in a bubble crystal (an

extra electron or lack of an electron on a bubble). Here we show that in order to lower the

energy cost of charge defects, crystalline bubbles around them acquire elongated dumbbell

shape and form topological textures with vortex or 2D hedgehog symmetry, depending on

the defect charge. While topological textures of charged objects arise in bilayer electron

systems [25], this phenomenon is unique and unanticipated in single-layer systems. At low

defect densities, controlled by temperature and magnetic field, textures do not overlap and

form an insulating crystal, similar to the Wigner or Abrikosov lattice [15, 16]. At high

defect density topological defects overlap, and their interactions are described by the XY-

model. Because this occurs at temperatures above the Berezinski-Kosterlitz-Thouless phase

transition [19, 20], the crystal of topological defects melts resulting in a sharp insulator-metal

transition. This new phase transition resembles asymptotic freedom of quarks requiring them

to be ”squeezed” in order to be freed[29]. We show that heterostructure disorder modifies

bubble crystals and creates charge-neutral textures in the ground state, which affect melting

temperature of the crystal of charged topological excitations, and metal-insulator transition.

The charge density wave phases at partial ν are conventionally described via the Hartree-

Fock (HF) method [1–4]. We use its “interacting guiding centers” version [9] to study defects

in two-electron bubble crystal corresponding to ν in our experiments here and in [17]. The

HF Hamiltonian is HHF = 1/2(
∑

i Ui(0) +
∑

i 6=j U(Rij)) where indices i and j label lattice

nodes, Ui(0) is a charging energy required to put an extra electron on the two-electron

bubble i, Ri is the coordinate of the bubble i, Rij = Ri − Rj. The interaction energy

U(Rij) between bubbles i and j is given by

U(Rij) =

∫
dq

4π2
ρ∗i (q)[VH(q)− VF(q)]ρj(q)eiq·Rij , (1)

where ρi is the site i bubble density projected on the uppermost Landau Level (LL). The

Hartree and exchange potentials are, respectively [3], VH(q) = 2π
q
e−q

2/2[Ln(q2/2)]2, and

VF(q) = 2π
∫

d2q′

(2π)2
VH(q)e−i(q×q

′)·ẑ, where Ln is the nth Laguerre polynomial. The ground

state of the system is an ideal bubble crystal with a triangular lattice of round bubbles. Cre-
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FIG. 1. (a) Activation energy for an isolated defect is calculated for round bubbles (Eq. S8, dashed

lines) and textured defects using analytical theory (Eq. 3, solid lines) or full numerical calculations

(dotted lines). Note that topological deformations reduce activation energies by a factor of 10. (b)

Density of defects ρd is calculated for 70 mK and 100 mK. The melting phase transition temperature

TL corresponds to the defect density where defect separation ≈ 2L.

ating single-bubble charge defects in an otherwise unperturbed bubble crystal costs ∼ 50K,

so bubbles around the defect must re-arrange themselves to lower the energy. One mecha-

nism of re-arrangement is displacement of bubbles from lattice sites similar to displacement

of electrons in a Wigner crystal due to vacancies [14]. Calculated energies of 1ē and 3ē

defects in a crystal of round bubbles with account of such displacements ∼ 10K, dashed

lines in Fig. 1a. However, such defects cannot explain high conductivity at 100 mK.

The other mechanism of rearrangement of bubble crystal that lowers energy of charged

defects is a change of shape and elongation of two-electron bubbles around 1ē and 3ē defects.
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In the original proposal of the bubble state [1, 2, 6], electron guiding centers were on top

of each other. However, the two electron states defining bubbles are not identical: in the

symmetric gauge they are given by 3LL wavefunctions u−2 and u−1 with angular momentum

projections m = −2 and m = −1 [13]. Defects displace charges in such states differently,

resulting in bubble elongations. Furthermore, when uniform positive background is included,

such charge redistribution leads to dipole moments of bubbles. An elongated 2ē bubble looks

like a dumbbell with two charges (electron guiding centers) on it. The separation between

two dumbbell weights (electrons) appears to be smaller than the magnetic length λ. This

allows us to develop the method of solution for the problem of interacting electrons using

the small parameter λ/w, w is the bubble lattice constant. In the experimentally relevant

range of ν, w ∼ 8λ. We suggest the variational wavefunction of an elongated two-electron

bubble with guiding centers separated by 2a:

Ψξ,a(r1, r2) = α (ψa(r1, r2) + ξψ−a(r1, r2)) (2)

where α is the normalization coefficient, ξ is a variational parameter, and

ψa(r1, r2) = [u−2(r1 + a)u−1(r2 − a)ei(r1−r2)×a/2

−u−1(r1 − a)u−2(r2 + a)ei(r2−r1)×a/2].

This wavefunction is a superposition of two dumbbells with opposite orientation of weights

corresponding to two m = −2 and m = −1 electrons. It is used to find electron density of an

elongated bubble projected on the 3LL and interaction energy between dumbbells. The total

energy includes a contribution from interactions between dumbbells and the charge defects.

