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Two classes of topological superconductors and Majorana modes in condensed matter systems are known
to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap
and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-
robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions
often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle
spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap
and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class
of topological superconductivity and Majorana modes emerges, in which topological superconductivity and
Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled
topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled
to an s-wave superconductor. As an example of emergence of topological superconductivity in quantum Hall
ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments
on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in
the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions
and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of
impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced
Majorana modes emerge at boundaries between topological and conventional superconducting states generated
in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth
random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced
angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram
exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range
with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum
Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum
Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.
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I. INTRODUCTION

Non-abelions in solid state systems, such as Majorana
fermions, parafermions or Fibonacci anyons, result in a
topologically degenerate ground state characterized by non-
Abelian statistics and provide paths to topological fault-
tolerant quantum computing [1,2]. Exotic states with non-
Abelian excitations are predicted to emerge in correlated states
in the fractional quantum Hall regime in two-dimensional
electron, bilayer, and hole gases [3–9], in p-wave 3He [10],
in hybrid superconductor/topological insulators [11,12], and
superconductor/semiconductor [13–16] systems. Topological
superconductors can be divided into two broad classes: one
in which disorder induced by impurities strongly suppresses
topological superconducting gap and can be detrimental to
non-Abelions [17–23], and another in which non-Abelian
excitations are protected by an impurity-robust topological
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superconductor gap [24–32]. In semiconductor wires, impurity
scattering can change the range of parameters characterizing
topological superconductivity without changes in the mech-
anism of superconducting proximity effect or conductance
through the system [33]. In this work, we present a third class of
topological superconductivity and Majorana fermions, which
appear exclusively when impurities generate states in gapped
energy spectrum, enabling conductance through the system
and a superconducting proximity effect via the in-gap states.

Observation and control of Majorana fermions and other
non-Abelions often require a symmetry of an underlying
system leading to a gap in a single-particle or a quasiparticle
spectra. An example is a quantum Hall system proximity-
coupled to a superconductor, where Majorana fermions [34],
parafermions [35], and Fibonacci fermions [36] are predicted
to be formed in the presence of interacting counterpropagating
edge channels. Realizations of non-Abelions in quantum Hall
systems coupled to a superconductor have a very important
feature: a superconductor in this case couples effectively to
a single-electron channel (two counterpropagating channels).
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This precludes many complications that may emerge, e.g., in
Majorana quantum wire settings, when several electron chan-
nels can be occupied in wires in proximity of a superconductor.
Emergence of higher order non-Abelian excitations, such as
parafermions and Fibonacci anyons in quantum Hall based
systems is the other reason why such system have potential
advantage.

Emerging experiments in quantum Hall systems with coun-
terpropagating edge channels indicate strong level repulsion
and opening of a large exchange gap for interacting edge
channels with the same orbital quantum numbers [37]. A
promising alternative is a quantum Hall ferromagnetic transi-
tion, where domain walls at a filling factor ν = 1 have helical
magnetic order [38]. However, when helical domain walls are
formed from almost orthogonal states with different orbital
quantum numbers and opposite spins in integer and fractional
QHE regimes, spin-orbit interactions open small spectral gaps
in bulk Landau level spectrum [37] and in the spectra of
electrostatically induced edge states [39]. These gaps suppress
electron transport at low temperatures [37,40], but in short he-
lical domain walls, transport can be carried by the in-gap states
[39]. This mechanism is important experimentally, because it
becomes possible to distinguish conductance through a single
domain wall from conductance through the bulk of the 2D gas.

Here, we demonstrate that impurity-induced in-gap states
in electrostatically defined helical domain walls can lead to
topological superconductivity when coupled to an s-wave
superconductor. We solve a general quantum-mechanical prob-
lem of short-range impurity states in the presence of Landau
quantization and spin-orbit interactions, and derive impurity
states in the electrostatically induced domain wall. We then
map the system of these states on the analog of a generalized
Kitaev chain [24,41], and calculate the phase diagram for
the existence of topological superconductivity and Majorana
fermions. Because the origin of the system is helical edge
states, which yield the spectrum of the impurity system with a
wide range of energy separations of states with distinct angular
momentum, the generalized Kitaev chain in our case has
different symmetry properties, and a different phase diagram
compared to a regular Kitaev chain or a chain of quantum dots
[24]. We extend our consideration to impurities resulting in a
smooth random potential, and demonstrate that topolological
superconductivity and Majorana fermions also emerge in that
case. Finally, we demonstrate that with a local electrostatic
control of the Quantum Hall Ferromagnetic (QHFm) transition
it is possible to induce, move, exchange, fuse, and braid
Majorana modes.

We consider a specific case of a 2D electron gas formed in
asymmetrically Mn-doped CdTe quantum wells, where local
electrostatic control of a quantum Hall ferromagnetic transition
and a single helical domain wall manipulation have been
recently reported [39]. However, these experiments indicated
the vital role of impurities in conductance through an elec-
trostatically controlled individual domain wall in this system,
and raised the question whether this intrinsically precludes
generation of Majorana fermions and other non-Abelions
in quantum Hall ferromagnets or if the non-Abelions are
still feasible. We resolve this problem affirmatively, showing
that impurities are crucial for generating non-Abelions. Our
conclusions should be applicable to any system where quantum

Hall ferromagnetic transition can be locally controlled, such
as, e.g., a 2D hole gas in Ge [42]. Quantum Hall ferromagnetic
transitions in the integer and fractional QHE regimes have been
observed in 2D gases in many semiconductors, including GaAs
[40,43], AlAs [44], InSb [45], CdMnTe [46,47], Si [48] and
graphene [49], and their electrostatic control has been shown
[37,50,51].

II. MAJORANA MODES IN A HELICAL DOMAIN WALL

In Mn-doped CdTe quantum wells, an external magnetic
field B aligns spins of Mn2+ ions and generates an additional
exchange contribution to the electron spin splitting due to
interactions between conduction electrons and d-shell elec-
trons localized on Mn [52]. This s-d exchange splitting has
a sign opposite to the bare Zeeman splitting for electrons
in the conduction band, leading to multiple level crossings
at high magnetic fields [46]. The ferromagnetic transition of
interest occurs at a crossing of states with opposite polar-
izations belonging to the first two Landau levels (n = 0,↑)
and (n = 1,↓) at a filling factor ν = 2. In an asymmetrically
Mn-doped quantum wells, the strength of the s-d exchange can
be electrostatically controlled [37] and it is possible to form an
unpolarized and a fully polarized states under different gates,
as shown schematically in Fig. 1.

In order to describe a helical domain wall formed between
the gates we consider the edgelike states in a quantum Hall
system induced by an electrostatic potential V (z,x) uniform
along the y direction and varying between V1 and V2 in the x

direction between the two gates, Fig. 1. We call these states
edgelike in order to distinguish them from the conventional
edge states flowing at the physical boundary of the 2D sample.
In much the same way as Landau spectrum is prominent
when the cyclotron energy greatly exceeds the Landau level
broadening, such edgelike states and a domain wall are formed
as soon as electrostatic potential introduces energy difference
between the two areas underneath the gates V1 and V2 that
sufficiently exceeds the level broadening. The effective 2D
electron Hamiltonian is given by

H = − 1

2m∗

(
−ih̄∇ − eA

c

)2

+ eExx

+ 1

2
σz

(
1

2
g∗μBB + J0 + J1x

)
, (1)

where A is a vector potential of a magnetic field B = ∇A,
which is directed along negative z, B = |Bz|, m∗, e, and g∗
are electron effective mass, charge, and g factor, �σ is the Pauli
matrix vector, σz is its z component, μB is the Bohr magneton,
and Ex = −∇x

