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Formation of helical domain walls in the fractional quantum Hall regime as a step toward
realization of high-order non-Abelian excitations
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We propose an experimentally feasible platform to realize parafermions (high-order non-Abelian excitations)
based on spin transitions in the fractional quantum Hall effect regime. As a proof of concept we demonstrate a
local control of the spin transition at a filling factor 2/3 and formation of a conducting fractional helical domain
wall (fhDW) along a gate boundary. Coupled to an s-wave superconductor these fhDWs are expected to support
parafermionic excitations. We present exact diagonalization numerical studies of fhDWs and show that they
indeed possess electronic and magnetic structures needed for the formation of parafermions. A reconfigurable
network of fhDWs will allow manipulation and braiding of parafermionic excitations in multigate devices.
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Topological quantum computation can be performed with
Majorana fermions (MF) [1], but MF-based qubits are not
computationally universal [2]. Parafermions (PFs), higher-
order non-Abelian excitations, are predicted to have denser
rotation group and their braiding enables two-qubit entangling
gates [3,4]. A two-dimensional array of parafermions can serve
as a building block for a system which supports Fibonacci
anyons with universal braiding statistics [5], a holy grail of
topological quantum computing. In an important conceptual
paper Clark et al. proposed that PF excitations can emerge
in the fractional quantum Hall effect (FQHE) regime if two
counterpropagating fractional chiral edge states with opposite
polarization are brought into close proximity in the presence of
superconducting coupling [6]. Here we propose that domain
walls formed at spin phase transitions in the FQHE regime
have the prerequisite helical structure to support PF excitations
when coupled to an s-wave superconductor. We demonstrate
experimentally that in a triangular quantum well a 2D system
can be tuned across a spin transition at a filling factor ν = 2/3
using electrostatic gating. We also demonstrate formation of
conducting channels at boundaries between incompressible
polarized and unpolarized ν = 2/3 states. These channels
are formed from two counterpropagating ν = 1/3 states with
opposite spin orientation; we will refer to them below as
fractional helical domain walls (fhDWs) in analogy to helical
channels formed along the edges in the quantum spin Hall
effect. Local control of polarization allows formation of a
reconfigurable network of fhDWs with fractionalized charge
excitations and, potentially, parafermion manipulation and
braiding. We present exact diagonalization numerical studies
of fhDWs.

*Corresponding author: leonid@purdue.edu

Helical channels are commonly associated with the quan-
tum spin Hall effect [7], topological insulators [8], or nanowires
with spin-orbit interactions [9,10], where Coulomb interac-
tions are not strong enough to fractionalize charges. A natural
system to look for PFs is a 2D electron gas (2DEG) in the
FQHE regime, where edge states support fractionally charged
excitations. In the conventional QHE setting, though, edge
modes are chiral. Helical channels can potentially emerge
as domain walls during a quantum Hall ferromagnetic tran-
sition. It has been predicted that domain walls formed in the
integer QHE regime at a filling factor ν = 1 have helical
magnetic order [11]. Experimentally, local electrostatic control
of domain walls in the integer QHE regime at ν = 2 was
recently demonstrated in magnetic semiconductors [12], and
their electronic and magnetic structure has been calculated
[13].

In the FQHE regime spin transitions have been observed
at a filling factor ν = 2/3 and other fractions [14,15]. At
the transition, the 2DEG spontaneously phase separates into
regions of different spin polarizations, and conducting domain
walls are formed along the domain boundaries [16,17]. An
experimental challenge is to devise a system where spin
transitions in the FQHE regime can be controlled locally,
allowing formation and manipulation of DWs. Theoretically,
neither magnetic nor electronic structure of these domain walls
is known.

It has been realized that hard ν = 2/3 edge states at the 2D
gas boundaries are complex objects with chiral downstream
propagation of charge excitations and neutral energy-carrying
modes propagating both up- and downstream [18–20]. Recent
experiments show that two copropagating ν = 1/3 charge
modes at the edge of a sample are weakly interacting and can be
spatially separated [21]. Thus, a domain wall formed between
two spin polarized domains at ν = 2/3 ferromagnetic transi-
tion can be formally constructed from two counterpropagating
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FIG. 1. (a) Energy spectrum of �levels for CFs, Eq. (1). For
ν = 2/3 (two filled � levels) the spin polarization of the top level
changes at B∗, when �1,↓ and �2,↑ cross. Solid and dotted lines are
calculated for two different values of the wave-function extent z0. (b)
The calculated wave function in a triangular quantum well formed
at a GaAs/AlGaAs heterojunction interface. Solid and dotted lines
correspond to the two different gate voltages and show the change of
z0. Note the break in the horizontal axis.