The wavefunction of a 1ē bubble u−2 has round shape. For a 3ē bubble the wavefunction

is a Slater determinant of u−2, u−1, and u0. Its exact shape can be determined by energy

minimization, but the physics is primarily determined by dumbbells, so we neglect the

detailed structure of the 3ē bubble and model it as having all three guiding centers on top

of each other. Interactions of a single charge defect at a site k with surrounding dumbbells

labeled i can be expressed in terms of vectors µi, which are rescaled and rotated bubble

elongations ai. Retaining terms up to R−3
ik , we get asymptotic expansion in λ/w for the
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elongation-dependent contribution to energy:

H± =
∑
i 6=k

[
∓

[
µi · R̂ik

R2
ik

+
vi

2R3
ik

cos (2ϕi)

]
+ U±f (i)

]

+
1

2

∑
i 6=j

µi · µj − 3(µi · R̂ij)(µj · R̂ij)

R3
ij

, (3)

where (+) and (−) signs correspond to 1ē and 3ē defects, R̂ij = Rij/Rij and ϕi is the

angle between Rki and ai. The first three terms of Eq. (3) come from the interaction of

i-th dumbbell with the charge defect, the fourth term is a dipole-dipole interaction between

dumbbells at sites i and j. Analytical expressions for projected density, quantities µi, vi, and

U±f (i) are given in supplementary material. We next analytically minimize energy functional

(3). Charge density in the vicinity of 1ē and 3ē defects corresponding to (3) is plotted in

Fig. 1. The orientation of dumbbells is shown schematically, making it more visible by

exaggerating separations between guiding centers. For 1ē defects the energy minimum is

at ϕi = 0, with the dipole directed towards the defect, and a 2D hedgehog texture results.

For 3ē defect the energy minimum is at ϕi = π/2 and 3π/2, corresponding to vortices and

antivortices with two complex conjugated values of variational parameter ξ. The calculation

shows that the electric dipole moment for vortices and antivortices is perpendicular to ai

and is directed away from the 3ē defect. Thus, the electric dipole moments for vortices and

hedgehogs are collinear and oppositely oriented.

In the analytical approach so far, we have included displacements of dumbbells screening

the defects away from lattice sites and shape re-arrangements as two independent steps. To

check if double-counting in energy decrease is sizable, we performed numerical minimization

of the full Hartree-Fock Hamiltonian, in which defect bubbles are introduced and dumbbells

are projected onto state (2). This simulation confirms an appearance of hedgehogs and

vortices in the presence of 1ē and 3ē defects, respectively. Activation energies of defects in

the presence of textures computed by analytical minimization of (3) and in full numerical

simulation are shown by solid and dotted lines in Fig. 1, respectively. Energies of topological

defects are an order of magnitude smaller than excitation energies for charge defects in the

absence of textures, and agree with energy scale observed in experiments.

An important result of energy minimization in our system is that single texture is ex-

tended over a finite distance L ∼ 10.5w from the charge defect. As distance Rik from the

center of the charge defect increases, separation of electrons in a dumbbell ai decreases.
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FIG. 2. Numerically calculated energy of defect-defect interaction vs defect separation shows a

crossover from constant to logarithmic dependence at ≈ 2L.

At Rik ≥ L round bubbles (ai = 0) become energetically favorable. The analytically ob-

tained dumbbell size agrees with the results of numerical simulations, where a crossover

from logarithmic dependence of energy per defect on defect separation to almost separation-

independent interaction energy is observed at 2L ≈ 21 for ν∗ = 0.22, see Fig. 2. In the

numerical simulation, ai on the boundary of defects steeply increases at Rik < L. Because

of the finite size of textures, displacements of dumbbells do not fully screen the Coulomb

potential of the charge defects. At low defects density, ρd < 1/(4L2), charged defects in-

teract via such residual Coulomb interaction. At a given density, the energetically favored

arrangement is a superlattice superimposed on the bubble crystal, similar to the Wigner [15]

or Abrikosov[16] lattice. At a given temperature the equilibrium defect density is achieved

via charges coming from and leaving to the contacts. Other channels of equilibration are

very slow; for defects separated by distance L = 20w, a calculated barrier for annihilation

of hedgehog defects in the range of ν where they dominate is ∼ 10K, for vortex defects a

similar calculation gives ∼ 15K, and for the recombination of vortex and hedgehog for ν,

where their excitation energies are equal, the barrier is ∼ 0.5K. For two close vortices (or

2D hedgehogs) the barrier is mostly due to the residual Coulomb repulsion described above.

Hence it is large for small separations between textures. For close defects of opposite charge

the barrier is defined by the balance between attractive force screened by displacements of

dumbbels and repulsion due to interactions of dumbbells of two different textures coming

into contact.

When T increases or ν is shifted away from the RIQHE center, the density of defects

increases, see Fig. 1b. When textures overlap at ρd > 1/(4L2), the last term of energy

(3) describes the XY-model interaction between dumbbells. Estimating this energy from
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our analytical model, we take the lower bound on the “exchange constant” J , given by

µi · µj term in (3). Assuming J is defined by the magnitude of elongations a ∼ λ in the

overlap region, we get J ∼ e2a2/κL3. This value is in good agreement with the slope of

the logarithmic part of the numerically obtained curve Fig 2. The free energy of topological

excitations is given by[17]

E = (πJ − 2T ) ln(L/w), (4)

where L is the size of the system, and the core of topological excitations is w. Such a

system must exhibit the Berezinski-Kosterlitz-Thouless (BKT) transition [19–21] at TBKT =

πJ/2. ≈ 5 mK. However, unbinding transition in a RIQHE differs from classical BKT

transitions. At low defect densities ρ < 1/(4L2) defects textures do not overlap, XY-model

is not relevant, and interactions are not logarithmic. Finite size textures do not overlap,

loosely forming a defect crystal due to residual Coulomb repulsion, which is an insulating

state. The transition occurs at a critical temperature TL � TBTK where ρ = 1/(4L2), once

XY model is operative. This transition constitutes melting of a defect crystal, resulting in

mobile defects. Defects move as a result of hopping of electrons between crystalline bubbles

(dumbbells) and charged bubble defects.