∫
φ∗(z)V (z,x)φ(z)dz is an electric field in x

direction caused by the gradient of the gate-induced potential
V (z,x), and φ(z) is the z envelope of the wave function. In
the mean-field approximation, s-d exchange interactions are
represented by a uniform part J0 [53] and a gate-induced
variation of the s-d exchange J1x [54]. J1 constitutes a spin-
dependent electric field in x direction. As was demonstrated in
Ref. [37], using a combination of front and back gates and for
a nonuniform doping of the quantum well by Mn2+ ions along
the growth direction z, it is possible to achieve almost uniform
2D electron density but induce significant J1 � eEx [54].
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FIG. 1. (a) Electrostatic gates V1 and V2 control magnetization M1 and M2 caused by the electron exchange interactions with Mn impurities. A
spatial gradient of magnetization J1 and a potential gradient Ex result in the formation of edgelike states between the gates (red and blue). Vertical
arrows along edge states show spin polarization of electrons, which is opposite for edgelike states as a result of quantum Hall ferromagnetic
transition. Between the gates, edgelike states are hybridized and form a helical domain wall. (b) Energy profile of electron states in the absence
of spin-orbit interactions. Due to different polarization of red and blue states, the electron system at ν = 2, which also include electrons in the
ground Landau level (black), are unpolarized on the left and polarized on the right.

While considering nonzero Ex will not change our essential
results, we will keep only the J1 effective spin electric field
and take Ex = 0.

In this model, the electron eigenvalues and wave functions
are

En,s,ky
= h̄ωc

(
n + 1

2

)
+ h̄kyvs

− m∗v2
s

2
− s

(
1

2
g∗μBB + J0

)
, (2)

ψn,s,ky
= un

(
x − ky�

2 + vs

ωc

)
eikyyχs, (3)

where ωc = eB/(m∗c) is the cyclotron frequency, � =
(eB/h̄c)−1/2 is the magnetic length, ky is the y component
of the wave vector �k, un are the Landau wave functions,
s = ±1 is for spins up and down, and χ1 = χ↑ = (1,0)T

and χ−1 = χ↓ = (0,1)T . The spin-dependent drift velocity
vs = s · v, where v = cJ1/2eB. At ν = 2, the edgelike states,
Eq. (2), are localized near the spectral crossing of (n = 0,↓)
and (n = 1,↑) states and can propagate between the two gated
regions with opposite velocities.

A nonmagnetic disorder cannot cause scattering between
two edgelike states (3) due to their opposite spins. However,
two edges with opposite velocities originating from neigh-
boring Landau levels are coupled by spin-orbit interactions,
similar to the coupling of edges in a 2D topological insu-
lator introduced by an in-plane Zeeman field. The specific
mechanism of such coupling between zeroth Landau level
spin-down and first Landau level spin-up states is Rashba (but
not the Dresselhaus) spin-orbit interactions, described by a 2D
Hamiltonian HR = γREz(�σ × �k)z. Here, Ez is the component
of the electric field perpendicular to the 2D plane, and γR

is the Rashba coefficient. The resulting spin-orbit coupling
hR = ∫

ψ∗
0,↓,ky

HRψ1,↑,ky
dxdy is given by

hR =
√

2
γREz

�
e
− m2�2

h̄2 v2
(

1 − m2�2

h̄2 v2

)
. (4)

In the presence of this spin-orbit coupling, the effective
single-particle Hamiltonian in the basis of the (n = 0,↓) and
(n = 1,↑) states (2) near their spectral crossing is given by

He = hkyvσz + hRσx. (5)

Thus this single-particle system, which serves as a setting
for the proximity-induced topological superconductivity, is
rather unusual: in contrast to the nanowires and topological
insulators, where spin-orbit interactions result in the level
crossing and the Zeeman interaction provides a gap; here, the
Zeeman interaction is responsible for the crossing at k = 0
while spin-orbit interactions open a gap in the spectrum.
Due to this gap, the edgelike states are not gappless chiral
modes. However, these states (5) exhibit helical electron spin
texture similar to the Néel domain walls. We have calculated
the texture numerically, Fig. 2, taking into account exchange
interactions between electrons.

FIG. 2. (a) Spin texture as seen by the ground state in a system of
two induced edge states originating from LL1 spin-down and LL0
spin-up states and coupled by Rashba spin-orbit interactions near
spectral crossing. Exchange interactions of electrons are taken into
account. Gated areas are shown in yellow, while the edge channels
are propagating through the green region. (b) Average spin projection
on x direction (blue), y direction (red), and z direction (black) in the
ground state.
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In order to see how non-Abelian quasiparticles can emerge
in the CdMnTe quantum Hall system, we consider supercon-
ductor proximity-induced electron pairing. To illustrate the
potential of this system for hosting Majorana modes, we will
first assume that the Fermi level is outside the spin-orbit gap
and crosses edgelike states forming the helical domain wall.
The system then is not in the regime of the quantum Hall
plateau, presenting difficulties for experimental control, but
it is instructive to observe how Majorana modes emerge in this
case. The regime of the quantum Hall plateau, when the Fermi
level is within the spin-orbit gap in the spectrum of edge states,
is considered in the next section.

We assume that the proximity effect is induced by super-
conducting Ohmic contacts directly coupling edgelike states
to an s-wave superconductor. We remark that making such
contacts to CdTe directly may be challenging, however, re-
cently, the Molenkamp group [12] made superconducting
contacts to HgTe, which opens a clear path to achieve contacts
by depositing HgTe on CdTe and contacting HgTe. This
may present additional important opportunity of controlling
proximity superconductivity by voltage applied to the contacts.

Superconducting contacts induce an order parameter

(x,y). Pairing the states of Hamilonian (5) is described by the
projected order parameter 
k = ∫

dxdyψ0,↓,ky

(x)ψ1,↑,ky

.
Due to the opposite velocities of the coupled edgelike states,
the 
k is sizable even in the approximation of a constant

(x,y) = 
 despite different Landau indices for the two
edges:


k = 
e
− m2�2

2h̄2 v2

√
2m�

h̄
v. (6)

The corresponding Bogoliubov-de Gennes(BdG) equation
Hψ(x,y) = Eψ(x,y), where ψ(x,y) = (u↑,u↓,v↓,−v↑)T , is
defined by the BdG Hamiltonian

H =

⎡
⎢⎢⎢⎣

h̄kv − μ hR 
k 0

hR −h̄kv − μ 0 
k


∗
k 0 −h̄kv + μ hR

0 
∗
k hR h̄kv + μ

⎤
⎥⎥⎥⎦. (7)

Its four eigenvalues are

Ek = ±
√


2
k+μ2+h̄2k2v2 ± 2

√

2

kh
2
R+μ2h2

R+h̄2k2v2μ2,

(8)
where μ is the chemical potential measured from the crossing
point energy in the absence of Rashba coupling. The system
becomes gapless for k = 0 and 
2

k=0 + μ2 = h2
R , and at

|hR| <
√

2

k=0 + μ2, exhibits a topologically nontrivial super-
conducting phase. Formally, the emergence of a topological
superconducting phase is somewhat similar to the case of a
topological insulator in proximity to an s-wave superconductor
[55], but because it is Zeeman splitting that gives level
crossing and spin-orbit interactions that leads to the gap here,
the restriction on the topological phase is defined by the
value of the spin-orbit coupling rather than by the Zeeman
splitting. It is important to notice that for the chemical potential
outside the superconducting gap, i.e., μ > hR , the induced
superconducting order is always topological. Furthermore,
topological superconductivity exists even in the absence of a

spin-orbit coupling at hR = 0. In this case, Majorana fermions
are localized at the contacts with an s-superconductor at the
ends of the domain wall area. This Majorana system can be
affected by nonmagnetic disorder: in contrast to chiral states
(3), the eigenstates of Hamiltonian (5) in the presence of the
spin-orbit coupling are subject to backscattering. This is similar
to electron scattering off nonmagnetic impurities between edge
states in topological insulators in the presence of the Zeeman
spin splitting in an in-plane magnetic field. Backscattering
must lead to reduction of domain wall conductance compared
to conductance of domain walls formed by chiral states (3), as
supported by experimental data on resistance on the flanks of
the quantum Hall ν = 2 plateau in experiments [39]. Thus, for
Majorana modes emerging in a helical domain wall with the
Fermi level positioned outside the spin-orbit gap in the domain
wall but inside the quantum Hall gap in the adjacent 2D regions,
impurity scattering becomes detrimental in much the same way
as for chiral states in semiconductor wires. Majorana fermions
are expected to arise only in very high mobility quantum
Hall samples with small impurity scattering. However, even
in this case, due to rather narrow interval of energies, 2D bulk
regions exhibit finite conduction at the lowest temperatures,
complicating the Majorana setting.

