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Influence of disorder on antidot vortex Majorana states in three-dimensional topological insulators
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Topological insulator/superconductor two-dimensional heterostructures are promising candidates for realiz-
ing topological superconductivity and Majorana modes. In these systems, a vortex pinned by a prefabricated
antidot in the superconductor can host Majorana zero-energy modes (MZMs), which are exotic quasiparticles
that may enable quantum information processing. However, a major challenge is to design devices that can
manipulate the information encoded in these MZMs. One of the key factors is to create small and clean antidots,
so the MZMs, localized in the vortex core, have a large gap to other excitations. If the antidot is too large or too
disordered, the level spacing for the subgap vortex states may become smaller than temperature. In this paper,
we numerically investigate the effects of disorder, chemical potential, and antidot size on the subgap vortex
spectrum, using a two-dimensional effective model of the topological insulator surface. Our model allows us
to simulate large system sizes with vortices up to 1.8 µm in diameter (with a 6 nm lattice constant). We also
compare our disorder model with the transport data from existing experiments. We find that the spectral gap can
exhibit a nonmonotonic behavior as a function of disorder strength, and that it can be tuned by applying a gate
voltage.

DOI: 10.1103/PhysRevB.110.075433

I. INTRODUCTION

Majorana zero modes (MZMs) are exotic quasiparticles
that obey non-Abelian exchange statistics and can be used
for topological quantum computation [1–5]. Topological pro-
tection of qubits based on MZMs is governed by the bulk
excitation (topological) gap �0. The probability of errors
induced by local noise sources in such qubits is suppressed
as exp(−�0/T ) and exp(−�0L/v) with T , L, and v being
temperature, distance between MZMs, and Fermi velocity,
respectively. Another important energy scale for Majorana-
based qubits is the minigap �m, which is the energy difference
between the zero-energy states and the higher-energy local-
ized states. For qubit operation, the minigap needs to be larger
than the temperature to enable fast and reliable measurement
of the MZM parity [6].

Presently, the most commonly investigated platform for
creating MZMs is semiconductor nanowires with large spin-
orbit coupling and proximity-induced superconductivity [7,8].
Despite strong experimental signatures of the topological
phase in these nanowires reported to date [9,10], a large
magnetic field necessary to drive the nanowire across the
topological phase transition poses significant engineering
challenges. These include disorder enabled by time-reversal

symmetry breaking, the suppression of the superconductivity
in the parent superconductor, and the emergence of the orbital
effect due to the magnetic field [3,11–14].

On the other hand, an MZM platform based on the sur-
face of a three-dimensional topological insulator (3D TI)
covered by a superconductor (SC) [15] does not require a
large magnetic field, as the surface of the 3D TI naturally
realizes a topological superconducting state that can host
MZMs in vortices [16–18]. This eliminates the challenges
posed by the large magnetic field and makes the 3D TI-SC
platform potentially more attractive for realizing topological
superconductivity. To date, a number of studies have reported
the observation of induced superconductivity in 3D TI-based
Josephson junctions [19–29].

A possible way to create and control vortices in a 3D TI-SC
platform is to use an antidot structure, where part of the SC
is removed, as shown in Fig. 1(a). The size of the antidot
can be chosen such that a small magnetic field can induce a
vortex with a single MZM. For a large antidot, the magnetic
flux quantum required for a MZM can then be achieved with
a relatively small magnetic field. This should be contrasted
with recently studied zero modes in Abrikosov vortices at high
magnetic fields in Fe-based type-II superconductors (typically
a few Tesla) [30,31] or in proximitized topological insulator
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FIG. 1. (a) Sketch of the sample structure and the modeled dis-
tribution of the magnetic field. (b) Top view of the sample with a
schematic representation of the parameters of the model.

surfaces (at fields of order 0.1 T) [32,33]. Moreover, the elec-
tron density inside the antidot can be tuned by a gate voltage,
since it is not screened by the SC [34]. Despite the advantages
of this platform, there are still many open questions and chal-
lenges that need to be addressed. Most of the previous studies
on the 3D TI antidot structure have focused on either the clean
[35–37] or the strongly disordered [38] regimes, where ana-
lytical results can be obtained. However, these regimes may
not be relevant for realistic experiments, where intermediate
disorder strengths and finite system sizes are more common.
Therefore, numerical simulations are needed to provide more
accurate predictions and guidance for experimental works re-
garding disorder requirements.

Recently, Ref. [39] performed a numerical study of the
low-energy antidot subgap spectrum using an effective con-
tinuous model that treats the SC outside the antidot as a
boundary condition for the 3D TI surface and incorporates a
Gaussian-distributed disorder potential through random ma-
trix elements. Furthermore, the article explored the possibility
of generating an ensemble of disorder profiles in a single sam-
ple by means of several electrostatic finger gates distributed
throughout the antidot area.

In this paper, we present a more microscopic modeling of
the antidot structure using a two-dimensional (2D) effective
lattice model for the proximitized 3D TI surface, with the
disorder potential included explicitly. The model is described
in detail in Sec. II. It allows us to simulate large system sizes
up to 3.6 µm × 3.6 µm with a lattice spacing a = 6 nm, and
to capture the low-energy physics near the Dirac point. We
investigate how the minigap depends on various parameters,
such as disorder strength, antidot radius, and chemical poten-
tial (i.e., electron density), in Sec. III. We also compare our
disorder model with experimental mobility data to estimate
realistic disorder levels in existing materials. We discuss the
implications of our results for the feasibility of observing
MZMs in this platform in Sec. IV.

II. MODEL

A. Effective model of the proximitized TI surface

To be able to efficiently simulate a 2D surface of a 3D
TI with a single Dirac cone, we utilize an effective square-
lattice model of the surface that breaks global time-reversal

symmetry [40,41]. Within this model, the Hamiltonian of a
uniform surface has the form

hTI(k) = λ(sx sin akx + sy sin aky) + Mksz − μ, (1)

where Mk = m( 3
2 − cos akx − cos aky + 1

4 cos 2akx + 1
4 cos

2aky) is the time-reversal symmetry breaking term, si are Pauli
matrices in the spin space, ki are electronic momenta, a is
the lattice spacing, and μ is the chemical potential. In the
absence of Mk, the Hamiltonian has four Dirac cones at the
high-symmetry points � = (0, 0), X = ( π

a , 0), Y = (0, π
a ),

and M = ( π
a , π

a ); the model parameter λ determines the Dirac
velocity, vD = λa/h̄. The term Mk breaks the global time-
reversal symmetry and opens gaps of the order of |m| at all
high-symmetry points except for �, where its effect on the
Dirac spectrum is minor, given that Mk ≈ ma4

8 (k4
x + k4

y ) for
small k. The presence of the term Mk thus effectively creates
a 2D surface with a single Dirac cone at �. We refer the reader
to Ref. [40] for a detailed description of the model.

Proximity-induced superconductivity is included by
constructing a Bogoliubov–de Gennes Hamiltonian
H = 1

2

∑
k �

†
kHBdG(k)�k with

HBdG(k) =
(

hTI(k) i�sy

−i�∗sy −h∗
TI(−k)

)
, (2)

where � is the proximity-induced effective pairing
potential in the TI and the basis spinor is �

†
k =

(c†
↑,k, c†

↓,k, c↑,−k, c↓,−k ). The superconducting correlations in
the TI are generated through the tunneling between the TI
and the parent SC, and the effective Hamiltonian (2) can be
calculated by integrating out the SC degrees of freedom in
the combined SC-TI system and computing the SC-TI
interface self-energy [42,43]. � obtained in this way depends
on the pairing potential in the parent SC as well as on the
strength of the TI-SC coupling, and is, in general, a function
of the spatial coordinate r. For ease of analysis, we treat � as
a free parameter—this common simplification does not alter
the conclusions of our paper.

