
ARTICLE

Transport in helical Luttinger liquids in the
fractional quantum Hall regime
Ying Wang1, Vadim Ponomarenko1,2, Zhong Wan 1,6, Kenneth W. West3, Kirk W. Baldwin3, Loren N. Pfeiffer3,

Yuli Lyanda-Geller1,4✉ & Leonid P. Rokhinson 1,4,5✉

Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional

channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids.

Naïvely, these helical domain walls (hDWs) constitute two counter-propagating chiral states

with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to

lead to topological superconductivity with high order non-Abelian excitations1–3. Here we

investigate transport properties of hDWs in the ν= 2/3 fractional QH regime. Experimentally

we found that current carried by hDWs is substantially smaller than the prediction of the

naïve model. Luttinger liquid theory of the system reveals redistribution of currents between

quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current.

Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The

theory confirms emergence of spin modes required for the formation of fractional topological

superconductivity.
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Gapless chiral edge states, a hallmark of the quantum Hall
effect (QHE), are formed at the boundaries of the two-
dimensional (2D) electron liquid. These states are pro-

tected due to their topological properties; their spatial separation
suppresses backscattering and insures precise quantization of the
Hall conductance over macroscopic distances4. Symmetry-
protected topological systems can support spatially coexisting
counter-propagating states. For example, in 2D topological
insulators, time reversal symmetry insures orthogonality of Kra-
mers doublets5–7; in graphene, the conservation of angular
momentum prevents backscattering in the quantum spin Hall
effect regime8. Local symmetry protection is not as robust as
spatial separation in the QHE and, as a result, helical domain walls
(hDWs) have finite scattering and localization lengths. Helical
states can be also engineered by arranging proximity of two
counter-propagating chiral states with opposite polarization, e.g.,
in electron-hole bilayers9 or double quantum well structures10,
where local charge redistribution between two quantum wells
creates two counter-propagating chiral states at the boundary of
quantum Hall liquids with different filling factors. In the latter
system, spatial separation into two quantum wells suppresses the
interchannel scattering, and transport in each chiral channel is
found to be ballistic over macroscopic distances.

An intriguing possibility to form helical channels in the interior
of a 2D electron gas is to induce a local quantum Hall ferro-
magnetic transition. In the integer QHE regime, scattering
between overlapping chiral edges from different Landau levels is
suppressed due to the orthogonality of the wavefunctions, but
spin–orbit interaction mixes states with opposite spins and opens
a small gap in the helical spectrum11–13. In the fractional quantum
Hall effect (FQHE) regime, an electrostatically-controlled transi-
tion between unpolarized (u) and polarized (p) ν= 2/3 states
results in the formation of a conducting channel at the boundary
between u and p regions (filling factor ν−1= B/nϕ0, where B is an
external magnetic field, ϕ0= h/e is a flux quanta and n is electron
density). Superficially, a transition between u and p states in the
bulk can be understood as a crossing of two composite fermion
energy states with opposite spins polarization10,14,15. Within this
model, the hDW at the u-p boundary consists of two counter-
propagating chiral states with opposite spin and fractionalized
charge excitations, and presents an ideal platform to build

fractional topological superconductors with parafermionic and
Fibonacci excitations1,2,16–19. Highly correlated ν= 2/3 state
exhibits rich physics beyond an oversimplified model of ν*= 2
integer QHE for weakly interacting composite fermions and
includes observation of upstream neutral modes20–23, short-range
upstream charge modes24, and a crossover from e*= 1/3 to
e*= 2/3 charge excitations in shot noise measurements25. In the
bulk, the spin transition at ν= 2/3 is accompanied by nuclear
polarization26–28 indicating spin-flip processes in the 2D gas, a
phenomena not seen in bilayer systems10,29. Thus, we expect a
hDW formed at a boundary between u and p ν= 2/3 states to be
more complex than a simple overlap of two noninteracting
chiral modes.