For chemical potential μ inside the spin-orbit gap, there
exists a significant distinction between the present setting and
Majorana modes in topological insulators in the presence of
Zeeman splitting in an in-plane field. In topological insulators,
a superconductor is often assumed to cover the whole area
above the edge states at the sample boundary as opposed to
a small contact at the side of the domain wall envisioned
here. Correspondingly, a certain proximity pairing effect exists
throughout a topological insulator when μ is inside the gap,
which is characterized by a trivial superconducting phase. In
the present setting, if impurities are not taken into account,
only a very small area defined by a penetration of the wave
function into an insulating gapped domain wall near the contact
would bear some trace of superconductivity, while the rest of
the domain wall is generally an insulator. However, as we shall
see, impurities drastically change this situation.

III. TOPOLOGICAL SUPERCONDUCTIVITY GENERATED
BY IMPURITIES

In order to obtain a well-controlled Majorana setting, the
electron transport has to be conducted exclusively along the
helical domain wall. To achieve this, the quantum Hall ferro-
magnetic transition should be tuned very close to ν = 2, where
the bulk 2D conduction vanishes. In this case, μ lays inside the
spin-orbit gap and conduction is exponentially suppressed at
low temperatures in wide regions. However, in a short helical
domain wall channel, the conduction remains finite, and it
was concluded that the in-gap impurity states provide the
conduction path [39]. We now show that in the presence of
superconducting proximity effect, the helical domain walls
with in-gap states can be mapped into a modified version
of a generalized disordered Kitaev chain [24,41] where a
topologically nontrivial superconducting order and Majorana
bound states emerge.

To consider a superconducting proximity effect in helical
domain walls with the Fermi level inside the spin-orbit gap
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in the spectrum of edgelike states, we first solve a general
quantum-mechanical problem of impurity-induced states in a
magnetic field in the presence of spin-orbit interactions. We
then find impurity states in the domain wall in the presence
of the mean-field gradient of exchange interactions between
electrons and Mn ions, J1. Our goal here is to get analytic
results for the impurity-induced states. We first model poten-
tial variations from remote ionized impurities as short-range
potentials with a bound state energy Eb at zero magnetic field,
and solve a system in which an impurity potential is added
to Hamiltonian (1). We then demonstrate that similar results
hold when a smooth random potential of impurities in the
remote doping layer in the structures experimentally studied
in Ref. [37,39] is modeled by a sum of Gaussian potentials.

A. Effect of spin-orbit coupling on Landau level
short-range impurity states

Short-range impurities in a quantizing magnetic field were
considered in Refs. [56,57]. It is convenient to use the following
representation for the wave functions of an electron in a
uniform magnetic field:

ψm,n,s(r,ϕ) =
√

n!

(n + m)!2m+1π�

× e
(imϕ+ i

4
r2

�2 sin(2ϕ)− r2

4�2 )
(

r

�

)m

Lm
n

(
r2

2�2

)
χs, (9)

corresponding to electron states degenerate in m with energy
E0

n,m,s = h̄ωc(n + 1
2 ) + sVz, s = ±1, where Vz is the spin

splitting that includes the conduction band Zeeman effect and
a mean-field exchange splitting due to the electron spin inter-
action with Mn spins, Lm

n denotes the Laguerre polynomials,
r and ϕ are the polar coordinates, and n � 0 and m � −n

are integers. In this representation, despite the chosen Landau
gauge for the magnetic field vector potential (reflected by an
asymmetric sin 2ϕ term in the exponent), the electron wave
functions are localized and normalized to unity, and energy
levels are multiply degenerate in the quantum number m.
While in this gauge, due to the sin 2ϕ term in the exponent,
the quantum number m does not have a precise meaning
of the electron angular momentum, we will still loosely use
the term angular momentum for m. As it is well-known, it
is possible to choose a linear combination of these wave
functions, which would be delocalized. Importantly, in the
presence of an in-plane electric field, these states are no longer
degenerate and describe a drift of the guiding centers in a

direction perpendicular to both an electric and a magnetic field.
Similarly, propagating edge states can be formed.

Following Refs. [56,57], we begin by considering a single
impurity at the origin in the presence of the Landau quan-
tization. The short-range impurity does not affect states with
m 	= 0 as their wave function is zero in the origin, and all states
with m 	= 0 are still described by the wave functions given
by Eq. (9) and the corresponding eigenenergies E0

m	=0,n,s . The
states with m = 0 are bounded by the impurity and the energy
and wave functions of these states are

Ei
0,n,s = h̄ωc

(
n + 1

2 − δn

) + sVz (10)

ψi
0,n,s = |�(−n + δn)|√

π� ′(−n + δn)

(−1)n

r
e

ir2 sin(2φ)
4 Wn+ 1

2 −δn,0

(
r2

2

)
χs,

(11)

where W is the Whittaker function and � is the digamma
function. In a high magnetic field limit, the impurity split-off
δn is given by

δn =
∣∣∣∣�(n + 1) − ln

|Eb|
h̄ωc

∣∣∣∣
−1

. (12)

For states with δn � 1, the digamma function in Eq. (12)
is much smaller than the logarithmic part and δn =
1/ ln(h̄ωc/|Eb|) ≡ δ is independent of n. To simplify our
analysis, we will consider this approximation; our conclusions,
however, are quite general and this restriction is not crucial.

We now include the Rashba Hamiltonian HR using the basis
set that includes the orthonormalized wave functions (9) for
m 	= 0 and wave functions determined by Eq. (10) for m = 0.
The nonzero matrix elements are

〈ψm−1,n,↑| HR |ψm,n−1,↓〉 = β
√

2n

�
= 
so

√
n,

〈ψi
0,n,↓| HR |ψ−1,n+1,↑〉 � β

√
2n

�
= 
so

√
n,

〈ψi
0,n,↑| HR |ψ1,n−1,↓〉 � β

√
2n

�
= 
so

√
n, (13)

where β = γREz. 
so coinsides with hR given by Eq. (4) at
n = 1 when J1 is neglected, i.e., at v = 0. Here the matrix
elements between Landau level states and impurity states are
computed neglecting terms of orderO((β/�)δ/h̄ωc) andO(δ2).