In our simulations, we choose a discretization with the
lattice spacing a = 0.03πξ0, where ξ0 = h̄vD/(π�0) is the
superconducting coherence length [44] in a clean proxim-
itized system, and �0 denotes the induced SC gap. By
definition, λ = π�0ξ0/a. Furthermore, we fix m = −1.5λ

(the choice of sign is arbitrary). As demonstrated in Ap-
pendix A, up to energies |E | � 60�0 the term linear in k in
the power series expansion of (1) dominates over higher order
terms. Therefore, in the energy range investigated in this paper
(|E | � 15�0), our lattice model is a good approximation of
the TI surface Dirac Hamiltonian.

We note that, when |�0| � |m| and |μ| � |m|, the model
has a nonzero Chern number C = sgn(m), which is due to
the presence of time-reversal symmetry breaking terms in (2).
Hence, our finite-size system with open boundary conditions
will feature a chiral edge mode, which is an artifact of the
effective model. Effectively, the edge of the sample is anal-
ogous to a boundary between a SC-proximitized TI surface
and a magnetic-insulator-proximitized TI surface with Chern
number C = −sgn(m). In the following simulations, the edges
are located at least 12ξ0 away from the antidot boundary. This
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ensures that the spurious edge states have negligible influence
on the antidot spectrum.

B. Model of the antidot system

To simulate the antidot device, we write the Hamiltonian
(2) in the position space, and allow spatial variation of the
chemical potential μ and the pairing potential �. Spatial vari-
ation of λ, which could emerge due to the proximity-induced
renormalization of vD, is neglected.

A schematic sketch of the modeled sample is shown in
Fig. 1. The system comprises a square fragment of a 3D TI
surface with a side length of L = 3.6 µm ≈ 56.5ξ0, covered
by a SC layer everywhere except for a circular antidot area of
radius R in the middle. We fix the coordinate system origin in
the center of the antidot and denote (r, ϕ) as polar coordinates.
We assume that the magnetic field is present exclusively in the
antidot area and has the form

B(r) =
{

(0, 0, B0) for r < R
(0, 0, 0) for r � R,

(3)

which is a valid approximation in the case of a thick super-
conductor with a short London penetration length. We choose
B0 = 	0/(πR2), such that the sample is permeated by a single
flux quantum 	0 = h/(2|e|). The magnetic vector potential
compatible with the assumed magnetic field distribution is
expressed in the London gauge as

A(r) =

⎧⎪⎪⎨
⎪⎪⎩

	0

2πR2
(−y, x, 0) for r < R

	0

2πr2
(−y, x, 0) for r � R.

(4)

The flux trapped by the antidot induces a phase winding of the
pairing potential

�(r) =
{

0 for r < R
�0e−iϕ for r � R.

(5)

Furthermore, the vector potential A(r) is introduced into the
hopping terms via the Peierls substitution,

c†
r1

cr0 → c†
r1

cr0 exp

(
−i

|e|
h̄

∫
L01

A(r) · dr
)

, (6)

where L01 is the straight line pointing from r0 to r1.
The chemical potential profile is made up of two parts:

μ(r) = μ0(r) + δμ(r). The first part describes an idealized
impurity-free sample, while the second part represents the
effect of the disorder. We assume that the chemical potential
is fixed in the SC part of the system, while in the antidot it can
be controlled by gating, and write

μ0(r) =
{
μin,0 for r < R
μout for r � R.

(7)

C. Disorder model and its relation to the scattering rate

The disorder in the system is modeled by distributing 2NC

charged impurities at randomly chosen distinct lattice sites rC
n

throughout the sample. The charges have equal magnitude,
although half of them are negative and half are positive, such
that the net charge in the system is exactly zero, and the

correction to the chemical potential due to disorder is

δμ(r) =
NC∑

n=1

V
(
r − rC

n

) −
2NC∑

n=NC+1

V
(
r − rC

n

)
. (8)

As our TI surface model (1) features spin-polarized bands
away from �, the disorder-induced scattering could poten-
tially generate a magnetic gap in the surface Dirac spectrum.
To avoid this issue, we choose the single impurity potential
V (r) to have a Gaussian profile, such that the high momentum
scattering is suppressed. The model potential in (8) is assumed
to have the form

V (r) = − V0√
N

exp

(
− r2

2σ 2

)
, (9)

where V0 is the magnitude of the potential, while σ gives the
radius of the potential well, and N = ∑

i∈lattice exp[−r2
i /σ

2]
is the normalization factor designed to fix the variance of
V (r) at the lattice sites ri such that

∑
i∈lattice V 2(ri ) = V 2

0 . The
parameter σ−1 gives an estimate for the largest momentum
change in the scattering process. We fix σ = 2.5a in all calcu-
lations, for which choice the sum can be approximated by an
integral and N ≈ π (σ/a)2.

Finally, we connect the abstract parameters of the numeri-
cal model with measurable disorder characteristics. For μ0 =
0, we estimate the electron elastic scattering rate, averaged
over fluctuations of δμ, to be

� =
〈

h̄

τk

〉
δμ

=
√

8π
σ 2s3

h̄2v2
D

(
1 − 2

σ 2s2

h̄2v2
D

)
, (10)

where

s2 = ρimp
V 2

0 πσ 2

N ≈ ρimpV
2

0 a2 (11)

is the estimated variance of δμ(r) at fixed r. Expression (10)
is valid if |δμ| � |h̄vD/σ | everywhere in the sample. For
stronger disorder, and for μ0 
= 0, we evaluate � numerically.
See Appendix B for the derivations of both the approximate
and the numerical approaches and a plot of the dependence
�(s). Finally, we estimate the electron mean free path as

l = vD

〈
1

τk

〉−1

δμ

= h̄vD

�
. (12)

III. RESULTS

Our main objective is to investigate how the minigap and
the local density of states change upon introducing disorder in
the sample. To that end, we calculated the energy spectrum
of the antidot system, while varying the impurity potential
magnitude V0 and the impurity density ρimp. In addition, we
considered different values of the antidot radius R and of
the chemical potential μin,0 inside the sample, as these are
the degrees of freedom that can be controlled directly in
experiments. While, in principle, the results depend on the
details of the distribution of impurities, in the main text we
focus on the data calculated for a specific distribution, for
which the minigap approaches zero at relatively weak dis-
order strengths, especially if the antidot radius equals about
14ξ0. With this method, we capture the qualitative features

075433-3
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FIG. 2. Left column: Energy spectra of the vortex cores pinned inside the antidots of radii (a) R ≈ 4ξ0 and (b) R ≈ 14ξ0 plotted as functions
of the disorder scattering rate �, obtained by fixing the distribution of impurities at density ρimp ≈ 17/ξ 2

0 and by tuning the parameter V0 in
(9). Larger colored dots denote the first excited states. Horizontal lines at selected values of � denote deciles of the corresponding minigap
value distributions obtained for 1000 random disorder realizations, with the longest lines denoting the medians. Central column: Density maps
of the MZM wave functions’ squared moduli in the antidots of radii (c)–(e) R ≈ 4ξ0 and (f)–(h) R ≈ 14ξ0, calculated (c), (f) without disorder,
and (d), (e), (g), (h) with disorder with the scattering rate indicated in the plots. The color scale in (c) is common for all maps (c)–(h). Right
column: Radial profiles of the MZM wave functions’ squared moduli, drawn along the lines crossing the density maxima [shown as dotted
lines in (c)–(h)] for the antidots of radii (i) R ≈ 4ξ0 and (j) R ≈ 14ξ0, obtained for several values of V0 corresponding to evenly spaced values
of � corresponding to arrows in (a) and (b). Vertical spacing of (i) 2 × 106 or (j) 1 × 106 has been applied to the baselines of the curves to
enhance clarity of the data.

of the investigated phenomena that are likely to manifest in
experimental observations of actual samples. Furthermore, to
gain a more comprehensive view of the quantitative details,
we calculated statistical distributions of the minigap value for
various configurations of the antidot systems, with different
realizations of random disorder. We discuss these results in
Appendix C. A thorough study of statistical distributions of
energy levels in disordered antidot systems in the limit ξ0 → 0
can be found in Ref. [39].

