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Ferromagnetic transitions between quantum Hall states with different polarization at a fixed filling factor can
be studied by varying the ratio of cyclotron and Zeeman energies in tilted magnetic field experiments. However,
an ability to locally control such transitions at a fixed magnetic field would open a range of attractive applications,
e.g., formation of a reconfigurable network of one-dimensional helical domain walls in a two-dimensional plane.
Coupled to a superconductor, such domain walls can support non-Abelian excitations. In this paper we report
development of heterostructures where quantum Hall ferromagnetic (QHFm) transition can be controlled locally
by electrostatic gating. A high mobility two-dimensional electron gas is formed in CdTe quantum wells with
engineered placement of paramagnetic Mn impurities. A gate-induced electrostatic field shifts the electron wave
function in the growth direction and changes an overlap between electrons in the quantum well and d-shell
electrons on Mn, thus controlling the s-d exchange interaction and the field of the QHFm transition. The
demonstrated shift of the QHFm transition at a filling factor ν = 2 is large enough to allow full control of spin
polarization at a fixed magnetic field.
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I. INTRODUCTION

One of the key ingredients in the realization of topological
superconductivity [1] is to remove fermion doubling. The
doubling is naturally absent in fully spin-polarized systems,
yet ferromagnetic spin arrangement is not compatible with a
conventional s-wave superconductivity. It has been realized
that spin doubling can be removed in spin-full systems
if spin is locked to the carrier momentum [2–6]. While
signatures of Majorana fermions have been reported in hybrid
semiconductor/superconductor nanowires [7–9], removal of
fermion doubling has been observed in electron transport
only in the cleanest nanowires fabricated by cleaved edge
overgrowth technique [10].

An elegant proposal to circumvent fermion doubling is
to couple two two-dimensional electron gases (2DEGs) with
different sign of Landé g-factor and subject then to a quantized
magnetic field [11,12]. In a quantum Hall effect (QHE) regime
two oppositely polarized counterpropagating edge channels
at the boundary of two 2DEGs form a helical domain wall
(h-DW), similar to helical channels at the edges of two-
dimensional topological isolators [13]. Coupled to an s-wave
superconductor, h-DWs should support Majorana fermions in
the integer QHE regime and parafermions in the fractional
QHE regime [11].

While bringing two different electron gases into a close
proximity is an experimentally challenging proposition, we
propose to use electrostatically controlled quantum Hall
ferromagnetic (QHFm) transitions to form helical domain
walls [14–16] (see schematic in Fig. 1). In a QHE regime
kinetic energy of electrons in a 2DEG is quantized into Landau
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levels (LLs), which are further split due to the presence of
spin. Polarization of a 2DEG and, more importantly, of the
top filled energy level depends on the number of occupied
energy levels ν = n/nφ (the filling factor is a ratio of electron
n and magnetic flux nφ = eB/h densities) and changes as
the system undergoes phase transitions between QHE states
with different filling factors. If a 2D gas is separated into
regions with ν and ν ± 1 by, e.g., electrostatic gating, chiral
current-caring states are formed at the boundary. The actual
order of spin-split energy levels is determined by an intricate
balance between Zeeman, cyclotron, and exchange energies.
By shifting the balance it is possible to induce magnetic
phase transitions between different QHE states with the same
filling factor. QHFm transitions in integer and fractional QHE
regimes have been studied extensively in the past [17–22].
The QHFm transition field B∗(B||) in those experiments was
adjusted by in-plane (Zeeman) magnetic field B||, which does
not afford local control of polarization.

In this paper we report development and characterization of
heterostructures where B∗ is sensitive to electrostatic gating,
B∗(Vg) and, thus, can be controlled locally, an enabling
step toward experimental realization of theoretical concepts
[11,12]. In devices with multiple gates a possibility to
reconfigure a network of h-DWs opens a new class of systems
where non-Abelian excitation can be created and manipulated.