We plot both TL(B) calculated from the analytic model and from the numerical simula-

tions over the experimentally measured Rxx(T,B) in Fig. 3c. TL(B) describes the observed

phase diagram of the insulator-to-conductor transition rather well. We can possibly attribute

the difference between phase boundaries in experiment and theory to charged impurities in

a heterostructure. Even an undoped GaAs has a residual acceptor density ∼ 1014 cm−3 and

a smaller concentration of residual donors. Our simulation shows that charged impurities

within ∼ 3λ off the quantum well lead to the formation of charge 2ē complexes. Negatively

charged impurities form a 2ē charged complex with a 1ē bubble defect, and 2ē bubbles sur-

rounding bubble defect elongate and form a hedgehog. Positively charged impurities form

a 2ē charged complex with a 3ē bubble defect, and 2ē bubbles surrounding bubble defect

elongate and form a vortex. In contrast to unbound 1ē or 3ē defects, these textures are

attached to charged defects and do not participate in transport. However, their presence

increases the overall density of topological defects and therefore the observed TL.

We note that explanations of the observed [16] R(T ) Fig. 3a,b at temperatures and

magnetic fields below TL(B) curve, which are based on activated transport with R ∝

exp(−Ta/T ), or variable-range hopping [35] with R ∝ exp
[
−(TES/T )1/2

]
contradict the
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FIG. 3. (a,b) Temperature dependence of longitudinal resistance in the middle of the RIQHE phase.

Fits to the T -dependence with activation and variable range hopping give unrealistic Ea = 3.1 K

and Lloc = 70 nm. (c) Analytically and numerically calculated phase boundary TL(B) is plotted on

top of the experimentally measured temperature dependence of Rxx and coincides with the sharp

increase of conductance at the boundary of isolating and conducting phases.

experiment. In the former case Ta = 3.1 K is inconsistent with high mobility measured at

0.03 K. In the latter case the localization length Lloc = kBTESκ/e
2 ∼ 70 nm ∼ w/2 precludes

formation of a bubble crystal and the RIQHE state.

The bubble phase with topological defects persists above TL. The estimate of melting

temperature of a bubble crystal due to dislocations [14, 22] is in the range Tm ≈ 250−400 mK

> TL. Therefore in the interval of temperatures between Tm and TL electrons remain in the

bubble phase, but the presence of charge-defect bubbles now permits conduction by tranfer

between them and two-electron bubbbles. It is important to note, however, that bubbles

are made of electron guiding centers. Thus, most of them are not truly bound. Therefore
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although this is a correlated phase, conduction can be described by diffusion with somewhat

week mobility. Such picture suggests an explanation of the experimental data on the Hall

effect obtained here and in [16], showing that when the insulator to metal transition occurs,

Hall resistivity experiences rather abrupt transition from RIQHE value to a classical Hall

resistivity, which is independent of mobility, like it should be for Hall resistivity in strong

magnetic fields. Furthermore, this picture can also explain the longitudinal resistivity. As

can be seen from Fig. 3, in the temperature range above the transition resistivity and

conductivity in the quantum Hall regime decrease when temperature increases. We can

attribute the decrease in conductivity at temperatures immediately above TL to the effect

of increase in density of dislocations of the bubble phase, as dislocations impede available

paths for transer of electrons between bubbles and charge-defect bubbles. Eventually at

T ≈ Tm the bubble phase is destroyed, and partially filled LL with electrons or filled LL

partially depleted with holes contribute to small background resistivity.

In summary, we demonstrated that the appearence of charge defects in the bubble crystal

corresponding to reentrant integer quantum Hall effect is accompanied by transformation

of shapes of the surrounding bubbles to dumbbells. Depending on the charge of the defect,

dumbbells surrounding them form 2D hedgehog or vortex textures. 2D hedgehogs corre-

spond to one-electron defects in 2e bubble crystal and dominate at filling factors closer to

the boundary between 2e and 1e bubble crystals. Vortices correspond to three-electron de-

fects in 2e bubble crystal and dominate at filling factors closer to the boundary between 2e

and 3e bubble crystals. At suffiuciently high temperatures, textures overlap, interactions of

dumbbells is described by XY model, and the defect crystal melts, which explains exper-

imentally observed metal-to insulator transition. We acknowledge support from the U.S.

Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and

Engineering under Awards DE-SC0010544 (Y.L-G),DE-SC0008630 (L.P.R.), DE-SC0006671

(G.C., J.D.W. and M.J.M.).
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A. Charge Density Wave Phases

We use Hartree-Fock (HF) method [S1–S4] to describe charge density wave phases in the

nth partially filled Landau level[S3]:

HHF =
1

2

∫
d2q

(2π)2
[VH(q)− VF(q)]|ρ(q)|2 , (S1)

where ρ(q) is the projected electronic density onto the uppermost LL. Unless otherwise

noted, we express distances in units of magnetic length λ, wavevectors in units of 1/λ, and

energies in units of e2/κλ, where κ is the background dielectric constant. The Hartree and

exchange potentials are:

VH(q) =
2π

q
e−q

2/2[Ln(q2/2)]2 , (S2)

VF(q) = 2π

∫
d2q′

(2π)2
VH(q)e−i(q×q

′)·ẑ , (S3)

where Ln is the nth Laguerre polynomial.

A charge density wave state was proposed as the ground state for 2D systems in the lowest

Landau level [S4] even prior to the discovery of the quantum Hall effect. This prediction

appears to be relevant to high Landau levels where different phases compete[S5] and bubble

or stripe phases become possible ground states[S2, S6–S9]. In a bubble phase, guiding centers

of electron cyclotron orbits form a triangular lattice. A Wigner crystal, a triangular lattice

with one electron per lattice cell (M = 1), is energetically favorable at small effective filling

factors ν∗ = ν − nf < 0.2, where nf is the number of filled Landau levels and ν is the filling

factor. For larger ν∗ bubble phases with M > 1 can be formed. HF calculations [S2, S7–S9]

set a limit M ≤ nf +1, while density matrix renormalization group method restricts the size

of bubbles to M ≤ nf [S10, S11]. A conventional picture of bubble phases is that crystals

with M electrons per bubble exist within a certain range of filling factors and the first order

phase transitions occur between M and M ± 1 phases. For ν∗ ≈ 0.5 a stripe phase becomes
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the ground state.