Here we study the electron transport in samples where hDWs
of different length L are formed by electrostatic gating. Experi-
mentally, in the limit L→ 0 only 11% of the edge current is
diverted into the hDW, a number drastically different from the
50% prediction for two noninteracting counter-propagating chiral
channels. To address this discrepancy theoretically, we consider
tunneling between Luttinger liquid modes30 through a hDW in
the strong coupling limit31–33 and confirm that results remain the
same if hDW is modeled as an extended object. We found that in
the presence of a strong inter-edge tunneling edge channels in u
and p regions populate unequally, both at the boundary of the 2D
gas and within the hDW, forming a number of down- and up-
stream charge, spin, and neutral modes. For spin-conserving
tunneling 1/4 of the incoming charge current is diverted into the
hDW, while allowing spin-flip processes further reduces hDW
current. Indeed, at high bias currents, we observe an increase in
the current carried by the hDW. This indicates the formation of a
bottleneck for spin flips due to the Overhauser pumping of nuclei
and a crossover from spin-non-conserving to spin-conserving
transport.

Experimental Results
Several devices in a Hall bar geometry with multiple gates have
been fabricated in order to study transport through hDWs, Fig. 1
(for heterostructure and fabrication details see Methods). Devices
are separated into two regions G1 and G2; electron density n in
these regions can be controlled independently by electrostatic

Fig. 1 Formation of helical domain walls at ν= 2/3. a A false-color image of a typical device. Yellow regions are ohmic contacts, 2D gas in green and
magenta regions is controlled by gates G1 and G2, in the gray area, 2D gas is removed. In the enlarged section, thick black lines outline the mesa boundary
and a vertical blue line marks a physical boundary between G1 and G2. b Magnetoresistance R45= (V5− V4)/I of a 2D gas is plotted as a function of gate
voltage (controlling filling factor ν) at a fixed B= 4.2 T. Small peak at −34mV is the phase transition between unpolarized (u) and polarized (p) ν= 2/3
FQHE liquids. c A diagram of u and p states as a function of ν1 and ν2 under gates G1 and G2; 〈ν〉= (ν1+ ν2)/2 and Δν= (ν1− ν2). d Resistance
R34= (V4− V3)/I across a 7 μm-long gates boundary is plotted as a function of 〈ν〉 and Δν. The black square outlines the ν= 2/3 region, red lines mark u-p
transitions and yellow lines mark centers of u and p regions.
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gates. In the IQHE regime when filling factors ν under gates G1
and G2 differ by one, a single chiral channel is formed along the
gates boundary and resistance R34 measured across the boundary
is either quantized or zero depending on the sign of the filling
factor gradient and direction of B (see Supplementary Note 2).
Likewise, a chiral channel is formed when the gates boundary
separates two different FQHE states.

Fractional QHE states can be understood as integer QHE states
for composite fermions in a reduced field, ν= ν*/(2ν* ± 1), where
ν* is the filling factor for composite fermions34. The energy
separation between composite fermions levels depends on the
competition between charging energy Ec /

ffiffiffi
B
p

and Zeeman
energy EZ∝ B, and the two lowest energy levels with opposite
spins 0-down and 1-up cross at finite B* > 0 due to different field
dependencies. When the level crossing occurs within the ν= 2/3
plateau (ν*= 2 for composite fermions), the energy gap for
quasiparticle excitations vanishes providing a mechanism for
charge backscattering and, hence, at B= B* resistance of the 2D
gas is no longer zero. In our devices, it is possible to control B* by
electrostatic gating, and a small peak within the 2/3 plateau in
Fig. 1b is a quantum Hall ferromagnetic transition between
polarized (p) and unpolarized (u) regions.

Independent control of filling factors ν1 and ν2 under G1 and
G2 divides the 2/3 region into four quadrants uu, pp, up, and pu,
where the first letter corresponds to a polarization of the state
under G1 and the second corresponds to polarization under G2.
Within the Landauer–Büttiker formalism35,36 resistance R34=
(1/ν1− 1/ν2)Rq should be zero for all combinations of polariza-
tions under the gates since quantum numbers ν1= ν2= 2/3 for
both u and p states (here Rq= h/e2, h is the Plank’s constant and e
is an electron charge). Experimentally R34 is found to be van-
ishingly small in uu and pp quadrants, consistent with a single
topological state being extended over the whole device. R34 > 0 in
up and pu quadrants indicates backscattering between edge
channels and, combined with zero longitudinal resistance under
G1 and G2, reflects the formation of a conducting channel along
the gates boundary. Unlike resistance measured across chiral
channels formed, e.g., between ν= 2/3 and ν= 3/5 FQHE states
(see Supplementary Note 2), the resistance measured across the

boundary of u and p quantum liquids at ν= 2/3 shows almost no
dependence on the direction of the external magnetic field and
density gradient, consistent with the formation of a hDW37.