The effect of spin-orbit interaction on Landau electron states
and impurity bound states in a quantized magnetic field is
twofold. First, m = 0 impurity states below the Landau level
with index n and spin up couple to pure Landau level n − 1
spin-down states, and similarly m = 0 impurity states below
the Landau level with index n and spin down couple to pure
Landau level n − 1 spin-up states. The coupling of, e.g., the
three lowest impurity states is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(m,n,s)\(m,n,s) (0,0,↑)i (0,0,↓)i (0,1,↑)i (1,0,↓)L (−1,1,↑)L

(0,0,↑)i
h̄ωc

2 − Vz − δ 0 0 0 0

(0,0,↓)i 0 h̄ωc

2 + Vz − δ 0 0 
so

(0,1,↑)i 0 0 3h̄ωc

2 − Vz − δ 
so 0

(1,0,↓)L 0 0 
so
h̄ωc

2 + Vz 0

(−1,1,↑)L 0 
so 0 0 3h̄ωc

2 − Vz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)
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The impurity state m = 0, n = 0 and spin up does not couple
to any state. In (14), the wave functions (0,n,↑)i = ψi

0,n,−1

and (0,0,↓)i = ψi
0,0,1 are defined by Eq. (10), and the wave

functions (−1,n,↑)L = ψ−1,n,−1 and (1,n,↓)L = ψ1,n,1 are
defined by Eq. (9). We underscore the origin of coupling states
by using index i for m = 0 impurity states and subscript L

for m 	= 0 pure Landau level states in the absence of spin-
orbit interactions. Similarly to the lowest states in Eq. (14),
unbound and impurity-bound states in higher Landau levels
form two-level systems: due to spin-orbit interactions, any
impurity-bound state couples to a single pure Landau level
state (with m = 1 or m = −1 depending on the spin of the
coupled m = 0 state), and splits the m = 1 or m = −1 state
off the Landau level, resulting in two series of impurity states:

E+
n,ς = h̄ωc

(
n − δ

2

)
+ ς

√(
h̄ωc

1 − δ

2
− Vz

)2

+ n
2
so,

(15)

E−
n,ς = h̄ωc

(
n − δ

2

)
+ ς

√(
h̄ωc

1 + δ

2
− Vz

)2

+ n
2
so,

(16)

where (n � 1), ς = ±1 denotes two different superpositions
of m = 0 and m = −1 or m = 0 and m = 1 states for a given
n in the corresponding series. Impurity-bound states E+

n,ς

originate from (n − 1,m = 1,↓) Landau level states in the
absence of Rashba interactions, and states E−

n,ς originate from
(n,m = −1,↑) Landau level states in the absence of Rashba
interactions. The wave functions corresponding to these series
of energy levels are given by

ψ+
n,ς = ρ+

+ψi
0,n,−1 + ςρ+

−ψ1,n−1,1, (17)

ψ−
n,ς = ρ−

+ψi
0,n,1 + ςρ−

−ψ−1,n+1,1, (18)

where

ρ+
+ =

√
1
2 (1 + γ+), ρ+

− =
√

1
2 (1 − γ+);

ρ−
+ =

√
1
2 (1 + γ−), ρ−

− =
√

1
2 (1 − γ−), (19)

γ± = ±(
h̄ωc

1∓δ
2 − Vz

)
√(

h̄ωc
1∓δ

2 − Vz

)2 + n
2
so

. (20)

For the remaining n = 0 state, which is spin up in a system
considered here, the energy and wave function of the impurity
state are the same as in the absence of spin-orbit interactions
and are defined by Eqs. (10) and (11). The electron states (15)
and (16) and the impurity state originating from the n = 0
Landau level do not participate in the formation of propagating
superposition states in the presence of an electric field or near
the sample edge, and are bound to impurities.

In order to understand the overall spectrum and hierarchy of
electron impurity-bound levels and degenerate Landau levels,
we observe that besides the effect of doubling the number
of impurity-bound states, the spin-orbit interaction gives an
additional repulsion of Landau electron states not bound to

FIG. 3. Electron energy spectrum in a quantized magnetic field in
the presence of an attractive impurity center and spin-orbit interactions
in the bulk of the 2D gas. Splitting δE of the degenerate in m and
m′ (m,n = 1,s = 1) and (m′,n = 1,s = −1) levels is given by Eq.
(22) and is caused by the cyclotron splitting and spin splitting due
to Zeemann, exchange, and spin-orbit interactions. Each impurity
results in two energy levels for each Landau level, which are given
by Eqs. (15) or (16) and are due to either two linear combinations
of m = 0 and m = −1 states for s = 1 or two linear combinations
of m = 0 and m = 1 states for s = −1. The impurity-bound state
E−

1,1 is shown in blue, E+
1,1 is shown in red, E+

1,−1 is shown in
magenta, and E−

1,−1 is shown in green. Splitting of impurity levels
δẼ+ = E+

1,1 − E+
1,−1 and δẼ− = E−

1,1 − E−
1,−1. Due to the effect of

split-off h̄ωcδ, δẼ− > δE > δẼ+. Only one impurity induced state,
shown in black, arises from (n = 0,↑) Landau level directly above
it. These two lowest levels, the Landau level and its corresponding
impurity-bound state, are not affected by spin-orbit coupling.

impurities, resulting in the energy series

Em,n,s = h̄ωcn + s

√
n
2

so + (
1
2 h̄ωc − Vz

)2
, (21)

where s = ±1 and n � 1. For these states, at s = 1 the angular
momentum is m 	= 1,0, and at s = −1 the angular momentum
is m 	= −1,0. All other values of angular momentum in these
series characterize degenerate states. The exception is the state
with n = 0, which is only spin up, and has an energy E0 =
h̄ωc/2 − Vz. For this state, only the m = 0 value is excluded
fromm-degenerate states.E0 is the ground state for
so � h̄ωc

considered here. Except for the exclusion of states with certain
m, Eq. (21) gives the Rashba spectrum for conduction electrons
[58]. The energy separation of impurity-unbound levels δE =
Em,1,+1 − Em′,1,−1 arising from cyclotron splitting as well
as spin splitting due to Zeemann, exchange, and spin-orbit
interactions, where m and m′ characterize degenerate levels
for a given value of s, is given by

δE = 2
√


2
so + (

1
2 h̄ωc − Vz

)2
. (22)

The electron and impurity-bound energy levels in a quan-
tized magnetic field in a quantum well in the presence of
the Rashba interactions are shown in Fig. 3. Similar to the
spectrum in the absence of Rashba interactions with single
m = 0 impurity states below each spin-resolved Landau level,
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FIG. 4. Electron energy spectrum in a quantized magnetic field in
the presence of an attractive impurity center and spin-orbit interactions
in the bulk of the 2D gas in the case of compensation between
cyclotron splitting and the sum of the Zeemann and exchange
interactions. The splitting 2
so of the (n = 1,s = 1) and (n = 1,s =
−1) unbound states is due to Rashba coupling only. Impurity levels
from + and − series [Eqs. (15) and (16)] become degenerate, so that
E+

1,1 = E−
1,1 and E+

1,−1 = E−
1,−1 (shown as coincidence of blue and red

and coincidence of magenta and green). The splitting between pairs
of degenerate levels δE∗ is due to both Rashba coupling and impurity
split-off h̄ωcδ.

here two impurity states (with m = 0 and m = −1) are below
the Landau level with s = 1 and two impurity states (with
m = 0 and m = 1) are below the Landau level with s = −1.