We characterize the antidot system with dimensionless
quantities μ/�0, R/ξ0 = πR�0/(h̄vD), and V0/�0. Further-
more, we fix the chemical potential in the SC part of the
system to be μout = 2�0. We have verified numerically that
varying μout in the range of several �0 has a negligible effect
on the minigap, although the energies of higher excited states
can be affected more significantly.

First, we consider a fixed impurity density ρimpξ
2
0 ≈ 17,

which in our model corresponds to the fraction of 0.15 of
the lattice sites being occupied by impurities, and two dif-
ferent antidot radii: R = 1.26πξ0 ≈ 4ξ0 and R = 4.5πξ0 ≈
14ξ0. The smaller (larger) value of R represents the regime
in which the antidot area constitutes the minority (majority)
of the area ≈ π (R + πξ0)2 occupied by the wave functions of
states bound to the vortex core. The specific numerical values
of R are dictated by the convenience of numerical calculations.
In Figs. 2(a) and 2(b), we present the calculated energy spectra

for the two antidot sizes as dot plots, where the magnitude of
the impurity potential V0 is varied from 0 to 15�0. For the
chosen impurity density, this range corresponds to � changing
from 0 to 4.3�0. The introduction of the disorder potential
δμ(r) in the numerical model leads to a shift in the average of
the chemical potential inside the antidot:

〈μin〉 = μin,0 + 1

πR2

∫
r<R

δμ(r) d2r. (13)

We account for this effect by adjusting μin,0 such that 〈μin〉 =
0 in every calculation.

To provide a statistical context to the spectra presented in
Figs. 2(a) and 2(b), at selected values of � deciles of distri-
butions of the values of the minigap are shown as horizontal
lines. This statistical data is derived from simulations of an
ensemble of 1000 antidot systems, with varied impurity loca-
tions, and parameters V0 and ρimp kept constant. The longest
lines denote the median of each distribution. Histograms il-
lustrating the distributions are shown in Figs. 7(a) and 7(b) in
Appendix C.

For both antidot radii, we find that for the weakest disorder
the minigap decreases approximately linearly with increasing
�, and attains a minimum at a certain critical value �c, but
does not reach zero due to the finite size of the antidot. At the
same time, the MZM wave function changes its distribution
with growing �, as illustrated in Figs. 2(c)–2(j). In the case of
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a clean sample, the MZM wave function is smooth in the en-
tire antidot area and distributed symmetrically along the polar
axis around the antidot center. This is due to 〈μin〉 being fixed
at the charge neutrality point of the TI surface Dirac spectrum.
At � > 0 the wave function, albeit still permeating the whole
antidot, develops maxima at certain randomly located points.
Figures 2(c)–2(h) show the wave function density maps for
values of � varied between 0 and 0.5 �0, such that the mini-
gap is open. The square moduli of the MZM wave function
presented in the figure are equivalent to the local density of
states (LDOS) profiles, as the MZM is the only state within
the 0.1�0 range of zero energy. In Figs. 2(i) and 2(j), we
present cross sections through the LDOS profiles for several
more values of �.

As illustrated most clearly in Fig. 2(b), after initially ap-
proaching zero, the minigap may increase with growing � and
subsequently oscillate with a decreasing amplitude, without
affecting the presence of the MZM. However, for larger � the
MZM wave function may change its real-space distribution
dramatically (see Fig. 10 in Appendix C). We have verified
that for the larger antidot radius the dependence of the minigap
on V0 has an oscillatory component for the majority of disor-
der realizations. In the specific case presented in Fig. 2(b),
the oscillation is exceptionally prominent for such weak dis-
order. A more typical behavior of the minigap, observed in a
simulation with a different disorder realization, is presented in
Fig. 9.

We complement the above results obtained for a fixed
value of ρimp and variable V0 with a series of calculations
performed for fixed V0 = 6�0 and changing ρimp with values
ranging from 0 up to ρimpξ

2
0 ≈ 20, which corresponds to �

ranging from 0 to 0.43�0. The energy spectra calculated for
the two antidot radii, R ≈ 4ξ0 and R ≈ 14ξ0, are presented
in Figs. 3(a) and 3(b). The results for subsequent values of
ρimp were obtained by successively adding impurity sites to
the system, such that all impurity locations at a given value of
ρimp are preserved in calculations for all larger ρimp values. We
allowed the new impurity sites to fall both inside and outside
of the antidot. At each step, μin,0 was adjusted according to
Eq. (13) such that 〈μin〉 = 0 at all times. Similarly to the case
of fixed ρimp and variable V0 described in Fig. 2, here we find
that for small � the decrease of the minigap with growing � is
approximately linear, albeit with some fluctuations which we
attribute to the randomness of the process of increasing the
impurity density.

Our findings consistently indicate that the energy spectrum
of the smaller antidot is less susceptible to disorder. The
calculated dependence of the spectrum on the antidot radius
is presented in Fig. 3(c) for the case of a clean sample, and
Fig. 3(d) for the disordered one with a fixed disorder profile. In
the case of no disorder, the minigap decreases monotonically,
and at R  ξ0 becomes inversely proportional to R, while in
the limit R → 0 it saturates to a finite value. For the disordered
case with �/�0 ≈ 0.33, the decrease of minigap is not mono-
tonic, which is due to the impurities being localized at random
locations in the sample. As R is increased, more and more
impurity sites fall within the antidot area, and the mean value
of δμ in the antidot fluctuates. At each step, μin,0 was adjusted
such that 〈μin〉 = 0. We find that the decrease of the minigap
with growing R is more significant in the disordered sample

notcalculated

notcalculated

(a)

(a)

(a)

(b)

(b)

(c)
(d)

(c)

(d)

(b)

(c)

(d)

R ≈ 4ξ0

R ≈ 14ξ0

no disorder

Γ ≈ 0.33 Δ0

FIG. 3. Left column: Energy spectra of the vortex cores pinned
inside the antidots of radii (a) R ≈ 4ξ0 and (b) R ≈ 14ξ0 as functions
of the disorder scattering rate �, obtained by changing the impu-
rity density ρimp with a fixed single-impurity potential magnitude
V0 = 6�0. Right column: Analogous energy spectra as functions of
the antidot radius (c) without disorder and (d) with disorder charac-
terized by parameters V0 = 6�0 and ρimp ≈ 17/ξ 2

0 . Larger colored
or dark grey dots denote the first excited states. Horizontal lines at
selected values of (a), (b) � or (d) R denote deciles of the correspond-
ing minigap value distributions obtained for 1000 random disorder
realizations, with the longest lines denoting the medians.

than in the clean sample. Comparing Figs. 3(c) and 3(d),
we conclude that antidots with the radius near πξ0 are not
significantly affected by disorder and are thus favorable for
potential applications in topological quantum computation.