Considering bubble phases, it is convenient to express the HF Hamiltonian as a sum

of effective interactions between the guiding centers: HHF = 1/2[
∑

i 6=j U(Rij) +
∑

i U(0)],

where i and j labels the nodes of a triangular lattice. An effective interaction U is given by:

U(Rij) =

∫
d2q

(2π)2
ρ∗i (q)[VH(q)− VF(q)]ρj(q) exp (iq ·Rij) , (S4)

where ρi represents projected density of a bubble located at the site i. We surmise that HF

approach captures physics of the quantum Hall systems even at low n, particularly for the

3rd LL (n = 2) and 2nd LL (n = 1) [S7–S9].

B. Charge Defects and elongations of bubbles in Bubble Crystals

We now consider charge excitations of the bubble crystal. Prior to this work bubbles were

almost exclusively treated as entities with uniform charge density. Ettouhami[S12] suggested

that guiding centers of electrons in two-electron (2ē) bubbles are spatially separated even

in an ideal bubble crystal with no charge defects. We find that if superposition between

wavefunctions of electrons in the same bubble and their phase factors due to magnetic

translations are properly taken into account, round shape of bubbles is energetically favorable

in an ideal 2ē bubble crystal. We find, however, that in the vicinity of charged defects,

i.e. bubbles lacking one electron (1ē) or with one extra electron (3ē), two-electron bubbles

become elongated and their shape looks like a dumbbell. The wavefunction of a bubble with

two guiding centers separated by 2a can be expressed as:

Ψξ,a(r1, r2) =
ψa(r1, r2) + ξψ−a(r1, r2)√

2 (1− 2e−2a2a2) (1 + |ξ|2) + 4 (1− 2a2) e−2a2<e(ξ)
, (S5)

where

Ψa(r1, r2) = u−2(r1 + a)u−1(r2 − a)e
i
2

(r1−r2)×a − u−1(r1 − a)u−2(r2 + a)e
i
2

(r2−r1)×a , (S6)

and u−2 and u−1 are single electron wavefunctions with angular momenta m = −2 and

−1 in third Landau level (n = 2) in the symmetric gauge [S13]. This is a trial wavefunc-

tion similar in spirit to the variational wavefunction proposed by Fogler and Koulakov for

round bubbles[S2]. The direction of a characterizes spatial orientation of the dumbbell, and

complex parameter ξ permits nontrivial combinations of a and −a dumbbell orientations
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that may potentially emerge in the presence of a magnetic field. Electron density of such a

dumbbell, projected on the n = 2 LL, is

ρξ,a(q) = e−
q2

4

[(
1− 2e−2a2a2

) (
1 + |ξ|2

)
+ 2

(
1− 2a2

)
e−2a2<e(ξ)

]−1

×
{
eiq·a

(
1 + |ξ|2 − |ξ|

2q2

2

)
+ e−iq·a

(
1 + |ξ|2 − q2

2

)
− e−2a2+(q×a)·ẑ [(2a2 − (q× a) · ẑ

) (
1 + |ξ|2

)
− 2

(
1− 2a2

)
<eξ

+
ξq2

2
− 2ξ(q× a) · ẑ + i

(
1− |ξ|2

)
q · a

]
− e−2a2+(a×q)·ẑ [(2a2 − (a× q) · ẑ

) (
1 + |ξ|2

)
− 2

(
1− 2a2

)
<eξ

+
ξ∗q2

2
− 2ξ∗(a× q) · ẑ + i

(
1− |ξ|2

)
q · a

]}
, (S7)

where ā = ax + iay, and a∗ = ax − iay.

We consider 1ē and 3ē charge defects, the lowest energy charged excitations of a 2ē bubble

crystal. The wavefunction of a 1ē defect is u−2(r), and has a round shape. A 3ē defect has

internal structure with nonuniform density distribution, and its wavefunction is a Slater

determinant made of u−2, u−1, and u0. Exact structure and shape of these defects can

be determined by minimizing the cohesive energy, however, as our numerical study shows,

energetics and electron transport are primarily determined by dumbbells in the vicinity of

defects. Thus, the detailed structure of 3ē bubbles is not essential and we model it with

all three guiding centers being at the same point. Using the dumbbell wavefunctions (S5),

expression for charge density (S7), and wavefunctions for 1ē and 3ē defects, we can write an

effective Hartree-Fock Hamiltonian for the dumbbell crystal with defects.

C. Numerical simulation of the problem

Full treatment of the effective Hartree-Fock Hamiltonian is an extremely complex en-

deavor, and we introduce certain simplifications for our numerical simulations. In particular,

for ν∗ far away from the center of the 2ē bubble phase we consider only one type of defects,

1ē defects at low ν∗ (close to the Wigner crystal) and 3ē at high ν∗ (close to the phase tran-

sition to the 3ē bubble crystal). We justify this simplification a posteriori by demonstrating

that the energy to form a 1ē defect is lower than the energy to form a 3ē defect at low ν∗ and

higher at high ν∗. In order to calculate the minimal energy of the system in the presence

of defects we use the following construction. The initial configuration consists of a unit cell

with one defect of a given type surrounded by dumbbells placed at the nodes of the bubble
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FIG. S4. Numerically calculated topological textures surrounding 1ē and 3ē defects.

Red and blue circles show positions of electrons with angular momentum m = −2 and m = −1

correspondingly, green circle is a 3ē defect.

crystal. The number of dumbbells in a unit cell is determined by the density of defects.