Protection of helical states from backscattering and localization
is weaker for spatially separated chiral edge states, and conduc-
tion of hDWs is length-dependent. In Fig. 2a fraction of the
external current I that flows through the hDW, iDW= IDW/I, is
plotted as a function of hDW length L. iDW is found to decrease
exponentially with L, iDW ¼ i0DW exp½�L=L0�, with a characteristic
length L0= 47 μm. The value of i0DW corresponds to the transport
through a ballistic hDW in the absence of localization. Within a
simplified model of ν= 2/3 edge states consisting of equally
populated 1/3+ 1/3 chiral modes and no interaction between
chiral channels with opposite spin polarization (Fig. 2a), one
expects i0DW ¼ 1 (marked by a blue arrow in Fig. 2c), an order of
magnitude larger than the experimentally observed value (marked
by a green arrow). Note that transport through helical modes
formed in double quantum well structures are well described by
this simple model of weakly interacting chiral states10.

Theory
An isolated hDW at a boundary of p and u phases was studied in
refs. 19,37, where disk and torus geometries were employed to
avoid physical edges of the sample and coupling of domain wall
modes to these edges. Analytical model and numerical results
indicate the existence of modes with opposite velocities and spins
within the hDW region, a prerequisite for generating topological
superconductivity. No neutral or spin modes appear within the
K-matrix Luttinger liquid approach30 in these isolated hDW
models.

To calculate the scattering of edge modes at a sample boundary
by a hDW we need to move beyond an isolated hDW model. A
conventional starting point for chiral edge states description are
two filled Λ-levels of composite fermions with equal or opposite
spin in the p and u phases, with edge modes described by densities
Φp1↑, Φp2↑ and Φu1↑, Φu2↓ correspondingly. As shown in Supple-
mentary Note 3, applying unitary transformations, we arrive to the
description in terms of the separated charged and neutral modes

Fig. 2 Conduction of helical domain walls. a A simplified picture of noninteracting chiral edge modes at ν= 2/3. An inner spin-up edge (red) in p state carries
current I while a spin-down edge (blue) in u state carries no current. b Charge conservation and chirality of edge states set the potential V4= ν−1IDWRq to be
proportional to the current IDW diverted via the helical domain wall. c Scaling of the domain wall current iDW= IDW/I with hDWs length L. The values are
averaged between up and pu states (within red circles in Fig. 1d), error bars are standard deviations. Red line is a fit to an exponential decay with the L=0 value
i0DW ¼ 0:115 and the decay length L0= 47 μm. Arrows indicate i0DW values expected for naive noninteracting edge model (blue) and Luttinger liquid model in the
absence of spin-flip (red) and at spin-flip probability r= 3/4 (green), see text for details. Vertical arrow marks iDW shift when Idc= 1 nA is applied. In the inset
iDW dependence on large external dc current is plotted for 7 μm hDW for up and pu gates configuration right after the dc current is applied and before a
measurable build-up of nuclear polarization.
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φpc ¼ ðΦp1" þ Φp2"Þ=3
ffiffiffi
2
p

and φpn ¼ ðΦp1" � Φp2"Þ=
ffiffiffi
2
p

for the p
phase, and separated charged and spin modes φuc ¼ ðΦu1" þ
Φu2#Þ=3

ffiffiffi
2
p

and φus ¼ ðΦu1" �Φu2#Þ=
ffiffiffi
2
p

for the u phase,
equivalent to the composite fermion description. The Luttinger liquid
action for ν= 2/3 edge states, e.g., for the u phase in terms of
separated charge and spin modes, reads

