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In this work, we use electrostatic control of quantum Hall ferromagnetic transitions in CdMnTe quantum
wells to study electron transport through individual domain walls (DWs) induced at a specific location.
These DWs are formed due to the hybridization of two counterpropagating edge states with opposite spin
polarization. Conduction through DWs is found to be symmetric under magnetic field direction reversal,
consistent with the helical nature of these DWs. We observe that long domain walls are in the insulating
regime with a localization length of 4–6 μm. In shorter DWs, the resistance saturates to a nonzero value at
low temperatures. Mesoscopic resistance fluctuations in a magnetic field are investigated. The theoretical
model of transport through impurity states within the gap induced by spin-orbit interactions agrees well
with the experimental data. Helical DWs have the required symmetry for the formation of synthetic p-wave
superconductors. The achieved electrostatic control of a single helical domain wall is a milestone on the
path to their reconfigurable network and ultimately to a demonstration of the braiding of non-Abelian
excitations.
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The prediction that one-dimensional (1D) wires with
lifted Kramers degeneracy but preserved time-reversal
symmetry coupled to a conventional superconductor can
harbor non-Abelian excitations [1] motivated the develop-
ment of various systems with conducting 1D helical chan-
nels. The required symmetry has been predicted [2,3] and
demonstrated in nanowires with strong spin-orbit interaction
in the presence of a magnetic field [4–6], at the edges of
the quantum spin Hall effect devices [7], and in atomic
chains with a helical magnetic structure [8]. None of the
aforementioned systems are easily reconfigurable, which
hinders the demonstration of braiding of quasiparticles and
non-Abelian statistics.
Edge states in the quantum Hall effect (QHE) regime

have been used as a canonical system to study 1D Luttinger
liquids [9], which are chiral and not time-reversal invariant.
However, there is one overlooked regime in the QHE, the
quantum Hall ferromagnetic (QHFM) transition—where
helical channels can be formed. The spin polarization of
the topmost Landau level is determined by a competition
between Zeeman, cyclotron, and exchange energies.
Changing the balance between these energies (e.g., by
applying an in-plane magnetic field) can lead to a QHFM
transition where a uniform 2D gas spontaneously phase
separates into regions with different spin polarizations [10].
Domain walls at the boundaries of insulating ferromagnetic
domains form helical 1D channels (HDWs) [11–15], and
transport through a random network of conducting DWs

has been studied in the context of a 2D phase transition
[16–18]. In the past, the study of an individual HDW was
not feasible. In this Letter, we use the recently developed
gate control of the QHFM transition [19] in CdMnTe
quantum wells to demonstrate that HDWs can be formed
at a specific location using electrostatic gating, and we also
present an investigation of transport properties of isolated
HDWs.
The QHFM transition was first observed at a filling

factor ν ¼ 2=3 [20] in high-mobility GaAs quantum wells.
In this Letter, we focus on the QHFM transition at ν ¼ 2
in CdMnTe dilute magnetic semiconductor quantum wells
[21], where QHFM transitions in both integer [17] and
fractional [22] QHE regimes have been observed. The
QHFM transition in CdMnTe originates from a competition
between negative Zeeman energy (the Landé g factor of
CdTe g ¼ −1.6) and positive exchange energy between s
electrons in the quantum well and d-shell electrons in Mn.
The presence of the s − d exchange modifies Landau levels
[see Fig. 1(a)] and can result in the crossing of levels with
different polarizations at high magnetic fields. The mag-
netic field B� corresponds to a cancellation of differences in
the total Zeeman, cyclotron, and exchange energies of j0↑i
and j1↓i states. At this field, levels would cross, but a spin-
orbit interaction introduces a small avoided crossing [19].
When driven through B�, the 2D gas undergoes a polarized
(↓↓) to unpolarized (↓↑) phase transition at ν ¼ 2
(only two Landau levels filled), which is marked on the
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plot. We observe that in transport this QHFM transition is
seen as a sharp peak in the longitudinal resistance in the
middle of the ν ¼ 2 plateau [Fig. 1(c)].
Electrostatic control of the QHFM transition in CdMnTe

was developed in Ref. [19], where we introduced nonuni-
form placement of Mn in the growth direction within the
quantum well. The electric field shifts the electron wave
function relative to the Mn position, thereby controlling
the s − d overlap χðVgÞ. The corresponding change in the
strength of the s − d exchange results in the shift of B�, as
shown for two values of χ in Fig. 1(a). Experimentally, we
can control B� within ∼10% by both front and back gates as
shown in Fig. 1(b).
Devices were fabricated from CdMnTe=Cd0.8Mg0.2Te