In analogy to Figs. 2(a) and 2(b), the horizontal marks in
Figs. 3(a), 3(b), and 3(d) denote deciles of the statistical mini-
gap distributions, calculated for several fixed values of (a), (b)
ρimp or (d) R. The histograms illustrating these distributions
are found in Appendix C in Figs. 7(c) and 11(a).

So far, we have adopted a fixed average chemical potential
〈μin〉 = 0, although in a real device it would generally attain
a different value determined by the specific properties of the
materials comprising the heterostructure and its fabrication
quality. However, it is our assumption that 〈μin〉 can be effec-
tively controlled by an external electric field through tuning
μin,0 in (13). This could be achieved by introducing a gate
terminal adjacent to the heterostructure in the vicinity of the
antidot. Thus, in a given sample, one would ideally be able to
optimize the minigap size by tuning the gate voltage. Addi-
tional tuning can be achieved by using multiple gates [39].

In Figs. 4(a)–4(d), we present the energy spectra of the
antidots of radii R ≈ 4ξ0 and R ≈ 14ξ0 plotted as functions
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FIG. 4. The influence of the chemical potential on the energy
spectra of the vortex cores pinned inside the antidots of radii (a),
(c), (e) R ≈ 4ξ0 and (b), (d), (f) R ≈ 14ξ0. The spectra are plotted
as functions of the mean chemical potential in the antidot 〈μin〉,
both (a), (b) in clean systems and (c), (d) in systems with disorder
characterized by parameters V0 = 6�0 and ρimp ≈ 17/ξ 2

0 , which at
〈μin〉 = 0 corresponds to � ≈ 0.33�0. Larger colored dots denote
the first excited states. Horizontal lines at selected values of 〈μin〉
denote deciles of the corresponding minigap value distributions ob-
tained for 1000 random disorder realizations, with the longest lines
denoting the medians. (e), (f) Radial profiles of the MZM wave
functions squared moduli, corresponding to states indicated by black
arrows in (a)–(d). Dashed (solid) lines present the results for the clean
(disordered) systems. To enhance the clarity of the data vertical spac-
ing of (e) 1 × 107 or (f), 3 × 106 has been applied to the baselines of
the curves. Dashed lines in (f) represent original data multiplied by a
factor of 2.

of 〈μin〉, which is varied in the range of a few �0. Figures 4(a)
and 4(b) present the results for clean samples, confirming
that, in fact,〈μin〉/�0 ≈ 0 corresponds to the largest minigap.
Note that the plotted spectra are not symmetric with respect to
〈μin〉 = 0, which is due to the chemical potential μout outside
the antidot having a nonzero value.

In the presence of disorder with � ≈ 0.33�0 (as calculated
at 〈μin〉 = 0), the two samples with different radii respond
differently to adjusting 〈μin〉. Figure 4(c) shows that for the
antidot with R ≈ 4ξ0 the optimal minigap again occurs at

〈μin〉/�0 ≈ 0. On the contrary, the spectrum of the disordered
antidot with R ≈ 14ξ0 features states lying in the gap of the
clean system. Due to their presence, 〈μin〉/�0 corresponding
to the optimal minigap is shifted away from zero to a value
dependent on the disorder realization.

For |〈μin〉| above a certain value, both in the clean and the
disordered system, the minigap nearly closes, and the spec-
trum can feature densely spaced energy levels corresponding
to trivial Caroli-de Gennes-Matricon (CdGM) states bound
to the vortex core localized inside the antidot. This is con-
sistent with scanning tunneling microscopy and spectroscopy
(STM/STS) experiments with Abrikosov vortices in SC-TI
heterostructures, where the bound states manifest themselves
as an apparent splitting of the zero-bias peak at a certain
distance from the vortex core [32].

Statistical distributions of the minigap value obtained for
1000 random disorder realizations at selected values of 〈μin〉
for both antidot sizes are shown in Figs. 11(b) and 11(c) in
Appendix C.

Importantly, tuning the chemical potential 〈μin〉 also re-
sults in the change of the MZM wave function distribution.
In a clean sample at 〈μin〉 = 0, the MZM is almost evenly
distributed throughout the antidot area and spills into the
surrounding SC region with an exponentially decreasing
amplitude. For nonzero 〈μin〉, however, the MZM density
develops a distinct peak at the vortex core. The radial profiles
of the MZMs in clean samples are shown as dashed lines in
Figs. 4(e) and 4(f). In the disordered antidots case, on the
other hand, the MZMs exhibit spatial fluctuations and peaks
at random points, even at 〈μin〉 = 0. Upon the variation of the
chemical potential, the spatial profile of the wave function
is altered, such that the existing peaks level off and the new
peaks emerge at different locations. The MZMs in disordered
samples are represented by solid lines in Figs. 4(e) and 4(f).
Such variation of the wave functions both in the clean and
the disordered case can be attributed to the change of the
Fermi momentum kF ≈ 〈μin〉/(h̄vD) in the TI surface with
the changing chemical potential, and the associated change
of the density of states per unit area ρTI ≈ |〈μin〉|/(2π h̄2v2

D).
At larger |〈μin〉|, states from a larger Fermi contour of the
TI surface spectrum contribute to the formation of the MZM,
allowing a tighter peak of the MZM amplitude near the vortex
core in clean samples. In disordered samples the scattering
from impurities obscures this effect. However, the change of
the makeup of the Fermi contour with changing 〈μin〉 results
in the MZM wave functions exhibiting different interference
patterns. We propose that the evolution of the MZM wave
function upon varying the gate voltage can be observed by
means of the STM/STS method.

The above results motivate a comprehensive study of the
antidot with the smallest meaningful size, which is estimated
by the radius of the core of an Abrikosov vortex ≈ ξ0. We
expect that the disorder magnitudes allowed by our model
have a minor effect on the spectra of such systems. Instead,
we focus on the case of R = 0.8πξ0 ≈ 2.5ξ0, which is closer
to the theoretical limit than the previously investigated radii.
We calculate the minigap as a function of both the chemical
potential inside the antidot 〈μin〉 and the impurity potential
strength V0, for a fixed impurity density ρimp ≈ 17/ξ 2

0 . The
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FIG. 5. A color map of the minigap value for the antidot of radius
R ≈ 2.5ξ0 as a function of the chemical potential inside the antidot
〈μin〉 and the disorder strength. The disorder strength is tuned by
varying the parameter V0 between 0 and 15�0 with a fixed distribu-
tion of impurities of density ρimp ≈ 17/ξ 2

0 , and expressed in terms of
the scattering rate � calculated at 〈μin〉 = 0. Black dashed lines are
constant � contours and are labeled by the associated values of the
mean free path l = h̄vD/�.

results are shown as a color map in Fig. 5, with the disorder
strength expressed as the scattering rate � calculated for the
chemical potential tuned to the Dirac point of the TI surface
states (〈μin〉 = 0).

Note that a uniform change of 〈μin〉, e.g., by applying gate
voltage, corresponds to a vertical displacement in the plot in
Fig. 5. However, such a process would result in a change of
measured �, since the density of states depends on 〈μin〉. For
reference, contours denoting selected values of � for arbitrary
〈μin〉 are included in Fig. 5 as black dashed lines and labeled
with the associated value of the mean free path (12).