While levels with m = 0 are below the corresponding
Landau levels in much the same way as their counterparts in
the absence of Rashba coupling, spectral positions of m = 1
and m = −1 impurity-bound levels can be explained by the
combined effect of level repulsion due to 
so and h̄ωcδ, as
seen, e.g., from Hamiltonian matrix Eq. (14). The s = 1 m-
degenerate Landau level in the presence of spin-orbit coupling
(21) has energy higher than both impurity-bound E+

1,ς=1 and
E−

1,ς=1 states, as can be seen from the energy separation
between the corresponding levels:

Em,n=1,+ − E+
1,ς=1 = h̄ωcδ/2 −

√(
h̄ωc

1 − δ

2
− Vz

)2

+ 
2
so

+
√


2
so +

(
1

2
h̄ωc − Vz

)2

, (23)

Em,n=1,+ − E−
1,ς=1 = h̄ωcδ/2 −

√(
h̄ωc

1 + δ

2
− Vz

)2

+ 
2
so

+
√


2
so +

(
1

2
h̄ωc − Vz

)2

. (24)

In the absence of spin-orbit interactions, depending on the
sign of h̄ωc

1−δ
2 − Vz, the energy separation described by one

of the Eqs. (23) and (24) is h̄ωcδ, and characterizes the only
bound state (10), while the energy separation described by the

other of the Eqs. (23) and (24) vanishes, because no second
bound state exists for a given spin-resolved Landau level when
spin-orbit coupling is absent. With an increase of 
so, energy
separation (23) decreases, and at large 
so reaches the value
h̄ωcδ/2. In this case, the energy separation given by Eq. (24)
increases, and at large 
so reaches the same value h̄ωcδ/2 as
the energy separation (23). Similarly, the s = −1 m-degenerate
Landau level in the presence of spin-orbit coupling (21)
has energy higher than both impurity-bound E±

1,ς=−1 states.
Furthermore, analogous consideration shows that the Em,n=1,−
state is always lower in energy than states E±

1,ς=1. Therefore
E±

1,ς=1 states lie between two impurity-unbound levels Em,1,1

and Em,1,−1 (21), and E±
1,ς=−1 states are below the Em,1,−1

level.
At Zeeman energy

V ∗
z = gμBB + J0 = h̄ωc/2, (25)

energy states (m,n,s = 1) and (m′n,s = −1), and particularly
(m,n = 1,s = 1) and (m′,n = 1,s = −1) energy states, ac-
quire additional double degeneracy in the absence of spin-orbit
interactions, but split in its presence, with energies Em,1,±1 =
h̄ωc ± 
so.

When condition (25) is fulfilled, impurity bound states of
series with energies E+

n,ς and E−
n,ς also become degenerate as

shown in Fig. 4. In particular, as can be shown by considering
equations similar to Eqs. (23) and (24), the double degenerate
level

E∗
n=1,+ = h̄ωc

(
1 − δ

2

)
+ 1

2

√
4
2

so + (h̄ωcδ)2 (26)

corresponding to ς = 1 lies in between (m,n = 1,s = 1) and
(m′,n = 1,s = −1) levels given by Eq. (21), and a double
degenerate level at ς = −1 with energy

E∗
n=1,− = h̄ωc

(
1 − δ

2

)
− 1

2

√
4
2

so + (h̄ωcδ)2 (27)

lies below (m′,n = 1,s = −1) level. In these equations, super-
script * corresponds to degeneracy of + series (15) and − series
(16). The two degenerate spin-orbit impurity-bound states with
energy E∗

n,+ are orthogonal in spin space, and the two states
with energy E∗

n=1,− are also orthogonal in spin space. This
is a consequence of degeneracy between (n − 1,↑) and (n,↓)
Landau levels in the case of absence of spin-orbit interactions.

B. Impurity states in a helical domain wall

So far, we discussed the Landau levels and the impurity
states in the presence of spin-orbit coupling in the “bulk” of
the 2D electron liquid. In the presence of the spin-dependent
electric field J1 in a narrow range of coordinate x, which
leads to the formation of a helical domain wall, these states
change in a twofold way. First, Landau levels with multiple
degeneracy in angular momenta (21) form linear combinations
that correspond to edgelike states (2), which are gapped
by spin-orbit interactions and are described by the effective
Hamiltonian (5). The two doublets of impurity states also
evolve; in Fig. 5, one doublet with ς = +1 falls into the gap
between spin-orbit split edgelike states, and the other doublet
with ς = −1 is below the spin-orbit gap, in agreement with
their ordering in the 2D bulk, as given by Eqs. (15), (16),
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FIG. 5. Electron spectrum in the presence of impurities in a helical
domain wall of width W in conditions of compensation between
cyclotron energy and the sum of Zeemann and exchange energies
for electrons, Eq. (25). The red and blue state doublet are states
originating from a double degenerate bulk state E∗

n=1,+ (26) of Fig. 4,
with a splitting between them due to the gradient of magnetization
J1 according to Eq. (28). The green and magenta state doublet are
states originating from a double degenerate state E∗

n=1,− (27) of Fig. 4,
with a splitting between them due to the gradient of magnetization
J1 according to Eq. (28). This doublet is below the spin-orbit gap.
The evolution of the splitting of red-blue and green-magenta doublets
is schematically shown in the inset. The electron edgelike states are
also separated by the spin-orbit coupling 2hR in the channel given by
Eq. (4). Only a single nondegenerate level (black solid segment) is
split off the (m 	= 0,n = 0,↑) Landau level shown by the lower black
dashed line.

and (21). The second effect of the effective spin-dependent
electric field J1 is the angular momentum splitting of the in-gap
impurity states. The angular momentum splitting of the E∗

1,+
double degenerate level (26) for an impurity centered at the
origin in the area of the helical domain wall, is given by

L = h̄2v2

�2
√

(h̄ωcδ)2 + 4
2
so

. (28)

Angular momentum splitting L arises in the second-order
perturbation theory in the effective spin-dependent electric
field J1, and therefore is quadratic in v. Equation (28) is valid
if the characteristic coupling J1� of impurity states and edge
states in the presence of a gradient of magnetization satis-
fies J1� � h̄ωcδ. The dependence of the angular momentum
splitting of levels on δ is shown in the inset of Fig. 5. In the
experiment [39], the highest J1w ∼ 0.07h̄ωc, while w ∼ 10�,
so δ = 0.01 in the inset of Fig. 5 is the lower limit when Eq. (28)
can still be applied.

C. Chain of impurity states

Our goal is to study a chain of in-gap states, Fig. 6, for
impurity potentials centered at Rk = (Xk,Yk), |Rk − Rk−1| �

FIG. 6. Schematic view of the conducting channel with proximity
induced superconductivity (blue contact), with attractive impurity
potential (red).

� in high magnetic field, and when the dimension of the chain
along the y direction is much larger than the width of a helical
domain wall. Therefore the chain can be considered as one-
dimensional, with Rk = (Xk = 0,Yk). As we shall see, even
when our model will be reduced to a simple model with identi-
cal periodically placed impurities, it will show up topological
superconductivity and Majorana fermions. However, in order
to address a realistic situation that corresponds to quantum Hall
structures, we will assume that impurity centers are positioned
arbitrarily and may have slightly different binding energies
and therefore different impurity split-off δ. This happens, e.g.,
because of their varying z coordinate in a doping layer and
therefore varying separation from the quantum well. We will
denote the split-off for an impurity centered at Rk as δk .
Angular momentum splittings Lk for impurity sites centered
at Rk also differ from site to site:

Lk = h̄2v2

�2
√

(h̄ωcδk)2 + 4
2
so

. (29)

The wave functions of electrons bound to a single impurity at
Rk are given by

ψ (k)
m (r) = ψm

1,1(r − Rk), (30)

where ψm
1,1(r) are defined by Eq. (17), m = ±. To simplify our

equations, we will use index m running over m = 0 (for +
sign) and m = −1 (for − sign), so that summation over m will
run over m = 0 and m = −1 states for both directions of spin.
We will also drop the Landau level index, because levels under
consideration are all characterized by n = 1 in the impurity
spin-orbit spectrum, see Eqs. (15) and (16). Considering a
chain, we orthogonalize the wave functions assuming that
only overlap between wave functions of electrons centered on
the nearest neighbors is essential. The orthonormalized wave
functions are

∣∣ψ̃ (k)
m

〉 � ∣∣ψ (k)
m

〉 − 1

2

0∑
m1=−1

∣∣ψ (k+1)
m1

〉
Sk+1,k

m1,m

− 1

2

0∑
m2=−1

∣∣ψ (k−1)
m2

〉
Sk−1,k

m2,m
, m = −1,0, (31)

where the overlap integrals of the electron wave functions on
isolated centers located at R′

k and Rk are given by

S
k′,k
m′,m = 〈

ψk′
m′

∣∣ ∣∣ψ (k)
m

〉
. (32)