quantum well (QW) heterostructures grown by molecular
beam epitaxy; see Refs. [17,22] for details. The QW is
30 nm wide and is modulation doped with iodine. Mn is
introduced into the QWas seven δ-doping layers spaced by
six monolayers of CdTe starting 13 nm from the bottom
of the quantum well in the growth direction. The effective
Mn concentration is 1.5%–1.7% as determined from the
position of the QHFM transition B� at ν ¼ 2. The low-
temperature density and mobility in ungated samples are
3–3.5 × 1011 cm−2 and 3–4 × 104 cm2=V s, respectively.
The transition field B� at zero gate voltage can be adjusted
by varying conditions of the LED illumination during
a cooldown [23]. We attribute this tunability to different
dopant ionization profiles and, consequently, different

profiles of the electron wave function within the quantum
well. A semitransparent front gate is formed by evaporating
10–15 nm of Ti on the surface of the sample, and a copper
foil glued to the back of the sample serves as a back gate.
Ohmic contacts are produced by soldering freshly cut indium
pellets similar to previous studies [17,22]. Electron transport
is measured in a dilution refrigerator in a temperature range
30–650 mK with a standard ac technique using excitation
current Iac ≤ 1 nA.
Samples are patterned in a number of gated and ungated

Hall bar sections with sizes of 25 μm length and 15 μm
width; see Fig. 2. The front gate boundary is aligned with
narrow constrictions of various lithographical widths
L ¼ 1–15μm. The constrictions electrical width is reduced
by 2lD ¼ 200–400 nm, where lD is the depth of electrical
depletion of a 2D electron gas near the mesa edges. It is
further reduced by ≈1.8lD − 2.5

ffiffiffiffiffiffiffiffiffiffi

aBlD
p ¼ 120–280 nm

(aB ¼ 5.4 nm is the Bohr radius in CdTe) due to the
formation of edge channels in the QHE regime [26]. The
overall reduction is 0.5–1 μm compared to the lithographic
L. This sample design allows the simultaneousmeasurement
of longitudinal resistanceRxx ¼ Vxx=Iac in gated (Rgated) and
ungated (Rungated) regions, as well as longitudinal resistance
in the presence of the domain wall RDW [Fig. 2(c)].
The difference between QHFM transitions in gated and

ungated regions isΔB� ¼ B�
ungated − B�

gated, and positions of
B� within ν ¼ 2 plateaus can be adjusted by a combination
of cooldown conditions and gate voltages [23]. Note that
the energy gap in the vicinity of the QHFM transition is

(a)

(c)

(b)

FIG. 1. (a) Calculated energy spectrum of Landau levels in
CdMnTe with 1.7% Mn doping and s − d overlap 0.9χ0 (solid
lines) and 1.1χ0 (dashed lines), where χ0 is the overlap for zero
gate voltages. B� marks QHFM transitions where the ground state
changes from j0↑i to j1↓i. (b) Experimentally measured shift of
QHFM at ν ¼ 2 as a function of front (Vfg) and back (Vbg) gate
voltages. (c) Longitudinal and Hall resistance measured at an
elevated temperature of 300 mK. The sharp peak at 7.3 T within
the ν ¼ 2 shaded region is a QHFM transition between fully
polarized and unpolarized states, where the top filled Landau
level changes polarization.

(a) (b)

(c)

FIG. 2. (a) Optical image of a sample; dark areas are etched,
and yellow areas are covered by a top gate. The inset is an AFM
image of a constriction, where the vertical gate boundary is
clearly seen. (b) An artistic rendering of an AFM image at ν ¼ 2
with a schematic flow of j0↑i, j0↓i, and j1↓i edge channels
assuming that the QHFM transition is gate tuned across the
constriction. j0↑i and j1↓i states hybridize forming a helical
domain wall. (c) Schematic of the measurement setup.
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∼ℏejΔB�j=2m ¼ ℏΔωc=2 ≈ 0.57 meV=T and increases
with separation ΔB�. The value ΔB� controls the gradient
of the s − d exchange and the width of the HDWs and can
be adjusted between 0 and 0.3 T in our experiments.
The magnetoresistance in the vicinity of the QHFM