Noticeably, vertical line cuts of the data presented in Fig. 5
agree in qualitative terms with analogous spectra shown in
Figs. 4(a)–4(d), obtained by fixing the disorder magnitude and
varying 〈μin〉. Similarly, the horizontal line cut for 〈μin〉 = 0
is in agreement with the analogous data in Figs. 2(a) and 2(b).
Very clearly, the minigap decreases both with growing |〈μin〉|
and growing �, albeit with significant oscillations. Therefore,
for a given disordered sample, a wide scan of 〈μin〉 has to
be performed to find the configuration ensuring the maximal
value of the minigap.

IV. CONCLUSIONS

We performed a detailed numerical analysis of the TI-SC
device with an antidot structure using realistic parameters. We
focused on how the minigap, which separates the zero-energy
Majorana mode in the antidot from the first excited trivial
CdGM state, depends on various factors, i.e., geometrical
dimensions, Fermi energy, and disorder strength. We also
examined how these factors affect the Majorana wave function
profile inside the antidot. We considered a realistic corre-
lated disorder model mimicking randomly distributed charged
impurities. We established a relationship between impurity
density, potential strength, and the corresponding scattering

FIG. 6. The dependence of the scattering rate � on the variance
of the disorder potential s, both in units of vD/σ , evaluated for aver-
age chemical potential μ0 = 0. Approximation for small impurity
potential fluctuations given by Eq. (10) (blue curve) and the true
dependence evaluated by means of numerical integration (orange
curve).

rate, see Fig. 6, which can be used to calibrate our disorder
model based on transport measurements. Our conclusions are
therefore general and are not limited by the specific choice of
disorder model.

Our results have implications for the current and future ex-
periments on antidots in TI-SC devices, which are a promising
platform for topological quantum computing. The minigap is
the crucial parameter for such applications—it has to be larger
than the temperature to enable fast and reliable quantum infor-
mation processing and storage. We studied the dependence of
the minigap on antidot radius in clean and disordered limits,
as shown in Figs. 3(c) and 3(d), and found that small anti-
dots with R � 5ξ0 are fairly robust with respect to disorder.
We also demonstrated that the electron density in the antidot
strongly affects the minigap, with the minigap values peaking
at or near the Dirac point 〈μin〉 = 0; see Figs. 4(a)–4(d) and
5. These results emphasize the importance of being able to
adjust the chemical potential inside the antidot using external
gates to achieve the optimal minigap values in realistic experi-
mental devices. In particular, we found that for some levels of
disorder, the optimal value is obtained by tuning 〈μin〉 away
from the charge neutrality point, see Fig. 5.

We found that disorder has a negative effect on the mini-
gap, which is the case in other proposed MZM platforms and
is in qualitative alignment with earlier results of Ref. [39].
The effects of disorder are shown in Figs. 2(a), 2(b), and 5:
the minigap decreases in an oscillatory manner, nearly closing
at certain critical values �c. However, we also found that by
tuning electron density inside the antidot, one is able to tune
away from the local minima of the minigap, as demonstrated
in Figs. 4(d) and 5.

Our findings are supplemented by a basic statistical analy-
sis of the distribution of minigap values in random disorder
realizations. For the strongest investigated disorder in the
antidot of radius R ≈ 14ξ0, which falls within the regime
ξ0 � R, we approximately recover the theoretical distribution
of the minigap predicted by random matrix theory [39] (see
Appendix C).

For the smallest investigated antidot size with R ≈ 2.5ξ0,
we found that the scattering rate as high as � ≈ 4.5�0
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FIG. 7. Histograms representing the statistical distributions of minigap �m values in antidot systems, calculated numerically for an
ensemble of 1000 random disorder realizations, for selected system parameters: (a), (b) constant impurity density ρimp ≈ 17/ξ 2

0 and varying
impurity potential strengths V0, (c) constant V0 = 6�0, with varying impurity densities ρimp. Red (blue) curves correspond to antidot radius
R ≈ 4ξ0 (R ≈ 14ξ0). The subpanel labels indicate the scattering rate values for the depicted curves. All results were obtained for chemical
potential 〈μin〉 = 0. The histograms are normalized to show probability density and the bin widths are set at 0.0125, 0.025, or 0.05, based on
the spread of the distribution. Data shown in (a) and (b) correspond to Figs. 2(a) and 2(b) in the main text. Data shown in (c) correspond to
Figs. 3(a) and 3(b).

allows a minigap of about 0.5�0. This value is comparable to
the largest minigap values observed for the antidot of radius
R ≈ 4ξ0 at similar �; mesoscopic fluctuations of the minigap
allow for large minigaps in certain disorder realizations, as
indicated by the broad distribution of minigaps (see Fig. 7 in
Appendix C).

For typical TIs, such as (Bi0.4Sb0.6)2Te3 (BST) [29] and
BiSbTeSe2 (BSTS) [45], the reported values of the mean
free path, extracted from Hall measurements, are l ≈ 15 nm
and l ≈ 17 nm, respectively. Taking into account the reported
Dirac velocities, vD ≈ 4 × 105 m/s for BST and vD ≈ 3 ×
105 m/s for BSTS, we estimate the corresponding scattering
rates, � = h̄vD/l , to be � ≈ 17.5 meV for BST and � ≈
11.6 meV for BSTS, respectively. Hence, we have found that
for antidots of radii ∼πξ0 or larger, the scattering rate in state
of the art TIs may be too high to exhibit a detectable minigap,
even for large-gap superconductors, such as Nb. Thus, cleaner
devices or smaller-sized antidots would be required to achieve
a sizable minigap. For example, taking BSTS compound as a
TI, Nb as a SC (�0 ≈ 1 meV), and the antidot of the radius
R ≈ 2.5ξ0, the electronic mean free path has to be increased
to l > 45 nm from the current l ≈ 17 nm to achieve a mean-
ingful value of the minigap. Nevertheless, our findings are
encouraging in the sense that for reasonably small-sized an-
tidots (R < 5ξ0), the disorder strength required for the closing
of the minigap corresponds to a scattering rate that is several
times higher than the gap of a clean system. In addition, the
minigap can be reopened by gating, as illustrated in Fig. 5.
While our use of a low-energy effective model prevents us

from doing simulations at stronger disorder strength and/or
higher chemical potential, we envision that the diagram in
Fig. 5 continued for higher values of � involves further os-
cillations of the minigap, and includes more areas where a
significant minigap magnitude can be found. Moreover, the
distribution of the minigap values can be quite broad, as
shown in Fig. 7(b), suggesting that in a series of samples (or in
a single sample with multiple gates [39]), it is likely possible
to find a disorder configuration with the minigap significantly
exceeding the ensemble average.
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APPENDIX A: VALIDITY OF THE LATTICE MODEL

1. Fermi contour warping

For small ak, the Hamiltonian (1) reduces to a simple Dirac
Hamiltonian

hTI ≈ λa(sxkx + syky) − μ0, (A1)

characterized by a circular Fermi contour. In the lattice model,
at the energy at which the terms of higher order in ak become
significant, the Fermi contour warps. We estimate this energy
threshold by comparing the first- and third-order terms of the
expansion of sin(a|k|),

a|k|  a3|k|3
6

⇒
∣∣∣∣ E

�0

∣∣∣∣ �
√

6
πξ0

a
, (A2)

where we used |E | = λa|k|. In our model, a = 0.03πξ0, and
thus the Fermi contour warping can be neglected if |E | �
81.7�0.