Similar to the treatment of vacancies in a Wigner crystal[S14] we apply periodic boundary

conditions repeating this unit cell, and taking into account interactions off all dumbbells and

defects both within the unit cell and between different unit cells. Extra charge on defects

cannot be fully screened by elastic displacement of surrounding dumbbells or by transfor-

mation of bubbles into dumbbells (in contrast to screening of vacancies of Wigner crystall at

infinity as in [S14]) because each unit cell has a finite size. Therefore, there is always a resid-

ual interaction that makes energetically favorable to position defects as far away from each

other as possible, justifying a periodic arrangement of defects. Displacement of dumbbells

and magnitude and direction of their elongations are computed iteratively by minimizing

total energy (with up to 300 steps), for different defect densities.

Absolute energy minimum corresponds to the bubble crystal with no defects. For fi-

nite defect density numerical simulations clearly demonstrate that around 1ē defects dumb-

bells emerge forming hedgehog textures, while around 3ē defects they form vortex textures,

Fig. S4. In Fig. 1a of the main text dotted lines show ν∗-dependence of a single defect cal-

culated at a low defect density 0.0025. For comparison, dashed lines show energies of round

defects (a = 0) when only re-adjustments of bubble positions are included. Transformation

of 2ē bubbles into dumbbells lowers defect energies by an order of magnitude. In Fig.2 of

the main text we use numerical minimization to plot dependence of energy per defect on

defect separation. At high defect densities energy depends logarithmically on defect sepa-

ration, while at smaller densities energy dependence on inter-defect distance saturates. The
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crossover is found to be at ≈ 21 bubble crystal lattice constants. At large separations, 2ē

bubbles close to the boundary of unit cells are positioned at the sites of the ideal bubble

crystal and exhibit almost no elongation. Interactions between defects are almost completely

(but still not fully) screened by elongated bubbles and, hence, there is almost no energy de-

pendence on defect separation. Elongations of boundary bubbles steeply increase at defect

separations smaller than 21w, when dependence of energy becomes logarithmic.

D. Analytical model

In order to gain insight into physics behind these numerical results and to understand the

effect of strain on conductivity, we construct an analytical model based on a small parameter

a/w, a ratio of a characteristic magnitude of elongation of 2ē bubbles, a ≈ λ, to the lattice

constant of the bubble crystal w ≈ 8λ. Writing an asymptotic expression for the effective

interaction of bubbles at different sites of the 2ē bubble lattice and taking into account

dumbbell shape, it is convenient to express the interaction in terms of elongations ai and

vectors µi, which represent rotated and re-scaled ai. Retaining terms up to R−3
ij for energy

change due to re-shaping of bubbles we obtain

δU2(Rij) =
(µi − µj) · R̂ij

R2
ij

+
µi · µj − 3(µi · R̂ij)(µj · R̂ij)

R3
ij

+
u(ai, ξi) + u(aj, ξj)

R3
ij

+
v(ai, ξi) cos(2φi − 2θij) + v(aj, ξj) cos(2φj − 2θij)

R3
ij

.(S8)

Here θij is the phase of Rij, φi and φj are the phases of elongation vectors ai and aj for

bubbles located at sites i and j respectively, R̂ij = Rij/Rij, and

µ =
2R(a)

e2a2 − 2a2

√
1−

(
2<eξ

1+|ξ|2

)2

1 + η1(a) 2<eξ
1+|ξ|2

, (S9)

u(a, ξ) = a2 e
2a2 + 2a2

e2a2 − 2a2

1 + |ξ|2 − 2η2(a)<e(ξ)
1 + |ξ|2 + 2η1(a)<e(ξ)

, (S10)

v(a, ξ) = 3a2 e
2a2 − 2a2 + 2

e2a2 − 2a2

1 + |ξ|2 + 2η3(a)<e(ξ)
1 + |ξ|2 + 2η1(a)<e(ξ)

, (S11)

where the following notations have been used

η1(a) =
1− 2a2

e2a2 − 2a2
, (S12)

η2(a) =
1− 2a2

e2a2 + 2a2
, (S13)

η3(a) =
3− 2a2

e2a2 − 2a2 + 2
, (S14)
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and R(a) represents vector a rotated by an angle φk = arg(1 − |ξ|2 + 2=mξ). The above

analytical expressions originate from the Hartree term of the potential (S2), contribution

from the exchange potential (S3) behaves as exp (−R2/4) and is neglected.

A a/w expansion of the interaction energy (S4) between a 1ē defect at site k and a

dumbbell at site i up to the R−3
ik terms:

δU1(Rik) =
µiR̂ik

R2
ik

+
u(ai, ξi) + v(ai, ξi) cos(2φi − 2θik)

2R3
ik

. (S15)

Similarly, interaction energy between a 3ē defect and a 2ē bubble is:

δU3(Rik) =
3µiR̂ik

R2
ik

+
3 [u(ai, ξi) + v(ai, ξi) cos(2φi − 2θik)]

2R3
ik

. (S16)

It is worth noting that due to the symmetry of a triangular lattice
∑

j cos(φi− θij)/Rn
ij = 0,

where the summation runs over all sites of an ideal crystal and n is a positive integer. Also,

the following result is used in what follows: α = ζ1 = w3
∑

j 1/R3
ij ≈ 11.03.

Effective Hamiltonian of a single charge defect in a dumbbell crystal is derived using (S4)

and (S8)-(S16), and is given by (3) of the main text:

H± =
∑
i 6=k

[
∓

(
µiR̂ik

R2
ik

+
vi

2R3
ik

cos (2ϕi)

)
+ U±f (i))

]

+
1

2

∑
i 6=j; i,j 6=k

µi · µj − 3(µi · R̂ij)(µj · R̂ij)

R3
ij

, (S17)

where (+) is for 3ē and (−) is for 1ē defects, ϕi = φi − θi,k. The following notations are

introduced:

vi = v(ai, ξi), (S18)

U±f (i) = U±f (ai, ξi), (S19)

where

U±f (ai, ξi) =

(
α

w3
∓ 1

2R3
ik

)
u(ai, ξ) +

1

2
U(0, ai, ξi) , (S20)

and U(0, ai, ξi) is defined in (S4). The first two terms of (S17) represent an effective one-

body (one-bubble) energy, the third term describes a formation energy at the dumbbell site

i due to the presence of a defect, and the fourth term represents an effective interaction

due to misalignment of dumbbell orientations. In the presence of multiple defects located
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at sites k,