ν = 1/3 chiral charge modes with opposite spin polarization,
similar to the domain walls formation in the integer quantum
Hall ferromagnetic transition [13].

Spin transitions in the FQHE regime can be readily un-
derstood within the framework of the theory of composite
fermions (CFs) [22], where FQHE states at filling factors ν =
ν∗/(2ν∗ − 1) for 1/2 < ν < 1 are mapped onto integer QHE
states with a filling factor ν∗ for CFs. The energy spectrum of
CF � levels with an index p = 1,2,3 . . . can be written as

E↑↓
p = h̄ωcf

c

(
p − 1

2

)
± gμBB. (1)

The CF cyclotron energy h̄ω
cf
c is proportional to the charging

energy Ec = e2/
√

l2
m + z2

0, where lm ∝ √
B⊥ is the magnetic

length, B⊥ = B cos θ is the out-of-plane component of the
magnetic field B, and z0 is the extent of the wave function in the
out-of-plane direction. The second term is the Zeeman energy.
Due to the difference in B dependencies of the two terms, levels
�p,↓ and �p+1,↑ cross at some B∗ > 0; see Fig. 1. Thus, for
ν∗ = 2 (two � levels are filled) the top energy level undergoes
a spin transition at B∗. The ν = 2/3 state is unpolarized for
B < B∗ and fully polarized for B > B∗.

Conventionally, FQHE spin transitions are studied in tilted
magnetic fields, where global control of the field angle θ

changes the ratio of Zeeman and cyclotron energies. For a
triangular confinement, though, z0 is gate dependent, z0 =
z0(Vg) [see Fig. 1(b)], and local control of Ec and B∗ at a fixed
B becomes possible. Within the Fang-Howard approximation
of the wave function in a triangular well, z0 = 3/b, where b ∝
n1/3 is a function of electron density. For GaAs parameters and
B∗ ≈ Bν=2/3 ≈ 4–6 T, the field B∗ becomes density and gate
dependent: δB∗/B∗ ≈ 0.3δn/n, δn/n = δVg/Vg . The field
position of the ν = 2/3 state is also density and gate dependent,
δBν=2/3/Bν=2/3 = δn/n. Thus, for a well-developed wide ν =
2/3 state and a sharp spin transition there should be a range of
magnetic fields where spin polarization of the top level can be
tuned locally by electrostatic gating.

In order to demonstrate electrostatic control of polarization
we have grown a number of wafers where high mobility 2D
electron gas is confined at a single GaAs/AlGaAs interface.

FIG. 2. Resistance in the vicinity of ν = 2/3 state is measured
as a function of (a) magnetic field B at a constant gate voltage Vg

or (b) as a function of Vg at a constant B. Yellow and cyan colors
mark unpolarized (u) and fully polarized (p) ν = 2/3 sates. B∗ and
V ∗

g mark the spin transition.

Inverted GaAs/AlGaAs heterojunctions are grown by molecu-
lar beam epitaxy, the top layer is 130–230 nm thick GaAs,
Si δ-doping placed 70–300 nm beneath the heterojunction
interface. The top 25 nm of GaAs are lightly doped to reduce
the surface pinning potential. In the main text we present
data on devices fabricated from wafers A (Fig. 2) and D
(Fig. 3), wafers parameters can be found in [23]. Inverted
heterostructures allow electrostatic gating of a shallow 2D gas
with no hysteresis, also in similar wafers proximity-induced
superconductivity has been reported [24]. Ohmic contacts are
formed by annealing Ni/AuGe/Ni/Au 6 nm/120 nm/20 nm/20
nm in a H2/N2 atmosphere. 10-nm-thick Ti gates are separated
from GaAs and from each other by 50 nm Al2O3 grown by an
atomic layer deposition (ALD). The gates are semitransparent
and a 2D electron gas is created by shining red LED at ∼4
K. Measurements were performed in a dilution refrigerator
with the base temperature T ≈ 30 mK using a standard lock-in
technique with excitation current Iac = 0.1–10 nA.