2. TRS breaking

Near �, the effect of the TRS breaking terms in the
Hamiltonian (1) is given by ma4

8 (k4
x + k4

y )sz. We compare the
physical Dirac term in (A1) to the magnetic perturbation:

|λak| 
∣∣∣∣ma4

8
k4

∣∣∣∣ ⇒
∣∣∣∣ E

�0

∣∣∣∣ � 2
πξ0

a
3

√∣∣∣∣ λ

m

∣∣∣∣. (A3)

For the parameter values used in our lattice model, the effect
of TRS breaking terms near � is negligible if |E | � 58.3�0.

Furthermore, we note that the magnetic gap at X and Y
points in the Brillouin zone is 4|m| = 200�0, and at M it is
8|m| = 400�0. Our analysis is confined within these energy
gaps.

APPENDIX B: ESTIMATION OF THE SCATTERING RATE
FOR THE DISORDER MODEL (8) and (9)

The scattering rate 1/τk can be estimated using Fermi’s
golden rule,

1

τk
= 2π

h̄

∑
k′

| 〈k|δμ|k′〉 |2δ(εk − εk′ ), (B1)

where |k〉 and |k′〉 are the eigenstates of the 2D Dirac Hamil-
tonian (A1) at zero energy. Without loss of generality, we
choose μ0 > 0. The square modulus of the matrix element of
δμ, as defined in (8), is

| 〈k|δμ|k′〉 |2 = V 2
0

N
4π2σ 4

�2
exp[−σ 2(k′ − k)2]

1 + cos (φ − φ′)
2

2NC∑
n=1

2NC∑
m=1

× (
ηnηm exp

[
i(k′ − k) · (rC

n − rC
m

)])
, (B2)

where � is the surface area, φ(′) is the polar angle in the
reciprocal space, and

ηn =
{

1 for n = 1, 2, . . . , NC

−1 for n = NC + 1, NC + 2, . . . , 2NC .
(B3)

In the double sum in (B2), the terms with m = n sum to
2NC . Assuming the uniform probability distribution of rC

i , the
disorder average of the exponents in the remaining terms, in
the limit of infinite �, is

exp
[
i(k′ − k) · (rC

n − rC
m

)] ≈ δkk′ . (B4)

Thus, for k 
= k′

| 〈k|δμ|k′〉 |2 ≈ V 2
0

N
ρimp4π2σ 4

�

× 1 + cos (φ − φ′)
2

exp[−σ 2(k′ − k)2],

(B5)

where ρimp = 2NC/� is the impurity density per unit area. In
the limit of the infinite surface area, the summation in (B1)
is replaced with the integration, and the k = k′ term becomes
negligible. The integral evaluated for small σ |k| thus yields

1

τk
≈ 2π2

h̄

|μ0|
h̄2v2

D

V 2
0

N σ 4ρimp

[
1 −

( |μ0|σ
h̄vD

)2
]
. (B6)

Here we used the fact that the Fermi momentum satisfies
|k| = |μ0/(h̄vD)| and that the density of states per unit area
is |μ0|/(2π h̄2v2

D).
As our primary interest lies in the case of μ0 = 0, we re-

place the chemical potential in (B6) with appropriate averages
of |δμ|. Per the central limit theorem, at any position r the
probability density function of δμ(r) is given by the normal
distribution

f (δμ) = 1√
2πs

exp

(
−δμ2

2s2

)
, (B7)

where

s2 = Var[δμ(r)] ≈ 2NCVar[V (r)] ≈ ρimp
V 2

0 πσ 2

N . (B8)

It is straightforward to show that the averages in the normal
distribution are

〈|δμ|〉δμ =
√

2

π
s, 〈|δμ|3〉δμ = 2

√
2

π
s3, (B9)

from which it follows that

〈
1

τk

〉
δμ

≈ 2
√

2π2

h̄

|V0|3
h̄2v2

DN
3
2

σ 5ρ
3
2

imp

(
1 − 2π

ρimpV 2
0 σ 4

N h̄2v2
D

)
.

(B10)

In (10), we express the estimated scattering rate � =
h̄〈1/τk〉δμ in terms of s. Multiplying both sides of (10) by
σ/(h̄vD), we find that �σ/(h̄vD) depends only on one dimen-
sionless parameter sσ/(h̄vD). This dependence is plotted in
Fig. 6.

For larger fluctuations δμ and for μ0 
= 0, the approxima-
tion expressed in (10) and (B6) is insufficient. To describe
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FIG. 8. Probability density function (C1) (black curve) fitted to
the histogram of the minigap values calculated numerically for an
ensemble of 1000 random disorder realizations. The presented his-
togram depicts the data already shown in the bottom row of Fig. 7(b),
using a smaller bin width (0.005).

these cases, we evaluate the integral exactly,

1

τk
= 2π2

h̄

|μ0|
h̄2v2

D

V 2
0

N ρimpσ
4 exp

(
−2

μ2
0σ

2

h̄2v2
D

)

×
[

I0

(
2
μ2

0σ
2

h̄2v2
D

)
+ I1

(
2
μ2

0σ
2

h̄2v2
D

)]
, (B11)

where Iα (x) are modified Bessel functions of the first kind.
Then, we substitute μ0 → μ0 + δμ and calculate numerically
averages of 1/τk with respect to the probability distribution
(B7). The scattering rate obtained in this way is compared to
the approximate formula (10) in Fig. 6 for the special case of
μ0 = 0.

APPENDIX C: MINIGAP STATISTICS OF AN ENSEMBLE
OF DISORDERED ANTIDOT SYSTEMS

To complement the analyses presented in the main text,
we performed additional calculations of the energy spectra of
antidot systems for selected sets of parameters that correspond
to those used in Sec. III. For each parameter set, we examined
an ensemble of 1000 different realizations of random disorder,
allowing for a statistically robust evaluation of disorder effects
on the minigap values in these systems. As we will show
below, our results are qualitatively consistent with the findings
of Ref. [39], which considered the regime of ξ0 � R.

Figure 7 presents histograms of the minigap �m values
in antidot systems. These distributions are also presented in
the form of decile marks in Figs. 2(a), 2(b) 3(a), and 3(b).
Figure 7(a) shows results for the largest antidot radius, R ≈
14ξ0, at a fixed impurity density ρimp ≈ 17/ξ 2

0 and different
impurity potential strengths V0, corresponding to scattering
rates � < �0. In this regime, the distributions exhibit negative
skewness, reflecting the oscillatory dependence of the minigap
on �. Mean �m decreases at an approximate rate of 0.2 units
per unit increase in �. Subsequent histograms for �0 < � <

4.5�0 are shown in blue in Fig. 7(b). In this range of �,
mean �m continues to decrease towards zero at a reduced

rate, with skewness of the distribution changing to positive
between � values 0.81�0 and 1.44�0. This positive skewness
is attributed to the repulsion of the first excited state from
the MZM. The standard deviation of the minigap distribution
initially increases up to � ≈ 0.8 and then decreases.

Analogous data for the smaller antidot with R ≈ 4ξ0 is
shown in red in Fig. 7(b) for � < 4.5�0. In this case, mean
�m decreases approximately linearly across the examined
range at a rate of approximately 0.15 units per unit of �. The
distributions are negatively skewed for � � 3�0 and become
positively skewed above this value. The standard deviation
increases initially, peaks at � ≈ 2.2�0, and subsequently de-
creases. We observe that the agreement of the histograms with
Ref. [39] is better for the larger antidot and stronger disorder,
which corresponds to ξ0, l � R.