H± =
∑

i 6=k

[∑
k

∓

[
µiR̂ik

R2
ik

+
v(ai, ξi)

2R3
ik

cos(2ϕi)

]
+ U±f (ai, ξi)

]

+
1

2

∑
i 6=j; i,j 6=k

µi · µj − 3(µi · R̂ij)(µj · R̂ij)

R3
ij

. (S21)

When charged defects are introduced into 2ē bubble crystal two effects contribute to the

lowering of the total energy: transformation of bubbles into dumbbells and displacement of

dumbbells from the sites of an ideal bubble crystal . In the numerical solution these two

effects are included simultaneously. Finding an analytical solution of our model we also

incorporate both effects, but treat them separately. First, we calculate how much energy

it costs to create a charge defect in an ideal bubble crystal. Next, we allow displacement

of round 2ē bubbles in order to lower the total energy. Finally, we lower the energy by

introducing elongations of 2ē bubbles, i.e. dumbbells. While this procedure is approximate,

it captures essential physics and allows us to understand numerical results.

1. Energy of defects in a perfect triangular crystal in the absence of elongations

Consider a 2ē bubble crystal with a microscopic number Nd defects with charge 2 − σd
(σd = ±1). At a fixed filling factor the total number of electrons 2N on the top LL is fixed.

We consider defects to be many bubble crystal constants w apart. The ground state is a

triangular lattice of N 2ē bubbles. When charged defects are present, the total number of

bubbles has to change to N + Ndσd/2, as we keep the total number of electrons the same.

Assuming all bubbles to be still arranged in a triangular lattice, we find that the change in

lattice constant is δw = −wσdNd/(4N). Then the energy of the lattice with defects is:

1

2
N

[
1−

(
1− σd

2

) Nd

N

]
ε

(w+δw)
2 +Ndε

(w+δw)
d , (S22)

where εw2 is the energy required to add one 2ē bubble into the bubble crystal with lattice

constant w, εwd is the energy of a defect embedded in an otherwise ideal triangular lattice.

From (S4) we obtain that εw2 is

ε2 =
∑

k=0,1,2

ζka
(2)
k /w2k+1 + Ũ(0), (S23)

where Ũ(0) = U(0)/2 = 833
√
π/2048 is the formation energy, a0 = 4, a1 = 14, a2 = 765/4.

Since w ≈ 8λ we restrict asymptotic expansions to three terms. This approach is justified
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by the comparison with numerical results. Similarly, interaction energy between a defect

and 2ē bubbles is Ud =
∑

k=0,1,2 b
(d)
k /r2k+1, making εd =

∑
k=0,1,2 ζkb

(d)
k /w2k+1 +ud, where the

formation energy of a 1ē defect is u1 = 0, while for the 3ē defect u3 = 77463
√
π/65536. For

1ē defect b0(1) = 2, b1(1) = 13/2, b2(1) = 117/2, and for 3ē defect b0(3) = 6, b1(3) = 45/2

and b2(3) = 531/2. Parameters ζ are ζ0 = −4.2, ζ1 = 11.03 and ζ2 = 6.76.

Using expressions for ε2 and εd we find the total energy of Nd defects

NdEd =
1

2
N

[
1−

(
1− σd

2

) Nd

N

](
ε2(w) +

∂ε2
∂w

δw

)
+Ndεd(w)− 1

2
Nε2(w) (S24)

and energy per defect:

Ed = −σd
8

∂ε2
∂w

w +
σd − 2

4
ε2 + εd. (S25)

2. Energy of defects in a distorted crystal in the absence of elongations

We now consider decrease of the total energy when 2ē bubbles are allowed to adjust

their positions while retaining their round shape. We approach this problem in the spirit of

Fisher, Halperin and Morf[S14]. Due to the presence of charged defects 2ē bubbles at lattice

sites Ri experience displacements u(Ri) from their equilibrium positions. It is assumed

that u(Ri) � w. In the framework of elasticity theory, the energy associated with such

displacements up to the second order in u(Ri) is given by

Ed({ui}) =
1

2

∑
i,j

Παβ(Ri,Rj)uα(Ri)uβ(Rj)

−
∑
i 6=i0

δV 1
α (Ri)uα(Ri)−

∑
i 6=i0

δV 2
α,β(Ri)uα(Ri)uβ(Ri) (S26)

where Π is the spring constant matrix,

δV 1
α =

∂

∂rα
[U2(r)− Ud(r)] , (S27)

and

δV 2
α,β =

1

2

∂2

∂rα∂rα
[U2(r)− Ud(r)] . (S28)

Here the potential energy describing the bubble lattice U2 is given by

U2(Rij) =
4

Rij

+
14

R3
ij

+
765

4R5
ij

, (S29)

the interaction energy of 2ē bubble at site i with a 1ē defect at site k Ud=1 is given by

U1(Rik) =
2

Rik

+
13

2R3
ik

+
117

2R5
ik

, (S30)



sup-9

the interaction energy of the 2ē bubble at site i with a 3ē defect at site k Ud=3 is given by

U3(Rik) =
6

Rik

+
45

2R3
ik

+
531

2R5
ik

. (S31)

Multipole terms in expansions (S29-S31) appear in magnetic field as a result of the shape

of the electron wavefunction in the second LL. Because w is large compared to magnetic

length, and Rik is several w, we restrict these asymptotic expansions to three terms.