Magnetoresistance in the vicinity of a ν = 2/3 plateau is
shown in Fig. 2(a). At the base temperature a 0.35-T-wide
incompressible state is interrupted by a small peak at
B∗ = 4.94 T. This peak has all the characteristics of a spin
phase transition studied in the past, including strong current
dependence and hysteresis with respect to the field sweep direc-
tion, which appears at high bias currents [15]. We identify this
peak with the spin transition; unpolarized (u) and polarized (p)
ν = 2/3 states are highlighted with yellow and cyan on the plot.
The most important data is shown in Fig. 2(b), where resistance
is plotted as a function of a gate voltage Vg measured at a fixed
magnetic field. Similarly to the field scan, an 18-mV-wide ν =
2/3 plateau is interrupted by a small peak at V ∗

g = −151 mV,
which we identify with the spin transition. The transition peak
is narrow, ≈ 6 mV with well-defined ν = 2/3 states with
different polarization on the two sides of the peak. Thus, it is
possible to control spin polarization locally by electrostatic
gating.

Formation of a conducting domain wall at a boundary
between unpolarized and polarized ν = 2/3 regions is shown
in Fig. 3. A 2D gas is separated into two regions where
density is independently controlled by gates G1 and G2. The
length of the gate boundary is 7 μm for the shown device.
Resistances R1 and R2 for the 2D gases under the two gates
are combined into a single plot in (c) in order to visualize
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FIG. 3. (a) Sample layout. (b) Resistance R1 and R2 under gates G1 and G2 is measured as a function of gate voltages Vg1 and Vg2. Letters
u and p mark unpolarized and polarized states. In (c) R1 and R2 are plotted on top of each other. The region where ν = 2/3 under both gates
is outlined with a white dotted line, s1s2 indicates polarization under G1 and G2. In (d) resistance R across the gate boundary is plotted for two
fields directions. Nonzero R in (up) and (pu) quadrants indicates formation of a conducting domain wall between polarized and unpolarized
ν = 2/3 states. Lithographical length of the gate boundary is 7 μm. Resistance in (b) and (c) is measured with Iac = 1.3 nA, in (d) with
Iac = 0.13 nA.

regions in the (Vg1-Vg2) plane where FQHE states on both sites
of the boundary overlap (a small coupling between the gates
results in slightly nonorthogonal evolution of the features).
A small bump in the middle of the ν = 2/3 state is the spin
transition (the data is taken with high Iac = 1.3 nA in order for
the transition to be visible above the noise level), and separates
the 2/3 region into four quadrants with different polarizations
across the gate boundary. In (d) resistance measured across the
gate boundary is plotted as a function of both gate voltages. In
the region outlined red incompressible 3/5 states are formed on
both sites of the gate boundary and R = 0. A chiral channel
is formed between 2/3 and 3/5 states (two regions outlined
black). In this case resistance is gradient and field direction
dependent: R = 0 or R = 1/6Rq , where Rq = h/e2. Within
the 2/3 state R = 0 in the (pp) and (uu) quadrants, indicating
formation of a well defined incompressible state under the
gate boundary. When polarization of the 2/3 state changes
across the gate boundary R becomes nonzero indicating
formation of a conducting channel. Resistance R ∼ 3–5 k�

does not depend significantly on the direction of the density
and polarization gradient (up or pu) nor on the magnetic field
direction, consistent with the formation of a helical domain
wall. In the current geometry resistance of the fhDW is not
measured directly, within Landauer-Büttiker formalism we

extract (10–20)Rq channel resistance for 2–7-μm-long fhDWs
with no clear scaling with the length. The lack of scaling
may indicate that scattering predominantly occurs in hot spots
formed at trijunctions where fhDWs merge with edge states.