For the strongest investigated disorder, the minigap dis-
tribution in the larger antidot follows approximately the
analytical distribution

P(�m) =
√

2

π

�2
m

S3
exp

(
−�2

m

2S2

)
, (C1)

derived from random matrix theory [39], where the parame-
ter S is proportional to the average minigap �m = √

8/πS.
Figure 8 shows the graph of the analytical probability distri-
bution function (C1) fitted to the histogram of the simulated
minigap values for R ≈ 14ξ0, � ≈ 4.26�0, and 〈μin〉 = 0.
The fitting was performed by matching the calculated disorder
minigap average �m = 0.026�0 to the theoretical one.

Figure 7(c) depicts histograms calculated in the same man-
ner as above, but with a constant impurity potential strength
V0 = 6�0, and varying impurity density ρimp, corresponding
to � < 0.5�0. We find that for both investigated antidot radii,
the evolution of the minigap distributions is consistent with
the findings of the analysis with constant ρimp and varying
V0. In particular, the rates of the decrease of mean �m with

FIG. 9. Energy spectra of the vortex core pinned inside the anti-
dot of radius R ≈ 14ξ0 plotted as a function of the disorder scattering
rate �, obtained by fixing the distribution of impurities at density
ρimp ≈ 17/ξ 2

0 and by tuning the parameter V0 in (9). Larger colored
dots denote the first excited states. Horizontal lines at selected values
of � denote deciles of the corresponding minigap value distributions
obtained for 1000 random disorder realizations, with the longest
lines denoting the medians. The figure presents data obtained with
a disorder realization different than in Fig. 2(b).
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FIG. 10. Density maps of the MZM wave functions’ squared moduli in the antidots of radii (a) R ≈ 4ξ0 and (b), (c) R ≈ 14ξ0, the latter
calculated for two different disorder realizations. The color scale is common for all maps. The data shown in (a) and (b) correspond to
Fig. 2(a) and Fig. 2(b), respectively. The data in (c) correspond to Fig. 9.

growing � are in approximate agreement with the values
indicated in the above paragraphs.

To supplement Fig. 2(b), in Fig. 9 we present a plot of
the energy spectrum of the antidot system versus the impurity

potential strength, made for the antidot with radius R ≈ 14ξ0,
with a different disorder realization than the one used in the
main text. This realization is selected to represent a more typ-
ical behavior of the minigap with growing disorder strength.

(a) (b) (c)
R ≈ 4.7ξ0

R ≈ 8.5ξ0

R ≈ 12.3ξ0

R ≈ 16.0ξ0

⟨μin⟩ ≈ −3.0 Δ0

⟨μin⟩ ≈ −1.5 Δ0

⟨μin⟩ ≈ 0.0 Δ0

⟨μin⟩ ≈ 1.5 Δ0

⟨μin⟩ ≈ 3.0 Δ0

⟨μin⟩ ≈ −1.0 Δ0

⟨μin⟩ ≈ −0.5 Δ0

⟨μin⟩ ≈ 0.0 Δ0

⟨μin⟩ ≈ 0.5 Δ0

⟨μin⟩ ≈ 1.5 Δ0

FIG. 11. Histograms representing the statistical distributions of minigap �m values in antidot systems, calculated numerically for an
ensemble of 1000 random disorder realizations, for selected system parameters: constant impurity density ρimp ≈ 17/ξ 2

0 and potential strength
V0 = 6�0 (corresponding to � ≈ 0.33�0), with (a) varying antidot radius R (indicated in the subpanel labels) and constant chemical potential
〈μin〉 = 0, and (b), (c) varying chemical potential 〈μin〉 (indicated in the subpanel labels) and constant antidot radius (b) R ≈ 4ξ0 or (c)
R ≈ 14ξ0. The histograms are normalized to show probability density and the bin widths are set at 0.0125 or 0.025, based on the spread of the
distribution. Data shown in (a) correspond to Fig. 3(d) in the main text. Data shown in (b), (c) correspond to Fig. 4.
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RAFAŁ RECHCIŃSKI et al. PHYSICAL REVIEW B 110, 075433 (2024)

Moreover, in Fig. 10 we show a selection of MZM wave
function density maps for several selected values of the im-
purity potential strength V0, corresponding to scattering rates
between � ≈ 0.64�0 and � ≈ 3.87�0. Figure 10(a) displays
MZMs in the smaller antidot with R ≈ 4ξ0, while Figs. 10(b)
and 10(c) show MZMs for the antidot with R ≈ 14ξ0. The data
shown in Fig. 10(b) was obtained for the disorder realizations
for which the minigap oscillates quickly as a function of �,
as presented in Fig. 2(b). On the other hand, the data shown
in Fig. 10(c) was obtained for the disorder realizations for
which the minigap exhibits a more typical behavior depicted
in Fig. 9.

Finally, Fig. 11 presents histograms of the minigap values
in antidot systems, corresponding to the decile marks shown

in Figs. 3(d), 4(c), and 4(d). The data in Fig. 11 was obtained
with a fixed impurity density ρimp ≈ 17/ξ 2

0 and impurity
potential strength V0 = 6�0, corresponding to scattering rate
� ≈ 0.33�0. In Fig. 11(a), we show histograms generated for
four different antidot radii. As expected, the mean minigap
value drops with increasing radius. Figures 11(b) and 11(c)
depict histograms of the minigap calculated at different val-
ues of chemical potential 〈μin〉 inside the antidots with radii
R ≈ 4ξ0 and R ≈ 14ξ0. In both cases, mean �m decreases
as 〈μin〉 is tuned away from charge neutrality point. As the
minigap approaches zero, repulsion of the first excited state
from the MZM can be observed, manifesting itself in the
positive skewness of the minigap distribution, in analogy to
the data presented in Figs. 7(a) and 7(b).

[1] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[3] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[4] H. S. Røising, R. Ilan, T. Meng, S. H. Simon, and F. Flicker,

SciPost Phys. 6, 055 (2019).
[5] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Inf. 1,

15001 (2015).
[6] A. R. Akhmerov, Phys. Rev. B 82, 020509(R) (2010).
[7] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[8] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[9] M. Aghaee, A. Akkala, Z. Alam, R. Ali, A. Alcaraz Ramirez,

M. Andrzejczuk, A. E. Antipov, P. Aseev, M. Astafev, B. Bauer,
J. Becker, S. Boddapati, F. Boekhout, J. Bommer, T. Bosma, L.
Bourdet, S. Boutin, P. Caroff, L. Casparis, M. Cassidy et al.,
Phys. Rev. B 107, 245423 (2023).

[10] A. Banerjee, O. Lesser, M. A. Rahman, H.-R. Wang, M.-R. Li,
A. Kringhøj, A. M. Whiticar, A. C. C. Drachmann, C. Thomas,
T. Wang, M. J. Manfra, E. Berg, Y. Oreg, A. Stern, and C. M.
Marcus, Phys. Rev. B 107, 245304 (2023).

[11] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Nat. Rev. Mater. 3, 52
(2018).

[12] B. Nijholt and A. R. Akhmerov, Phys. Rev. B 93, 235434
(2016).

[13] G. W. Winkler, A. E. Antipov, B. van Heck, A. A. Soluyanov,
L. I. Glazman, M. Wimmer, and R. M. Lutchyn, Phys. Rev. B
99, 245408 (2019).

[14] K. Flensberg, F. von Oppen, and A. Stern, Nat. Rev. Mater. 6,
944 (2021).