A spring constant matrix is determined in terms of its Fourier-transform, which is related

to the Fourier-transforms of the potentials δV 1
α and δV 2

α,β by

δV 2
α,β(q) =

1

2

∑
γ

Vγ,γδαβ + AcΠ
d
αβ (S32)

and

δV 1
α (q) = −iAc

∑
γ

∂Πd
γγ

∂qa
, (S33)

where Ac is the area of the elementary cell of the bubble lattice. Assuming a neutralizing

background and writing the potential in the form

V (r) =
∑
k

ak
r2k+1

, (S34)

we obtain an explicit expression for Π:

A2
cΠαβ(q) = 2π

qαqβ
q

+
∑
k

Ξkak
w2k+1

(
q2δαβ +

4k + 6

2k − 1
qαqβ

)
, (S35)

where constants Ξ0 = 0.26 , Ξ1 = 2.07 and Ξ2 = 6.34. The change of energy of the lattice

in terms of Fourier-transformed quantities is given by

Ed({ui}) =
1

2

∫
dq

4π2
Παβ(q)uα(q)uβ(q)

−
∫

dq

4π2
δV 1

α (q)uα(q)−
∫
dqdk

16π4
δV 2

α,β(q− k)uα(k)uβ(−q). (S36)

Minimization of this expression assuming

uα(q) =
qα
q2
f
(
1 + cq + dq2

)
(S37)

yields a decrease in activation energy of the defects caused by displacements u(Ri). The

obtained energy reduction is very close to the numerical results shown in Fig. 3a of the main

text, where dashed curves show the energy needed to create 1ē and 3ē electron defects in the

absence of elongations. The corresponding displacements are also close: the bubbles nearest

to the defect are displaced by ∼ 0.1w in numerical simulation compared with ∼ 0.08w

from analytical results, and for the displacement of the next nearest neighbors we obtained

∼ 0.03w numerically vs ∼ 0.02w analytically.
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3. Lowering defect energy due to re-shaping

In our analytical approach we minimise elongation-dependent energy (S17) and combine

it with the result of displacement minimization (S36). Minimization (S17) provides the

values of the separation vector ai and the mixing parameter ξi. Assuming that a/R � 1,

minimization of the first term in (S17) provides the zeroth order result. For 1ē defects

the energy minimum is at ϕi = 0, with the dipole directed towards the defect, and a

2D hedgehog texture appearing. For 3ē defect the energy minimum is at ϕi = π/2 and

3π/2, corresponding to vortices and antivortices with two complex conjugated values of

variational parameter ξ. The calcultion shows that the electric dipole moment for vortices

and antivortices is perpendicular to ai and is directed away from the 3ē defect.

We evaluate the effect of the interaction term by approximating a dumbbell located far

away from the defect as being surrounded by nearest dumbbells with the same parameters

a and ξ. The result of such minimization procedure is

ai =
w2

2
1
6 3

1
2α

3
2

(
1

Rik

) 4
3

− 27/6w4

35/2α
4
3

(
1

Rik

) 8
3

(S38)

ξ3ē
i = −1 + i

2w2

2α
2
3

(
1

r

)4/3

(S39)

ξ1ē
i = −1 +

2w2

2α
2
3

(
1

r

)4/3

, (S40)

and corresponding activation energies are plotted in Fig. 1a of the main text (solid lines).

Although these energies quantitatively differ from those obtained numerically (dotted lines),

qualitatively both approaches (i) result in the decrease of activation energy by an order of

magnitude compared to the case of round bubbles (dashed lines), and (ii) predict hedgehog

textures around 1ē defects and vortex texture around 3ē defects.

An important insight obtained from the analytical model is that textures associated with

an isolated defect are extended over a finite distance L ∼ 10.5w from the charge defect. As

distance Rik from the center of the charge defect increases, bubble elongation ai decreases.

At Rik ∼ L elongations ai = 0 (round bubbles) become energetically favorable. This happens

for defect density that corresponds to a change in the dependence of activation energy on

the defect separation in our numerical simulation shown in Fig. 2 of the main text. We now

discuss the significance of these findings.
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4. Defect crystal, melting and insulator to metal transition

At low defect density ρd < 4L2 textures from different defects do not overlap. At a

given T and ν∗ an equilibrium density of defects is established by electrons coming from

and leaving to Ohmic contacts, a process accompanied by the formation or destruction of

charge defects. Other channels of equilibration, such as annihilation of defects, are very

slow. For defects separated by distance L = 20w, a calculated barrier for annihilation of

hedgehog defects in the range of ν where they dominate is ∼ 10K, for vortex defects a

similar calculation gives ∼ 15K, and for the recombination of vortex and hedgehog for ν,

where their excitation energies are equal, the barrier is ∼ 0.5K. For two close vortices (or

2D hedgehogs) the barrier is mostly due to the residual Coulomb repulsion described above

and hence large for small separations between textures. For close defects of opposite charge

the barrier is defined by the balance between attractive force screened by displacements

of bubbles and repulsion due to interactions of elongated bubbles of two different textures

coming into contact. The obtained energy barriers render annihilation processes ineffective

at experimentally relevant temperatures T < 0.15 K.

The density equilibrium density of defects at small density is given by activational depen-

dence.For a given temperature, there is equilibrium density of defects and the corresponding

defect crystal.