We seek the wave functions of the Hamiltonian of the chain

H = − 1

2m∗

(
−ih̄∇ − eA

c

)2

+ Vzσz +
∑

k

U (r,Rk) (33)
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in the form

� =
∑
m,k

amk

∣∣ψ̃ (k)
m

〉
, m = −1,0. (34)

Then the effective Hamiltonian Hmk,m′k′ acting on coefficients
amk is defined by the renormalized single-impurity site energies

˜Emk = 〈ψ̃k
m| H |ψ̃k

m〉 and tunneling matrix elements w
m′,m
k′,k =

〈ψ̃k′
m′ | H |ψ̃k

m〉. The leading contribution to tunneling arises
from matrix elements

w
m,m
k+1,k � δ̃k+1,k(−1)m+1Pk+1,k

1

4

(
Yk+1,k√

2�

)2m+2

e
− Y2

k,k+1
4�2 ,

(35)

w
−1−m,m
k+1,k � δd

k+1,kQk+1,k

1

4

Yk+1,k√
2�

e
− Y2

k,k+1
4�2 , (36)

where

Pk+1,k = 1 − h̄ωcδ̃k+1,k√
(h̄ωcδ̃k+1,k)2 + 4
2

so

, (37)

Qk+1,k = 
so/
√

2√
(h̄ωcδ̃k+1,k)2 + 4
2

so

, (38)

δ̃k+1,k = (δk + δk+1)/2 is an average split-off of the neigh-
boring impurity centers, δd

k+1,k = δk − δk+1, and Yk+1,k =
Yk+1 − Yk . These expressions are obtained by expanding the
overlap matrix elements and keeping only the leading terms in
1/Yk+1,k , e−Y 2

k+1,k and δd .

D. Superconducting coupling

We project electron interactions due to the proximity-
induced superconducting paring H
 = 


∫
ψ̂

†
↑ψ̂

†
↓ + H.c. onto

the Hilbert space of bound states ψ (k)
m . As we are interested

here in a single superconducting contact to a quantum Hall
system, the phase of the order parameter is unimportant and
we take 
 > 0 without the loss of generality. The effective
Hamiltonian for the superconducting pairing with a chain of
impurity states then reads

H
 �
∑

k


̃kc
†
k,0c

†
k,−1 +

∑
m,m′=−1,0



m,m′
k,k+1c

†
k,mc

†
k+1,m′ + H.c.,

(39)
where


̃k = 

1 − γ0δk√

8
, (40)



m,m
k,k+1 = 
i(4m + 3)

(
Yk,k+1√

2�

)2m+1

Qk+1,ke
− Y2

k+1,k

8�2 ,

(41)



−1−m,m
k,k+1 = 
(−1)m(4m + 3)

(
Yk,k+1√

2�

)2

×
(

Pk+1,k + m − 1

2

)
e
− Y2

k+1,k

8�2 , (42)

γ0 � 1.89258 is a numerical constant, and m = −1,0, and
c
†
k,m and ck,m are the creation and annihilation operators for

electrons in state |ψk
m >.

E. Single impurity site in the presence
of superconducting pairing

In order to address the topological superconductivity and
Majorana fermions in a chain of impurity states, we first con-
sider a single site in the presence of superconducting coupling
within the Bogoliubov-DeGennes formalism. We restrict the
Hilbert space to ψ1

1,0,−1 and ψ1
1,−1,−1 near impurity site k with

coordinates Rk . We denote electron creation operators for these
states c

†
k,+1 and c

†
k,−1. Then the effective Hamiltonian is given

by

Hk =
∑
i,j

(εk + Lkσz)i,j c
†
k,ick,j

+ i
̃kĉ
†
k,i(σy)i,j ĉ

†
k,j − i
̃kĉk,i(σy)i,j ĉk,j , (43)

where μ is the chemical potential, and on-site energies are

εk = −h̄ωc

δk

2
+ 1

2

√
(h̄ωcδk)2 + 4
2

so − μ, (44)

where 
̃k is defined by Eq. (40). We diagonalize this Hamil-
tonian using the Bogoliubov transformation

âk,± = ±
√√√√1 + εk√

ε2
k + |
̃k|2

ei π
4 ĉk,±1

+
√√√√1 − εk√

ε2
k + |
̃k|2

ei π
4 c

†
k,∓1 (45)

that gives eigenvalues μk ± Lk , where

μk =
√


̃2
k + ε2

k . (46)

F. Topological superconductivity in a chain
of impurity-bound states

We now study a chain of impurity-bound sites placed at
Rk = (0,Yk). We denote Rk,k+1 = Rk+1 − Rk . The Hamil-
tonian of the chain is defined by the single-site energies,
superconducting coupling, and intersite tunneling:

Hc =
∑

k

Hk +
∑
k,i,j

w
i,j

k+1,k ĉ
†
k+1,i ĉk,j

+
∑
k,i,j



i,j

k+1,kc
†
k+1,i ĉ

†
k,j + H.c., (47)

where w
i,j

k+1,k are given by Eqs. (35) and (36) and 

i,j

k+1,k are
given by Eqs. (41) and (42). Analogous to Ref. [25], we project
the Hamiltonian Hc onto the subspace of fermionic excitations
given by ak,− on each site. These excitations are defined by
Eq. (45). Then the effective Hamiltonian is

H =
∑

k

[(μk − Lk)â†
k,−âk,− + tkâ

†
k+1,−âk,−

+ 
̄kâ
†
k+1,−â

†
k,−] + H.c., (48)
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where in the leading approximation

tk,k+1 = 


√
2

4

(
Yk+1,k√

2�

)2

rk,δ

√
1 + r2

k,δ

(
Pk+1,k − 3

4

)
e
− Y2

k+1,k

8�2 ,

(49)


̄k,k+1 = 

3

16

(
Yk+1,k√

2�

)3√
1 + r2

k,δ

×
(√

1 + r2
k,δ − 1

)
Qk+1,ke

− Y2
k+1,k

8�2 , (50)

μk+1,k = (μk + μk+1)/2 and rk,δ = 
̃/μk+1,k .
The term proportional to 
̄k,k+1 constitutes a p-type super-

conducting pairing. We therefore arrived at a Hamiltonian sim-
ilar to that of a generalized version [24,25] of the Kitaev chain
[41]. However, due to the different symmetry of our system,
the angular momentum splittings Lk are defined by the gate
voltages. Except of possibly the (Pk+1,k − 3

4 ) factors appearing
in the definition of the effective tunneling amplitudes tk,k+1 and
the superconducting pairings 
̄k,k+1, the other parameters do
not change sign from site to site. From Eq. (37), tk,k+1 becomes
zero when h̄ωcδk = 2
so

√
1/15. The task is then to adjust

the chemical potential μ so that either tk,k+1 > 0 or tk,k+1 < 0
throughout the chain of impurity sites. Positioning μ via slight
tuning of the front or back gate, we can choose a strip of states
with sufficiently small short-range potential amplitudes δk and
δk+1, close to the bottom of the upper hybridized state of the
Hamiltonian (5), making all factors Pk+1,k − 3/4 positive, or
with impurity states approximately below the middle of the
spin-orbit gap, when all these factors become negative. We note
that the need for the factor Pk+1,k − 3/4 to maintain the same
sign from site to site is a feature needed in the case of impurity
potential being indeed sufficiently random. For the model
of identical periodically placed impurities, this condition is
fulfilled automatically. It is also fulfilled when impurities have
close δk , which is most likely in experimental conditions.