S ¼ 1
4π

Z
dt
Z

dx �3∂xφuc ∂t þ vc∂x
� �

φuc þ ∂xφus ∂t � vs∂x
� �

φus

� �
; ð1Þ

where vc and vs are velocities of charge and spin modes, corre-
spondingly. The spin mode determines the spin current in u phase.
The p phase is described by a similar action, in which the neutral φpn
mode that determines a difference in the occupation of the first two
composite fermion Λ-levels enters instead of φus, the velocity of
neutral mode vn enters instead of vs, and φpc appears instead of φuc.
These actions coincide with the Kane, Fisher, and Polchinsky38

Luttinger liquid action expressed in terms of the charge and neutral
fields, see also refs. 30,39, in the absence of tunneling between com-
posite fermion modes due to impurity scattering. Indeed, at the edges
of the u phase such tunneling is forbidden in the absence of spin-flip
processes, and u phase exhibits spin-charge separation with pure spin
and charge modes moving in opposite directions40 as in Eq. (1). To
treat both phases, which exhibit quantization of Hall resistance
3/2h/e2 and similar longitudinal resistance characteristics, on equal
footing, we assume that no scattering between different modes occurs
along edges in the p phase also. At the same time, we show in
Supplementary Note 3 that scattering between quasiparticle modes
inside the domain wall does not alter measurable currents. In both
phases quantization of the Hall resistance and charge and neutral
(spin) mode separation is a consequence of the long-range Coulomb
interaction30.

We generalize the known solution for tunneling41 of the
fractional QHE modes through the point contact to consideration
of tunneling through finite length domain wall between p and u
phases. Point contact tunneling carried by electrons with the
same spin can be described by the tunnel Hamiltonian

HT ¼ �~t cos Φp1" �Φu1"
� �

¼ �~t cos 1ffiffiffi
2
p 3φpc � φpn � 3φuc þ φus

h i	 

: ð2Þ

Mapping of an edge-hDW-edge structure onto one-dimensional
bosonic modes φ(x) is shown schematically in Fig. 3a. In general,
hDW and each region outside of the hDWmay contain up to eight

bosonic modes φ$
αβ ðxÞ, where α= {p, u}, β= {c, n/s} and the

superscript f ;!g indicates the projection of the velocity vβ on
the x-axis. However, the chirality of edge channels reduces the
number of bosonic modes to four. It is convenient to consider two
outgoing charge modes φ!pc ðx2Þ and φ uc ðx1Þ and two outgoing spin/
neutral modes φ pn ðx1Þ and φ!us ðx2Þ.

In the strong coupling limit ~t!1, charge, neutral, and spin
currents can be found by imposing the following boundary
conditions on bosonic fields right outside of the hDW [x1, x2]:

φ!pc ðx2 þ 0Þ
φ!us ðx2 þ 0Þ
φ uc ðx1 � 0Þ
φ pn ðx1 � 0Þ

0
BBB@

1
CCCA ¼

1
4

1 �1 3 1

�3 3 3 1

3 1 1 �1
3 1 �3 3

0
BBB@

1
CCCA

φ!pc ðx1 � 0Þ
φ!us ðx1 � 0Þ
φ uc ðx2 þ 0Þ
φ pn ðx2 þ 0Þ

0
BBB@

1
CCCA;

ð3Þ
which connect all incoming modes at the right side and outgoing
modes at the left side of the equation. Our principal result is that
imposing strong coupling boundary conditions in a general case
of a domain wall of finite length results in the same currents
flowing outside the domain wall as for the models of single-
junction connecting edges on opposite sample boundaries, two
junctions on opposite edges, and two junctions with scattering
between same spin modes in between. Inside the domain wall, the
chiral evolution of modes is controlled by the average voltage
shifts at their corresponding boundaries. In the presence of vol-
tage V, the only incoming mode changing due to charge injection
in the p phase is φpc(x1), characterized by an average induced
current �j ¼ e2V

3π_.
When spin-flip processes are absent, it is convenient to discuss

the results in terms of currents carried by Φp1 (Φu1) and quasi-
particle χp2 ¼ ðφpc � φpnÞ=

ffiffiffi
2
p

( χu2 ¼ ðφpc � φpsÞ=
ffiffiffi
2
p

) modes.
We show that Φp1↑ (Φu1↑) modes propagate along the edges of
the 2D gas and do not enter the domain wall, while χp2 and χu2
modes flow along the boundaries of p and u phases correspond-
ingly, including inside the domain wall, as shown schematically in
Fig. 3b. Notable features of our solution are unequal distribution
of carried currents between the modes caused by strong coupling
to the domain wall and the presence of spin current along the
edge of the u phase for x > x2. The total current flowing along the
hDW IDW= 1/4(I+ IDW) or iDW= 1/3. This value is three times