transition for ΔB� ¼ 0.11 T, where both B�
gated ¼ 7.14 T

and B�
ungated ¼ 7.25 T are tuned into the middle of the

ν ¼ 2 plateau, is plotted in Fig. 3. Here ν ¼ 2 extends
between 6.7 and 8.2 T. Rxx ¼ 0 below 7.0 T corresponds to
a fully polarized (↓↓) state with the j1↓i topmost energy
level filled, while Rxx ¼ 0 above 7.4 T is an unpolarized
(↓↑) state with the topmost energy level j0↑i. Resistance
of the QHFM transition peak for wide 2D regions
shows activation behavior with an energy gap ≈1 K;
see the dashed lines in Figs. 3(b) and 3(c) attributed to
spin-orbit coupling of j1↓i and j0↑i Landau levels [19].
The value of ΔB� is large enough that the resistance in the
midpoint B ¼ 7.195 T vanishes at low T < 100 mK. Thus,
the QHFM transition at a gate boundary should occur in
the range 7.14 T < B < 7.25 T. Indeed, RDW peaks within
that field range as shown in the middle and bottom panels
in Fig. 3(a). For narrow (short) constrictions, L < 6 μm,
the resistance saturates at low temperatures to a nonzero
value; see Figs. 3(b) and 3(c). It is important to note that
for T < 100 mK the contribution of the wide 2D regions to
RDW is negligible, and RDW originates from the conduction
through the channel formed along the gate boundary.

One of the hallmarks of time-reversal-invariant helical
DWs is the symmetry with respect to magnetic field
reversal, because domain walls emerge from two counter-
propagating edges with the same filling factor. Indeed,
we observed that RDWðBÞ ≈ RDWð−BÞ; see Fig. 4(a).
This magnetic field reversal symmetry is in striking
contrast to properties of R ¼ Rch measured when a chiral
channel is formed at a boundary of ν and νþ 1 QHE states,
where Rch ¼ 0 for one field direction and Rch ¼ fð1=νÞ −
½1=ðνþ 1Þ�g−1 h=e2 for the other direction [27]. Indeed, at
positive B, we see Rch ¼ h=2e2 at the boundary between
ν ¼ 1 and ν ¼ 2 and Rch ¼ h=6e2 at the boundary between
ν ¼ 2 and ν ¼ 3. However, with reversed B at the same
boundaries, Rch ¼ 0 [Fig. 4(b)].
Helical domain walls are formed by two counterpropa-

gating edge channels along the gate boundary with opposite
spin orientations. The measured values of RDW < 1 kΩ.
This demonstrates that counterpropagating edge channels
at the same ν cannot be in the regime of ballistic transport,
as this would result in RDW ¼ h=2e2 ¼ 12.9 kΩ, incon-
sistent with experimental observations. In order to quantify
transport characteristics of HDW, we describe them as
resistors r which connect ν ¼ 2 edge states on the opposite
sides of a constriction, as shown schematically in Fig. 2(b).
The resistance r is defined by the voltage drop along the
length of the domain wall as current flows in the same
direction. This direction is perpendicular to the direction of
the change of spin polarization caused by the electrostatic
gate (Fig. 2). Assuming there is no equilibration between
ν ¼ 1 and ν ¼ 2 edge channels, within the Landauer-
Büttiker formalism we obtain RDW ¼ 1=ð4rþ 6Þ [23].
For all r, in this model RDW < 1=6h=e2 ¼ 4.3 kΩ, con-
sistent with measured values of RDW.
Certain insight into the nature of the electronic transport

through HDWs can be obtained from mesoscopic fluctua-
tions observed at low temperatures. As shown in Fig. 5(a),
in short HDWs quasiperiodic conductance fluctuations are
clearly seen. The quasiperiod ΔB of these oscillations is
∼40–55 mT. Similar quasiperiodic resistance fluctuations
were observed in mesoscopic devices for transitions

(a) (c)

(b)

FIG. 3. (a) The upper panel shows QHFM transitions for large
ungated and gated areas. RDW for L ¼ 4 and 6 μm constrictions
is plotted in the lower panels. Dashed lines mark B� in gated
and ungated areas. At low temperatures, the resistance of the
L ¼ 6 μm constriction almost vanishes, while for L ¼ 4 μm it
saturates to a nonzero value. (b),(c) RDWðTÞ dependence for
constrictions with different L for ΔB� ¼ 0.11 T in device A and
ΔB� ¼ 0.25 T in device B are plotted in an Arrhenius plot.
Solid lines are fits to R ¼ R0 þ Ae−Ea=kT , and dashed lines are fits
to thermally activated conduction with a gap ≈1 K.