We thus arrive to a setting analogous to a sign-ordered
Kitaev chain [24] that supports two Majorana localized modes
at its ends if

|μk − Lk| < max(tk,k+1,
̄k,k+1). (51)

Although this criterion creates an impression that it can possi-
bly be satisfied even at Lk = 0, it is important to keep in mind
that nonzero Lk > kBT is an important factor that prevents
fermion doubling. Lk separates two angular momentum/spin
species of in-gap states proximity-coupled to a superconductor.
That constitutes a difference between the setting of in-gap Ma-
jorana modes and Majorana modes in a topological insulator. In
a topological insulator proximity-coupled to a superconductor,
Majorana modes can emerge at zero Zeeman splitting because
fermion doubling in topological insulator is removed by the
chiral character of spin edge states. However, the in-gap
electron states in our setting do not propagate, and are not
characterized by a wave vector. In the absence of J1 defining the
velocity v of the edge states, the impurity states are degenerate
in angular momentum and spin simultaneously, which leads to
the fermion doubling. That would be the property of impurity
states in a spin-orbit gap emerging at a virtual crossing of
2D bulk Landau levels in conditions (25), which cannot be

FIG. 7. Spectra of 100 realizations of a chain of five localized
states with superconducting coupling. The total length of the chain
is 200 nm. Bound state energies ∈ [μ − kBT ,μ + kBT ], where T =
0.1 K. The minimum separation of centers of localized states is
25 nm, 
 = 0.1 meV, γR = 0.44 meV nm, and μ = 32 μeV. In-gap
states that disappear with increasing velocity or at small velocities
(transitions from red to green) signify the existence of the Majorana
bound states (red).

used for Majorana modes in contrast to impurity states in edge
spectrum. For these impurity states in the gap at the domain
wall, the gradient of exchange interactions results in angular
momentum splitting Lk that removes fermion doubling, and
leads to the emergence of topological superconductivity. We
observe that the symmetry of the emerging analog of Kitaev
chain differs from that in Ref. [24]. The primary source of
difference is that our system originates from helical states, for
which the topological criterion is that the spin-orbit gap must
be smaller than the superconducting gap. In the chain, we have
small Lk splitting due to difference of gate voltage that induces
the domain wall. In contrast, the chain of quantum dots in
Ref. [24] was considered at large Zeeman splitting echoing the
criterion of topological superconductivity for Rashba wires, in
which Zeeman slitting must exceed the spin-orbit gap. We shall
see that in a disordered chain, the possibility of small splittings
Lk of on-site energies results in the appearance of additional
range of normal induced superconductivity in the domain wall
area, and the corresponding phase transition between normal
and topological phases.

In Fig. 7, we present numerically calculated spectra of
a short chain of localized states with proximity-induced su-
perconducting coupling depending on the difference of gate
voltages creating the domain wall. It is convenient to charac-
terize this difference by the parameter describing the velocity
of counterpropagating edgelike channels v, proportional to
J1. Choosing binding energies of impurities to be sufficiently
random, with positive μk given by Eq. (46) satisfying μk >

max(tk,k+1,
̄k,k+1), we find that at small velocities and there-
fore small Lk , the chain is in a trivial superconducting state.
With increasing J1, and increasing Lk , the absolute value
of the difference |μk − Lk| decreases and Majorana modes
and topological superconductivity emerges at |μk − Lk| <

max(tk,k+1,
̄k,k+1). At yet higher Lk we again return to
|μk − Lk| > max(tk,k+1,
̄k,k+1) and trivial superconducting
order. We note that for almost identical periodical placed
impurities, the range of topological superconductivity extends
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FIG. 8. Energy spectrum of five identical localized states sepa-
rated by 40 nm, with binding energy 48μ eV at chemical potentialμ =
32 μeV. In contrast to randomly placed impurities, this regular chain
leads to a phase diagram with one range of parameters with topological
superconducting order followed by the range with conventional
superconducting order.

to smallest v, with the only condition that J1 is sufficient to
create the domain wall area itself, i.e., J1w > h̄/τ , where
h̄/τ is the Landau level broadening. We estimate that in the
conditions of experiment [39], J1w ∼ 0.07h̄ωc. The high v

range of normal superconductor is practically the same for
random or identical impurities, and is defined primarily by the
characteristic value of Lk . The condition for the topological
phase transition between normal and topological order at high
v corresponds to h̄v/� ≈ 0.3. The condition for the topological
phase transition between normal and topological order at low
v corresponds to h̄v/� ≈ 0.04.

Thus, tuning the angular momentum splitting Lk , which is
achieved by tuning the difference of gate voltages V on the left
and the right top gates, and in turn strongly tunes the gradient
of magnetization J1, we can bring the system in and out of the
topological phase, creating and destroying Majorana modes
at the end of the chain. Lk , in contrast to settings described
in Refs. [24,25], is unrelated to the value of a magnetic field,
but is defined by velocities of gapped edge channels v, which
are controlled by electrostatic gates. We also note that other
quantities, i.e., μk , tk , and 
̄k defined by Eqs. (35)–(42) are
not proportional to the gate voltage difference V in the case of
the impurity chain, and essentially do not depend on it.

We conclude the discussion of the short-range potential case
by presenting a phase diagram for the case of identical equally
spaced impurities, shown in Fig. 8. In this case, fluctuations in
chemical potential of the impurity sites are absent, when the
splitting L is larger than the tunneling and superconducting gap
amplitudes, the system exhibits conventional superconductiv-
ity, and small L lead to topological superconducting order.
Then the phase diagram is the same as Kitaev’s and the case
of large Zeeman splitting in a disordered chain considered in
Ref. [24].

G. Topological superconductivity and Majorana fermions in the
presence of a smooth random potential

So far, we modeled disorder as a short-range potential.
In the case of heterostructures studied experimentally in

FIG. 9. Model smooth random potential. In this fragment of a
smooth random potential, three Gaussians result in three potential
wells and two saddle points.

Refs. [37,39], the character of potential is probably interme-
diate between a smooth random potential and a short-range
disorder. Even if we imagine that only a smooth random
potential is present, the experimental picture of conductance
in the system is expected to be similar to what is observed
in Refs. [37,39]: a peak of conductance tunable throughout
the quantum Hall plateau, which is not overshadowed by a
thermally activated conductance through the 2D bulk. The
conductance peak should be also clearly separated from the
conductance through propagating chiral edge states. This
means that a smooth random potential profile also must provide
conducting channels through the spin-orbit gap in order to
result in an experimentally observed conductance signal. In
this section we consider Majorana fermions emerging in the
case of a model describing a smooth random potential.

We model a smooth ransom potential as a sum of Gaussians

V (r) = −
∑

k

vke
− (r−Rk)2

2r2
k . (52)

The Gaussians (Fig. 9) are centered around points that are in the
middle of the channel Rk = (0,Yk). In this model, the potentials
vk � h̄ωc and radii of the potential rk � �. In this model,
bound states are formed near the minima and the electrons can
tunnel under the saddle point potentials. We find that these
bound states are important for Majorana physics.