[15] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407
(2008).

[16] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[17] O. Breunig and Y. Ando, Nat. Rev. Phys. 4, 184
(2021).

[18] P. Rüßmann and S. Blügel, arXiv:2208.14289.
[19] B. Sacépé, J. B. Oostinga, J. Li, A. Ubaldini, N. J. G. Couto, E.

Giannini, and A. F. Morpurgo, Nat. Commun. 2, 575 (2011).
[20] M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru,

X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H.
Hilgenkamp, and A. Brinkman, Nat. Mater. 11, 417 (2012).

[21] J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui,
A. S. Bleich, J. G. Analytis, I. R. Fisher, and D. Goldhaber-
Gordon, Phys. Rev. Lett. 109, 056803 (2012).

[22] I. Sochnikov, L. Maier, C. A. Watson, J. R. Kirtley, C. Gould,
G. Tkachov, E. M. Hankiewicz, C. Brüne, H. Buhmann, L. W.
Molenkamp, and K. A. Moler, Phys. Rev. Lett. 114, 066801
(2015).

[23] C. Kurter, A. D. K. Finck, Y. S. Hor, and D. J. Van Harlingen,
Nat. Commun. 6, 7130 (2015).

[24] S. Charpentier, L. Galletti, G. Kunakova, R. Arpaia, Y. Song,
R. Baghdadi, S. M. Wang, A. Kalaboukhov, E. Olsson, F.
Tafuri, D. Golubev, J. Linder, T. Bauch, and F. Lombardi, Nat.
Commun. 8, 2019 (2017).

[25] L. A. Jauregui, M. Kayyalha, A. Kazakov, I. Miotkowski, L. P.
Rokhinson, and Y. P. Chen, Appl. Phys. Lett. 112, 093105
(2018).

[26] S. Ghatak, O. Breunig, F. Yang, Z. Wang, A. A. Taskin, and Y.
Ando, Nano Lett. 18, 5124 (2018).

[27] A. Q. Chen, M. J. Park, S. T. Gill, Y. Xiao, D. Reig-i-Plessis,
G. J. MacDougall, M. J. Gilbert, and N. Mason, Nat. Commun.
9, 3478 (2018).

[28] M. Bai, F. Yang, M. Luysberg, J. Feng, A. Bliesener, G.
Lippertz, A. A. Taskin, J. Mayer, and Y. Ando, Phys. Rev.
Mater. 4, 094801 (2020).

[29] I. T. Rosen, C. J. Trimble, M. P. Andersen, E. Mikheev, Y. Li, Y.
Liu, L. Tai, P. Zhang, K. L. Wang, Y. Cui, M. A. Kastner, J. R.
Williams, and D. Goldhaber-Gordon, Phys. Rev. B 110, 064511
(2024).

[30] L. Kong, S. Zhu, M. Papaj, H. Chen, L. Cao, H. Isobe, Y. Xing,
W. Liu, D. Wang, P. Fan, Y. Sun, S. Du, J. Schneeloch, R.
Zhong, G. Gu, L. Fu, H.-J. Gao, and H. Ding, Nat. Phys. 15,
1181 (2019).

[31] C.-K. Chiu, T. Machida, Y. Huang, T. Hanaguri, and F.-C.
Zhang, Sci. Adv. 6, eaay0443 (2020).

[32] J.-P. Xu, M.-X. Wang, Z. L. Liu, J.-F. Ge, X. Yang, C. Liu, Z. A.
Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q.-H. Wang, F.-C.
Zhang, Q.-K. Xue, and J.-F. Jia, Phys. Rev. Lett. 114, 017001
(2015).

[33] H.-H. Sun, K.-W. Zhang, L.-H. Hu, C. Li, G.-Y. Wang, H.-Y.
Ma, Z.-A. Xu, C.-L. Gao, D.-D. Guan, Y.-Y. Li, C. Liu, D. Qian,

075433-12

https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.21468/SciPostPhys.6.5.055
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1103/PhysRevB.82.020509
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.107.245423
https://doi.org/10.1103/PhysRevB.107.245304
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1103/PhysRevB.93.235434
https://doi.org/10.1103/PhysRevB.99.245408
https://doi.org/10.1038/s41578-021-00336-6
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/s42254-021-00402-6
https://arxiv.org/abs/2208.14289
https://doi.org/10.1038/ncomms1586
https://doi.org/10.1038/nmat3255
https://doi.org/10.1103/PhysRevLett.109.056803
https://doi.org/10.1103/PhysRevLett.114.066801
https://doi.org/10.1038/ncomms8130
https://doi.org/10.1038/s41467-017-02069-z
https://doi.org/10.1063/1.5008746
https://doi.org/10.1021/acs.nanolett.8b02029
https://doi.org/10.1038/s41467-018-05993-w
https://doi.org/10.1103/PhysRevMaterials.4.094801
https://doi.org/10.1103/PhysRevB.110.064511
https://doi.org/10.1038/s41567-019-0630-5
https://doi.org/10.1126/sciadv.aay0443
https://doi.org/10.1103/PhysRevLett.114.017001


INFLUENCE OF DISORDER ON ANTIDOT VORTEX … PHYSICAL REVIEW B 110, 075433 (2024)

Y. Zhou, L. Fu, S.-C. Li, F.-C. Zhang, and J.-F. Jia, Phys. Rev.
Lett. 116, 257003 (2016).

[34] J. U. Lee, arXiv:2011.08925.
[35] R. S. Akzyanov, A. V. Rozhkov, A. L. Rakhmanov, and F. Nori,

Phys. Rev. B 89, 085409 (2014).
[36] H. Deng, N. Bonesteel, and P. Schlottmann, J. Phys.: Condens.

Matter 33, 035604 (2021).
[37] A. Ziesen and F. Hassler, J. Phys.: Condens. Matter 33, 294001

(2021).
[38] P. A. Ioselevich, P. M. Ostrovsky, and M. V. Feigel’man, Phys.

Rev. B 86, 035441 (2012).
[39] A. Ziesen, A. Altland, R. Egger, and F. Hassler, Phys. Rev. Lett.

130, 106001 (2023).
[40] D. I. Pikulin and M. Franz, Phys. Rev. X 7, 031006 (2017).

[41] D. J. J. Marchand and M. Franz, Phys. Rev. B 86, 155146
(2012).

[42] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.
Rev. B 82, 094522 (2010).

[43] N. Sedlmayr and A. Levchenko, Solid State Commun. 327,
114221 (2021).

[44] The decay length of the wave functions in the SC is given
by πξ0. Based on assumption h̄vD = 200 meV nm and �0 =
1 meV, for conversion to physical units we use πξ0 = 200 nm.
However, our analysis is independent of the precise value
of ξ0.

[45] Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J.
Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Nat. Phys. 10, 956
(2014).

075433-13

https://doi.org/10.1103/PhysRevLett.116.257003
https://arxiv.org/abs/2011.08925
https://doi.org/10.1103/PhysRevB.89.085409
https://doi.org/10.1088/1361-648X/abba89
https://doi.org/10.1088/1361-648X/abff93
https://doi.org/10.1103/PhysRevB.86.035441
https://doi.org/10.1103/PhysRevLett.130.106001
https://doi.org/10.1103/PhysRevX.7.031006
https://doi.org/10.1103/PhysRevB.86.155146
https://doi.org/10.1103/PhysRevB.82.094522
https://doi.org/10.1016/j.ssc.2021.114221
https://doi.org/10.1038/nphys3140