II. ELECTROSTATIC CONTROL OF A QUANTUM
HALL FERROMAGNET

A. QHFm transition in a dilute magnetic semiconductor

Electrostatic control of QHFm transitions is realized in
a dilute magnetic semiconductor CdTe:Mn with engineered
placement of paramagnetic impurities. Substitutional Mn is
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FIG. 1. (a) In a QHE regime a potential barrier creates counter-
propagating edge channels with the same polarizations, while (b)
a filling factor gradient ν2 > ν results in a formation of a chiral
domain wall, c-DW. (c) A local change of the topmost Landau-level
polarization results in the formation of a helical domain wall, h-DW,
where counterpropagating edge channels have opposite polarization.
Coupled to a superconducting contact (green), these h-DWs should
support non-Abelian excitations (magenta dots). (d) Schematic of a
reconfigurable h-DW in a multigate device.

a neutral impurity in CdTe and fractional QHE has been
observed in high mobility CdTe:Mn two-dimensional electron
gases with ∼1% of Mn [22]. Exchange interaction between
d electrons on Mn (spin S = 5/2) and s electrons in the QW
modifies the energy spectrum of a 2DEG and results in unusual
spin splitting and level crossing at high magnetic fields [23].
QHFm transitions in both integer and fractional QHE regimes
have been observed in tilted magnetic field experiments in
QWs with uniform Mn doping [20,22]. In the presence of
magnetic field B spin-dependent energy in dilute magnetic
semiconductors is [24]

E↑↓
s = ±1

2

[
g∗μBB + xeffEsdSBs

(
g∗μBSB

kB(T + TAF )

)]
, (1)

where the first term is the Zeeman splitting and the second
term is due to an s-d exchange. Here g∗ ≈ −1.7 in CdTe,
Esd ≈ 220 meV [25,26], xeff is an effective Mn concentration,
and TAF is due to Mn-Mn antiferromagnetic interaction. At
low fields spin splitting is dominated by a large positive
exchange term, while at high fields and low temperatures
the Brillouin function Bs(B,T ) ≈ 1 and B dependence is
dominated by the negative Zeeman term. In Fig. 2 we plot
spin splitting of energy levels (1) and the spectrum of LLs
for electrons (n + 1/2)�ωc + E

↑↓
s and composite fermions

(CFs) ECF
p + E

↑↓
s , where energy gaps between CF levels [27]

ECF
p+1 − ECF

p ≈ αCEc/(2p + 1) ∝ √
B. Here � is the reduced

Plank’s constant, ωc is the cyclotron frequency, Ec = e2/ε�

is the charging energy, � is the magnetic length, constant
αC ≈ 0.01 − 0.03 depends on the confining potential [28],
n = 0,1,2, . . . , and p = 1,2,3, . . . . The field of spin sub-
bands crossing B∗ for the same LL (|n,↑〉 and |n,↓〉) or
neighboring LLs (|n,↑〉 and |n ± 1,↓〉) depends on the strength
of the s-d exchange interaction xeffEsd . Thus, engineering

FIG. 2. (a) Energy spectrum of Landau levels in a CdTe QW
with 1.5% of Mn calculated for T = 25 mK. For the filling factor
ν = 2 (gray shadow) electron gas undergoes ferromagnetic phase
transition at B∗(Vg). Field dependence of spin sub-bands [Eq. (1)]
is plotted in the inset. (b) Spectrum for composite fermion � levels
for xeff = 0.15%. QHFm transitions at ν = 5/3 and 4/3 have been
experimentally observed [22].

heterostructures with gate-tunable s-d exchange will allow
local control of spin polarization in both integer and fractional
QHE regimes.

B. Heterostructures with s-d exchange control

The second term in Eq. (1) is a mean-field approxima-
tion to the exchange Hamiltonian Jsd

∑

Ri

δ(
r − 
Ri)
Si · 
σ ∝
[
∫

[Mn] |ϕ(z)|2dz]〈
S〉, where interaction of an electron at a

position 
r with a large number of Mn ions at positions 
Ri

is approximated as an overlap of the electron probability
density |ϕ(z)|2 with a uniform Mn background within z ∈ [Mn]
and an average magnetization 〈
S〉 = 〈Sz〉 = SBs(B,T ). For
quantum wells with homogeneous Mn distribution throughout
the whole QW region an integral χ = ∫

[QW] |ϕ(z)|2dz = 1 and
level crossing field B∗ is found to be independent of a gate
voltage [20].