Fig. 3 Schematic representation of currents. a Mapping of bosonic modes φα along sample edges onto a 1D Luttinger model modes φ$
αβ ðxÞ for a domain

wall with length L= x2− x1. Subscripts α= {p, u} label polarized and unpolarized phases, β= {c, n, s} is for charge, neutral, and spin modes and an arrow in
the superscript specifies projection of the mode’s group velocity. Arrows on the edges define the chirality of edge channels. b, c Visualization of currents
due to the propagation of Φ1 and χ2 modes without spin flips (b) and in the presence of spin flips with the probability r= 3/4 (c). Red (blue) mode color
indicates a spin-up (spin-down) polarization. Numbers indicate the fraction of the incoming current carried by the mode. Arrows correspond to directions
of currents carried by corresponding modes.
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larger than the experimentally measured iDW and is indicated by a
red arrow in Fig. 2c.

In 2D gases formed in GaAs heterostructures spin transition at
ν= 2/3 is accompanied by a dynamic nuclear spin polarization42.
Its main mechanism is the hyperfine coupling of electron and
nuclear spins, which for QHE plateaus is usually suppressed due
to a large difference between electron and nuclear Zeeman
splitting. Near the u-p phase transition, however, electronic states
with spin-up and spin-down are almost degenerate, enabling the
hyperfine coupling. This spin-flip mechanism can lead to
the scattering between χp2 and χu2 modes propagating inside the
domain wall, see Supplementary Note 3. Notably, Φ1 modes still
propagate along the 2D gas boundary and do not enter the
domain wall. However, conservation of total current carried by
Φ1 and χ2 modes results in the current redistribution between the
modes. The ratio characterizing the domain wall current iDW(r)
becomes a function of the spin-flip probability r and changes
continuously between 1/3 for r= 0 and zero for r= 1. Experi-
mentally measured values correspond to r ≈ 3/4, corresponding
currents are shown schematically in Fig. 3c.

To test the role of spin flips it is possible to pass a large dc
current and polarize nuclei in the vicinity of the tri-junction.
Saturation of nuclear spin polarization is expected to create a
bottleneck for electron spin flips and disable charge transfer
between two χ2 bosonic modes with opposite polarization.
Indeed, application of Idc > 0.5 nA results in approximately a
threefold increase of iDW, as shown in the inset in Fig. 2. A
corresponding shift of iDW for the 7 μm hDW is shown with a
vertical arrow on the main plot. This shift is consistent with the
triple current increase expected for the crossover from a spin-flip-
dominated to a no-spin-flip transport.

Methods
Devices are fabricated from GaAs/AlGaAs inverted single heterojunction hetero-
structures with electron gas density 0.9 ⋅ 1011 cm−2 and mobility 5 ⋅ 106 cm2/Vs.
Details of heterostructure design can be found in ref. 43, these heterostructures
demonstrate efficient electrostatic control of the spin transition at ν= 2/3, see
ref. 37. Devices are patterned in a Hall bar geometry using e-beam lithography and
wet etching, the photograph of a typical sample is shown in Fig. 1. Devices are
divided into two regions by semitransparent gates (10 nm of Ti), the gates are
separated from the surface of the wafer and from each other by 50 nm of Al2O3

grown by the atomic layer deposition (ALD). Gates boundary is aligned with a
2–50-μm-wide mesa constriction. Ohmic contacts are formed by annealing Ni/Ge/
Au 30/50/100 nm at 450 ∘C for 450 s in H2/N2 atmosphere. Measurements are
performed in a dilution refrigerator at a base temperature of 20 mK using con-
ventional low-frequency lock-in technique with excitation current Iac= 100 pA. A
2D electron gas is formed by shining a red LED at 4 K. More details on the 2D gas
preparation and sample characterization can be found in Supplementary Note 1.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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