In order to investigate the structure of domain walls formed
between spin-unpolarized and spin-polarized regions we per-
formed exact diagonalization studies of a system with small
number of particles. To simulate edge states we use the disk
geometry [25,26] shown schematically in Fig. 4. Long-range
Coulomb interactions between electrons are introduced using
Haldane pseudopotentials. A neutralizing background and a
confinement potential are used to hold electrons inside the
disk. As is evident from experiments, the spin transition can
be controlled by modulation of either Coulomb or Zeeman
energies interchangeably; see, e.g., Fig. 2. In our modeling
we use spatially dependent Zeeman effect to control spin
polarization of the 2DEG. The central region of the disk of
radius R1 = 2.9lm is characterized by a high Zeeman energy
term Emax

Z , while the outer region with the outer diameter R2 =
4.8lm is set to Emin

Z = 0. The Zeeman term varies smoothly
within R1 < r < R1 + �R, where �R = 0.4lm, resulting in
a smooth variation of wave functions across the disk and
avoiding spurious effects originating from abrupt changes.
Note that due to a strong penetration of electron wave functions
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FIG. 4. (a) Disk geometry for the simulation domain. (b) The blue
curve is the difference between spin densities Sz(r) for the modes with
angular momentum Lz = 45 and 47, the current-carrying exciting
states on the two sides of the domain wall formed around R1. Profile
of the spatially dependent Zeeman interaction used to form the domain
wall is shown in red.

from the R1 < r < R2 region into the r < R1 region, the
variation of the average spin splitting

∫
ψ(r)∗EZ(r)ψ(r)d2r

for the two close modes on two sides of the domain wall is
<6%, similar to the experimental conditions. Therefore our
model studies soft edges characterizing the experiment.

We include up to 12 electrons in the exact diagonalization
calculation for fully spin-polarized states and eight electrons
for unpolarized states or coexisting polarized and unpolarized
states at ν = 2/3. Energies and wave functions for the ground
state and edge states, their density, and spin density distri-
butions for the disk geometry have been calculated; see [23]
for details. The ground state for eight particles has the total
angular momentum projection Lz = 46, in agreement with
the composite fermion theory [22]. The ground state is spin
polarized in the interior part of the disk and spin unpolarized
in the exterior area, as expected. The total spin projection of
the ground state is Sz = +2. The lowest excited states with
the same spin projection, which corresponds to the addition
or subtraction of a single flux, has angular momenta Lz = 45
and 47. These states are the current carrying states defining
the domain wall. The difference in spin polarizations between
these two states is shown in Fig. 4(b); it smoothly changes
sign across the domain wall. There is ≈ 0.5lm outward shift of
the position of the midpoint of the domain wall in the actual
spin-density profile relative to the profile of the defining

Zeeman term. This shift is due to smaller wave-function
weights in the outward region.

The two edge states with different Lz on the disk have
different angular velocities. When mapped onto a plane,
these two states will have different linear velocities, i.e.,
their velocities will have counterpropagating components.
Combined with the different spin polarization these states
will have a finite overlap with Cooper pair wave functions
in a proximity s-wave superconductor, as has been shown
for domain walls in integer quantum Hall ferromagnets [13].
A proximity-induced topologically nontrivial superconductor,
defined by the counterpropagating CFs modes with different
polarization, is expected to emerge in the domain-wall region.
Due to higher degeneracy of the composite fermion � levels
compared to the degeneracy of the Landau levels, parafermion
states will emerge at the boundary of topological and trivial
s-wave superconductors, as predicted in Ref. [6].

In summary, we propose that domain walls formed during
ferromagnetic spin transitions in the fractional quantum Hall
effect regime can be used as building blocks to form topological
superconductors that support parafermion excitations. Exact
diagonalization study of spin transitions in a disk geometry
confirms that domain walls, formed between spin-up and
spin-down domains at ν = 2/3, indeed possess electronic
(two counterpropagating modes) and magnetic (opposite spin
orientation for the two modes) structure needed to couple to
an s-wave superconductor. We demonstrate that in triangular
quantum wells spin transitions can be controlled locally by
electrostatic gating and conducting helical domain walls can
be formed in multigate devices. Such local control allows
formation of reconfigurable networks of domain walls. In the
presence of proximity-induced superconducting coupling the
system becomes a reconfigurable network of one-dimensional
topological superconductors with parafermion excitations.
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