We now consider nonuniform distribution of Mn inside a
QW, e.g., Mn is confined to regions [Mn1] or [Mn2] within
the QW [see Figs. 3(b) and 3(c)]. In these regions ϕ(z) has
strong dependence on the out-of-plane electric field and χ

becomes gate dependent, χ = χ (Vg). Application of positive
(negative) voltage to the front gate shifts the electron wave
function closer to (away from) the surface, dχ/dVfg > 0 for
[Mn1] and dχ/dVfg < 0 for [Mn2]. Gate voltage also changes
electron density dn/dVfg > 0, thus dχ/dn > 0 for [Mn1] and
dχ/dn < 0 for [Mn2] for the front gate. Application of a
back gate voltage results in a density change dn/dVbg > 0
but electrical field shifts the wave function in the opposite
direction, thus dχ/dn < 0 for [Mn1] and dχ/dn > 0 for
[Mn2] for the back gate. Described behavior is summarized
in Fig. 3(d). For the formation of well-defined h-DWs we
want to control B∗ with a minimal change of n in order to
remain at the same filling factor ν, or maximize |dχ/dn|.

In order to demonstrate electrostatic control of QHFm
transition several Cd1−xMnxTe/Cd0.8Mg0.2Te quantum well
heterostructures were grown by molecular-beam epitaxy (see
[20,22] for details). The iodine delta-doping layer is separated
from the QW by a 30-nm Cd0.8Mg0.2Te spacer. Mn was
introduced into the QW region either as a digital δ doping or as
a continuous doping [see schematics in Fig. 3(e)]. More than
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FIG. 3. (a) The band diagram of a 30-nm CdTe QW heterostruc-
ture device is modeled using the nextnano3 package [29]. Electron
probability density (square of the modulus of the electron wave
function) is calculated for different voltages on the top (b) and back
(c) gates. In (d) an integral overlap χ (Vg) between Mn-doped regions
[Mn1] and [Mn2], normalized to the value at zero gate voltage χ (0), is
plotted as a function of the 2D gas density change for front (FG) and
back (BG) gates. (e) Mn doping distribution (red regions) in different
wafers.

35 wafers have been grown and characterized with different
Mn placement and concentration; here we report data on four
representative wafers with xeff = 1.71, 0.34, 0.20, and 0.085%
(wafers A, B, C, and D). Samples were patterned into 100-μm-
wide Hall bars. A semitransparent Ti front gate (10 nm thick)
was thermally evaporated onto the central part of Hall bars.
Ohmic contacts were produced by soldering freshly cut indium
ingots similar to previous studies [20,22]. Copper foil glued
to the back of samples served as a back gate. Devices were
illuminated with a red LED at 4 K; low-temperature electron
density and mobility were in the range of 3.2–3.5×1011 cm−2

and 2–3×105 cm2/V s in different samples. Electron transport
was measured in a dilution refrigerator using standard ac
technique with 10 nA excitation.

C. Smooth QHFm transition at ν = 1

Crossing of levels with different spins measured in optical
experiments [23] and QHFm transitions observed in the
fractional QHE regime [22] are well described by Eq. (1) and
the values of xeff extracted from the beating of Shubnikov-de
Haas (SdH) oscillations at low fields [30]. Yet, we did not
observe any reentrant behavior at ν = 1. We conclude that the
absence of a transport signature of the QHFm transition at
ν = 1 is either due to a phase separation in the vicinity of the
transition or strong e-e exchange interaction and anticrossing
of levels with the same orbital wave function.