(a) (b)

FIG. 4. (a) The resistance of the HDW is symmetric under
magnetic field reversal. (b) In the presence of chiral channels
formed at a boundary between two different QHE states, the
resistance is highly asymmetric under magnetic field reversal
(highlighted regions are for the boundaries between ν ¼ 1 and 2
and 2 and 3 QHE states).
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between neighboring quantum Hall states [28,29]. From the
exponential decay of the fluctuation’s amplitude, we
estimate the phase coherence length lϕ ∝ T−1 ∼ 1–2 μm
at the base temperature [23], comparable with the length of
the HDWs. One possible interpretation of mesoscopic
fluctuations is the formation of a multidomain structure
with a small network of HDWs spanning across the
constriction. On the one hand, some static disorder, such
as Mn doping fluctuations, potential fluctuations due to
remote impurities, or surface roughness with a character-
istic size of 0.2 μm [see the atomic force micrograph of the
device surface in Fig. 2(a)] which results in a fluctuation of
the perpendicular component of the magnetic field, may act
as pinning centers for domain formation. On the other hand,
experimentally we found that the fluctuation pattern
changes drastically every time the magnetic field is ramped
outside the ν ¼ 2 state [Fig. 5(b)], which means that
dynamic fluctuations rather than static impurities define
the conduction path within the channel. This conclusion is
further supported by the observation that the fluctuation
pattern slowly changes over several hours even if the field is
kept close to the QHFM transition [23]. We also note that
the width of the gate-defined potential gradient, which
coincides with the region of s − d exchange gradient and
defines the width of the conductive channel, is of the order

of the 2D gas-to-gate distance (≈100 nm), similar to the
expected width of HDWs defined by the spin-orbit cou-
pling and a gradient of exchange interaction. Thus, the
formation of a multidomain structure is highly unlikely.
Assuming the width of the HDW to be∼100 nm, the period
of quasiperiodic oscillations is close to the area of a single
HDW formed in a L ¼ 2 μm constriction.
In long channels L > 6 μm, we observed the suppres-

sion of conduction at low temperatures. Similarly to the
bulk Landau levels, edge states with spins j0↑i and j1↓i do
not cross and exhibit a spin-orbit gap ΔR ≈ 50 μeV.
Electron states in the gap in long channels become
localized, i.e., strongly decay on the scale of the length
of constriction L > 6 μm. Thus, transport thermally acti-
vated over the gap is a dominant mechanism of conduction
in such channels. In short L < 4 μm HDWs, in-gap states
should provide a conduction path at low temperatures.
The in-gap states are due to charge defects binding
electrons in the tail of Landau levels. This is consistent
with the experimental observation that large changes in the
magnetic field (i.e., the shift of Landau levels relative to the
Fermi energy) alter the interference pattern. This model is
visualized in Fig. 5(c), where the anticrossing of broadened
Landau levels with in-gap states at the Fermi level is shown
schematically to form a single HDW. Within this picture,
transport through a single HDW can be modeled numeri-
cally; see Supplemental Material [23] for details. In the
model, we assume that the primary source of localized
states in the spin-orbit gap are potential fluctuations due to
the remote doping, and we use the zero-field mobility to
calculate the strength and density of the fluctuations.
We also include surface roughness, which leads to the
deviation of magnetic field orientation and orientation of
Mn spins from the z direction at high fields, effectively
introducing a magnetic disorder. The calculated conduct-
ance of a HDW is 1=r¼ 0.146�0.026e2=h, which corre-
sponds to RDW ¼ 0.66–0.87 kΩ, in good agreement with
the experiment. Modeling also confirms that transport is
indeed dominated by the conduction via in-gap states.
The calculated HDW resistance yields resistance RDW

symmetric under magnetic field reversal.
In conclusion, we demonstrated a conducting helical

domain wall electrostatically defined at a designed location
and studied its transport properties. We have found that long
L > 6 μm HDWs are insulating at low temperatures, con-
sistent with the activation behavior of the QHFM transition
in the bulk. Short L < 6 μm HDWs remain conducting
even at low temperatures. We find that conduction in short
HDWs occurs via in-gap states, and conduction is symmetric
under magnetic field reversal, a hallmark of helical channels.
These HDWs, coupled to an s-wave superconductor, should
support non-Abelian excitations. The investigated electro-
static control of HDW formation and transport provides a
mechanism to form a reconfigurable network of helical

(c) (d)

(a) (b)

FIG. 5. (a),(b) Mesoscopic fluctuations measured in a device
with L ¼ 2 μm constriction at T ¼ 27 mK. In (a), the magnetic
field was swept within the ν ¼ 2 state 6.8–7.5 T. Fluctuations
have a similar pattern with a quasiperiod of ΔB ∼ 40 mT. In (b),
B was changed in a wide range of 5–10 T, and the fluctuation
pattern changes drastically. (c) Energy diagram of a HDW formed
at the gate boundary. Wiggling lines indicate schematically the
role of disorder, and shaded areas are localized states in the tails
of Landau levels. At low temperatures, conduction occurs via
localized states in the gap. (d) Schematic of a conducting channel
formed by coupled ν ¼ 2 edge states. Electron tunneling via
magenta in-gap states provide several interfering trajectories
resulting in mesoscopic fluctuations of resistance.
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channels and is an importantmilestone toward the realization
of braiding of non-Abelian excitations.
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