In order to see an analogy between short-range and a
collection of Gaussian potentials, we consider a single-particle
model for one Gaussian potential minimum. In the presence
of a Zeeman term at degeneracy condition (25), V ∗

z = h̄ωc/2,
the energy levels and eigenfunctions are as follows:

Em,n,ς ≈ h̄ωcn − v0 + v0�
2

r2
0

(
2n + 3

2
+ m

)

+ ς

2

√
v2

0�
4

r4
0

+ 4n
2
so, (53)

ψs
m,n,ς = 1√

2

⎛
⎜⎜⎜⎝

√√√√√1 + v0√
v2

0�4

r4
0

+ 4n
2
so

ψm,n,1

− ς

√√√√√1 − v0√
v2

0�4

r4
0

+ 4n
2
so

ψm+1,n−1,−1

⎞
⎟⎟⎟⎠, (54)
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FIG. 10. Spectra of 100 realizations of a chain with five Gaussian
potentials in Eq. (52) with localized states and tunneling and supercon-
ducting coupling. The total length of the chain is 200 nm. Bound state
energies ∈ [μ − kBT ,μ + kBT ], where T = 0.1 K. 
 = 0.1 meV,
γR = 0.44 meV nm, μ = 32 μeV, potential amplitudes are less than
0.8 meV, and radii 40 nm � rk � 50 nm.

where ς = ±1. This expressions have been obtained by
retaining only linear terms in v0 and 1/r2

0 . Levels ψs
m,n,1

and ψs
m+1,n,−1 are degenerate when (25) holds, similarly to

the short-range potential spectra (26). Comparing the cases
of Gaussian potential and short-range potential, we observe
that v0�

2/r2
0 plays the role of splitting between an impurity

level and a degenerate Landau level, h̄ωcδ. The position-
dependent magnetization term proportional to J1, i.e., to the
spin-dependent electric field, leads to splitting of the spin-
degenerate levels (53), resulting in quadratic in J1 splitting
Ls

k analogous to Lk defined by Eq. (29).
The procedure for considering the topological supercon-

ductivity and Majorana fermions is similar to the case of
δ potential. We start with two bound levels with energy
separation Ls

k at each minima, orthogonalize them by taking

into account overlaps with their nearest neighbors and compute
tunneling and superconducting proximity order parameter
matrix elements. We then solve the on-site Bogoliubov-de
Gennes equations and use these solutions as a basis set
for the effective Hamiltonian describing coupling between
neighboring potential minima. Similarly to the case of a
short-range potential, we arrive to the modified generalized
Kitaev chain with parameters describing tunneling t sk,k+1 and
superconducting proximity order parameter 
̄s

k,k+1 matrix
elements, where the superscript s distinguishes these quantities
in the case of a smooth random potential from the similar
quantities for a short-range potential. The symmetry of the
chain is defined by the angular momentum splitting Ls

k con-
trolled electrostatically. The generalized Kitaev chain exhibits
topological superconductivity and Majorana zero modes when
the condition |μk − Ls

k| < max(t sk,k+1,
̄
s
k,k+1), the same as the

criterion (51) for the short-range potential, is satisfied.
Numerical simulations were performed for heterostruc-

tures studied in Ref. [39] assuming 
 = 0.1 meV, γR =
0.44 meV nm, and μ = 32 μeV. Similarly to the case of
a short-range potential, Fig. 10 exhibits two ranges with
conventional proximity-induced superconductivity and a range
with topological superconductivity in between the normal
ranges, depending on the difference of gate voltages defining
the domain wall. The numerics shows that compared to the
model of short-range potentials, the range of topological
superconducting phase is narrower, but nevertheless clearly
manifests itself.

H. Majorana fermions

I. Control of Majorana modes

We will analyze manipulation of the Majorana modes using
an example of the system of short-range potential with the

0
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0

(c)
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0

(d)

0
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0
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0

V+δV
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V+δVV+δV

0

(a)
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(b)

0 0
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V+δV

1

1 1

2

2 2

FIG. 11. Creating and moving a Majorana pair: (a) setting the voltage differences between top and bottom gates to V + δV yields trivial
superconductivity in all domain walls. (b) Setting the voltage to V on the second bottom gate drives the system into the topological phase in the
domain wall above that gate and induces the Majorana modes at the ends of the domain wall. (c) Setting the voltage to V on the third bottom
gate extends the topological region to the domain wall above that gate and moves one of the Majorana modes to a new boundary between a
topological and a nontopological state. (d) Setting the voltage to V + δV on the second bottom gate moves the first of Majorana modes to the
right. Blue areas are s-superconductors, yellow areas are top gates. The difference of voltages between two neighboring yellow gates defines the
presence of domain wall and the type of the superconducting order parameter. Red domain walls are in a topological superconducting state, and
green domain walls are nontopological superconductors. Grey areas correspond to voltage differences between neighboring gates insufficient
to create a domain wall.
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FIG. 12. Exchanging a pair of Majo-
rana modes using the method of moving
the Majorana pair.
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FIG. 13. Fusion and recreation of Majorana modes using the method of moving the Majorana pair.

phase diagram shown on Fig. 7. We estimate that the voltage
difference between the gates V = V1 − V2 ∼ 129 mV corre-
sponds to the topological condition h̄v/� < 0.3 with Majorana
fermions formed at the end of the chain, while additional
voltage δV ∼ 1 mV (total voltage difference V + δV ) brings
the system to the normal superconducting proximity state.

Thus, using electrostatic gates, we can move Majorana
modes, and create and annihilate them. Furthermore, a reduc-
tion of the difference of voltages on the electrostatic gates
on the sides of the domain wall area to a voltage below

10 meV (in theory, making it zero) erases the domain wall
altogether, and can also serve as an instrument in manipulating
reconfigurable network of topological superconductors. Fig-
ures 11–14 demonstrate inducing, moving, exchange, fusion,
and braiding of Majorana modes. In these figures, blue areas
are s superconductors and yellow areas are top gates. The
difference of voltages between two neighboring yellow gates
defines the presence of domain wall and the type of the
superconducting order parameter. Red domain walls are in a
topological superconducting state, and green domain walls are
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FIG. 14. Braiding Majorana modes achieved using the method of moving the Majorana pair and a T -junction of domain walls in a topological
superconducting state.
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nontopological superconductors, while grey areas correspond
to voltage differences between neighboring gates insufficient
to create a domain wall. Braiding of Majorana fermions is
achieved by using a structure containing a T junction of
domain walls in a topological superconducting state, Fig. 14.
By moving Majorana modes, two pairs of such modes are
brought to a T junction as in panel (d). Then a T -junction
link is cut by increasing the voltage by δV on the gate
controlling that link. Gate voltages are then brought back to
the initial configuration. We underscore that all manipulations
are expected to be produced by voltage pulses. The calculated
parameters and requirements for the scheme are realistic and
feasible for experiments in near future.

We note that in Figs. 11–14, a superconducting pairing
potential 
 is assumed spatially uniform in the domain wall
areas. In real settings with superconducting contacts on the
sides of the domain walls, the induced superconducting gap
is expected to be spatially dependent, decreasing from the
contact area into the sample. Spatially dependent 
(y) will
redefine boundaries between topological and nontopological
superconducting regions. These boundaries, and Majorana
modes residing at boundaries, can be moved with adjusted gate
voltages, when the applied gate voltage exceeds the critical
value in an area with lower 
 but is smaller than the critical
value in the area closer to the contact.

IV. CONCLUSION

In this work, we considered Majorana modes in a hybrid s-
superconductor–filling factor ν = 2 quantum Hall ferromagnet
domain wall system. We discovered that when the Fermi level is

pinned to a gap between anticrossing spin-orbit-coupled edge
states, the impurity disorder in short domain walls generates
proximity-induced topological superconductivity and the Ma-
jorana zero modes. Thus, in this case, not only topological
superconductivity is disorder robust, but it emerges exclusively
due to impurities. For sufficient impurity randomness, the
phase diagram shows two ranges of gate voltage with con-
ventional superconducting order, separated by a range with
topological superconductivity. Structures of s-superconductor
with fractional quantum Hall edge states were suggested as
possible realizations of parafermions, which could bring such
settings closer to fault-tolerant quantum computing. Quantum
Hall ferromagnet domain walls at fractional filling factors
proximity-coupled to an s-type superconductor can also poten-
tially produce parafermions, making studies of helical domain
walls an important area of the field of topological quantum
computing.
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