An ability to locally control exchange interaction for
small xeff < 1% is crucial for the formation of h-DWs in a
fractional quantum Hall regime, a prerequisite for the creation
of higher order non-Abelian excitations. The strength of the
exchange interaction can be obtained from the beating in
the SdH regime, where the m-th node is defined by the

FIG. 4. (a) Longitudinal (Rxx) and Hall (Rxy) magnetoresistances
in wafer A measured at T = 400 mK for Vfg = Vbg = 0. A peak at
B = 7 T is a QHFm transition between |1↑〉 and |0↓〉 states. (b)
Magnetoresistance in wafer C measured at T ≈ 30 mK for various
Vbg from −200 V (bottom trace) to +200 V (top trace); the traces
are offset proportional to Vbg . The blue arrow marks evolution of
the m = 2 node; the red arrow marks evolution of SdH peaks. In (c)
and (d) Rxx in wafer A is plotted as a function of Vbg or Vfg at a
fixed Vfg = 0 or Vbg = 100 V, respectively. Position of the QHFm
transition is highlighted by a white line. For B = 7 T polarization
of the top LL can be switched between ↑ and ↓ by the gate. Both
plots have the same color scale. Measurements are performed at
T = 300 mK.

condition [30] (m + 1/2)�ωc = |E↑
s − E

↓
s |. Gate dependence

of magnetoresistance in wafer C at low fields is shown in
Fig. 4(b). Nodes are shifted to lower fields as the voltage on
the back gate increases, dχ/dVbg < 0. At the same time SdH
peaks shift to higher fields, dn/dVbg > 0, and dχ/dn < 0 as
is expected for the [Mn1] doping arrangement.

D. Gate control of sharp QHFm transition at ν = 2

Unlike |0↑〉 ↔ |0↓〉 QHFm transition at ν = 1, the |0↑〉 ↔
|1↓〉 transition at ν = 2 involves states from different Landau
levels and e-e exchange is strongly suppressed. Also, at ν =
2 level crossing has much stronger B dependence �ωc/B ≈
1.6 meV/T, as compared to gμB ≈ 0.057 meV/T at ν = 1,
which suppresses phase separation. As a result quantization is
lifted in the vicinity of the QHFm transition and a prominent
signature in magnetoresistance is observed [20].

Magnetoresistance in sample A is shown in Fig. 4(a). A
small peak at B = 7 T in the middle of the ν = 2 state is
the QHFm phase transition between |1↓〉 and |0↑〉 states;
polarization of the top filled energy level changes across the
transition. In the color plots magnetoresistance is plotted as
a function of voltage on the front and back gates [Figs. 4(c)
and 4(d)]; measurements are performed by sweeping magnetic
field at constant gate voltages. Electron density increases with
the increase of Vbg and Vfg and peaks between adjacent QHE
states shift to higher B in both plots. In contrast, the QHFm
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FIG. 5. (a) Gate dependence of the measured effective Mn
concentration, χeff(VG) for wafers A-D for front (open symbols)
and back (solid symbols) gates. Efficiency of s-d exchange control
depends on the |dxeff/dn| slope: for QHFm transition in the integer
QHE regime dB∗/dn = dxeff/dn. (b) Arrhenius plot of the Rxx

vs T dependence at the QHFm transition; the activation energy is
0.096 meV. Top inset: Temperature dependence of Rxx near ν = 2.
Spin texture in the vicinity of an anticrossing of |0,↑〉 and |1,↓〉 levels
calculated using the spin-orbit Hamiltonian (see text).

transition B∗ shifts in opposite directions as a function of Vfg

and Vbg , consistent with the modeling of χ (Vg) overlap for
[Mn1] placement in Fig. 3(d). Note that for B = 7 T polariza-
tion of the top level can be tuned between |1↓〉 and |0↑〉 states
by electrostatic gating, thus realizing the theoretical concept
of Fig. 2(a).

Gate control of the s-d exchange is summarized in Fig. 5(a)
for several wafers. It is difficult to measure the Mn concentra-
tion and overlap χ independently and with high accuracy, but
a relative change of the exchange interaction can be obtained
from the gate dependence of the experimentally measured
xeff(Vg)/xeff(0) = χ (Vg)/χ (0). Slopes dxeff(Vg)/dn(Vg) are
in a good agreement with dχ (Vg)/dn(Vg) obtained from
band simulations [Fig. 3(d)]. Note that the efficiency of
the s-d exchange control depends on the |dxeff/dn| slope:
dB∗/dn = dχ/dn = dxeff/dn for QHFm transitions in the
integer QHE regime and dB∗/dn ≈ dχ/dn in the fractional
QHE regime for large fields.