Due to residual Coulomb interactions, defects form a superlattice superimposed on the

dumbbell crystal, somewhat similar to the Wigner[S15] or Abrikosov[S16] lattice, an arrange-

ment confirmed by numerical simulations When defect separation becomes < 2L textures of

neighboring defects start to overlap. It is important to realize that in our analytical model

the two-body interaction (S17) represents an XY-model [S17]. This is transparent if we take

a continuum limit ϕi → ϕj, where only cos (ϕi − ϕj) term is important. For the XY-model

the vortex and hedgehog textures, which minimize the 1/R2 interaction of the bubble system

with defects, constitute topological excitations. We note that XY-model physics character-

izes dipole-dipole interactions of (S17) even if continuum limit is not applied [S18]. Thus,

for ρd > 4L2 energy (S17) includes interaction between dumbbells located near different

defects, described by the XY model. Proceeding within the framework of our analytical

model and calculating energy caused by such interaction, we take the lower bound on the

”exchange constant” J , which is the µi · µj term in (S17). We assume that J is defined by
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a characteristic magnitude of elongations a ∼ λ in the region where topological excitations

overlap, which sets the lower bound to J ∼ e2a2/κL3. Then, as in the XY-model, energy is

logarithmic,

E = πJ ln(L/w), (S41)

where L is the size of the system and the core of topological excitations is taken to be of

the order of the bubble crystal lattice constant w. It is this logarithmical dependence that

arises in numerical simulations, Fig. 2 of the main text. Thermodynamical properties of the

system are defined by the free energy, which includes the entropy of topological excitations

and is given by[S17]

F = (πJ − 2T ) ln(L/w). (S42)

Such system must exhibit the Berezinski-Kosterlitz-Thouless (BKT) transition [S19, S20]

at TKT = πJ/2. However, the thermodynamic transition in the RIQHE regime differs from

conventional BTK transitions, e.g., discussed in [S21], due to the finite size of topological

defects. For ρd < 4L2 there is no overlap between neighboring defects (their textures), XY

model is not relavant, and thus, the system cannot undergo the BKT transition. Temper-

ature TL, at which textures from neighboring defects begin to overlap (ρd = 4L2) is much

higher than TKT ≈ 5 mK, estimated analytically or extracted from the slope of numerically

obtained curves in Fig. 2 of the main text. Thus, TL � TKT in both analytical and numerical

calculations and TKT itself is not observed in our experiments. The unbinding of topological

defects at TL required to avoid the divergence of logarithmic interactions (S42) constitutes

melting of the defect rather than the bubble crystal. The TL’s at different filling factors ob-

tained in our calculations are rather close to the experimentally observed temperatures of

metal-insulator transitions.

5. The role of residual charge impurities on the metal-insulator transition temperature

The difference between analytically and numerically obtained TL are primarily due to

the simplified energy minimization procedure in the analytical model. Quite remarkable,

however, is about 30% difference between numerically calculated TL and experimentally

measured metal-insulator transition temperatures. We attribute this difference to the role

of disorder not accounted for in our models.We will devote a separate paper to simulations

of disorder, but will now briefly sketch some of our results.
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The 2D electron gas is separated from the donor layers by symmetric spacer layers of

approximately 100nm. Ionized impurities in the doping layer produce a smooth random

potential in the quantum well. For large spacers this potential has little effect on the bubble

crystal: our numerical simulations show that the ground state of the quantum Hall liquid

in the range of filling factors corresponding to 2ē bubble crystal in the presence of ionized

impurities located further than 4λ from the 2D gas is still a (slightly deformed) 2ē bubble

crystal.

However, even undoped GaAs has a residual acceptor density ∼ 1014 cm−3 and a smaller

concentration of residual donors. Numerical simulations show that depending on the filling

factor and on separation from the 2d layer, certain charged impurities within ∼ 3λ of the

quantum well lead to formation of charge 2ē complexes. Negatively charged impurities form

a 2ē charged complex with a 1ē bubble defect, and 2ē bubbles surrounding bubble defect

elongate and form a hedgehog. Positively charged impurities form a 2ē charged complex with

a 3ē bubble defect, and 2ē bubbles surrounding bubble defect elongate and form vortex. In

contrast to unbound 1ē or 3ē defects , these complexes are strongly localized by charged

defects and do not participate in the transport. However, the presence of these complexes

increases the overall density of topological defects, lowers the density of the unbound defects

needed for melting transition discussed above, and the observed TL.

6. Temperature range of free topological defects

After melting of the defect crystal, topological defects determine the resistivity as long

as the bubble crystal is viable. The bubble crystal itself is going to melt, e.g., due to

dislocations. We estimate the melting temperature of the bubble crystal using the Thouless

formula [S14, S22]:

Γ =
4e2√πns
Tmκ

=
4
√

2e2
√
π

4
√

3Tmwκ
, (S43)

where ns is the bubble density, w is the Wigner lattice constant, e is the electron charge, κ

is the dielectric constant, Tm is the melting temperature. The factor 4 comes from the 2ē

charge of the bubbles. The dimensionless parameter Γ = 78 − 130 according to [S22–S25].
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The estimated Tm can be as low as ∼ 250 mK, which is above > TL.

[S1] M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, “Ground state of a two-dimensional

electron liquid in a weak magnetic field,” Phys. Rev. B 54, 1853 – 71 (1996).

[S2] M. M. Fogler and A. A. Koulakov, “Laughlin liquid to charge-density-wave transition at high

Landau levels,” Phys. Rev. B 55, 9326–9329 (1997).

[S3] I. L. Aleiner and L. I. Glazman, “Two-dimensional electron liquid in a weak magnetic field,”

Phys. Rev. B 52, 11296–11312 (1995).

[S4] H. Fukuyama, P. M. Platzman, and P. W. Anderson, “Two-dimensional electron gas in a

strong magnetic field,” Phys. Rev. B 19, 5211–5217 (1979).

[S5] M. M. Fogler, High Magnetic Fields: Applications in Condensed Matter Physics and Spec-

troscopy, edited by C. Berthier, L.P Levy, and G. Martinez, Lect. Notes Phys., Vol. 595

(Springer, Berlin, 2002) pp. 98–138.

[S6] A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, “Charge density wave in two-dimensional

electron liquid in weak magnetic field,” Phys. Rev. Lett. 76, 499 – 502 (1996).

[S7] M. O. Goerbig, P. Lederer, and C. Morais Smith, “Microscopic theory of the reentrant

integer quantum Hall effect in the first and second excited Landau levels,” Phys. Rev. B 68,

241302 (2003).
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