E. Spin-orbit-induced gap for ν = 2 QHFm transition

The height of the peak at B∗ has exponential T dependence
and vanishes at low temperatures with an activation energy
T0 ≈ 1K [see Fig. 5(b)]. This small gap can be attributed to
the spin-orbit (SO) coupling [31]; its value is calculated below
for the crossing of two neighboring LLs. The energy spectrum
in the presence of SO interactions is calculated by adding Dres-
selhaus γDκ · σ and Rashba γRE · (σ × k) spin-orbit terms to
the single-particle Hamiltonian of a 2D gas in a magnetic
field in the presence of s-d coupling [see Eq. (1)], square
well confinement potential in the z direction, and electric-field
potential eφ(z) ≈ eEzz (see the Appendix for details). Here
γD and γR are the Dresselhaus and Rashba constants, and
κ is defined as ({k̂x,k̂

2
y − k̂2

z },{k̂y,k̂
2
z − k̂2

x},{k̂z,k̂
2
x − k̂2

y}). The
energy spectrum near |0↑〉 and |1↓〉 levels crossing is plotted
in the inset in Fig. 5(b). The value of the anticrossing gap is

found to depend only on the Rashba spin-orbit coupling:

�SO = 2
√

2|γR〈Ez〉|
�

. (2)

For an average electric field of 〈Ez〉 = 3.5×104 V/cm, B =
7 T, and γR = 6.9 eÅ

2
, the calculated gap �SO = 70 μeV, in a

good agreement with the experimentally measured activation
gap of 96 μeV. We note that an ability to open a topologically
trivial (spin-orbit) gap is required for the localization of non-
Abelian excitations [11].

III. CONCLUSIONS

In this paper we propose a new experimentally feasible
platform to realize non-Abelian excitations. The platform
is based on the ability to create ferromagnetic domains in
a quantum Hall effect regime, where helical domain walls
are formed at the domain boundaries. These domain walls,
coupled to a superconductor with high critical field Bc, should
support Majorana and higher-order non-Abelian excitations.
Topological protection of the QHE regime ensures that only
a single channel with removed fermion doubling is formed,
thus alleviating multichannel complication encountered in
nanowire-based devices. We do not expect the presence of
magnetic impurities to enhance backscattering significantly
because of large Zeeman splitting in Mn at high magnetic
fields, ∼45 K at 7 T. As a proof of concept we developed CdTe
quantum well heterostructures with engineered placement of
paramagnetic Mn impurities and demonstrated local control of
the QHFm transition at ν = 2 by electrostatic gating. Further
research is needed to develop superconducting contacts to
CdTe; a possible path is to overgrow CdTe with HgCdTe/HgTe
epilayers where ohmic contacts with a high-Bc superconductor
Nb have been demonstrated [32].
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APPENDIX: CALCULATION OF SPIN-ORBIT-INDUCED
ANTICROSSING OF LLS IN THE PRESENCE

OF S-D EXCHANGE

A general single-particle Hamiltonian can be written as

H0 = 1

2m∗

(
−i�∇ + e

c
A

)2

+ 1

2
gμBB · σ − eφ(r) + Vb(z)

− Jσ ·
∑

i

Siδ(Ri − r) + γDκ · σ + γRE · (σ×k),

(A1)

where σ is a vector containing Pauli matrices, φ is an electric
potential, Vb is a confinement potential in the z direction,
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the fifth term is the s-d exchange with Mn impurities, and
the last two terms are the Dresselhaus and Rashba spin-orbit
coupling. κ is defined as ({k̂x,k̂

2
y − k̂2

z },{k̂y,k̂
2
z − k̂2

x},{k̂z,k̂
2
x −

k̂2
y}), where {A,B} = (AB + BA)/2 and k = −i�∇ + eA/c.

Magnetic field B = (0,0,B) corresponds to a vector potential
A = (0,Bx,0).

For the exchange interaction we use a mean-field model
described in the main text −Jρi〈S〉 · σ = −JρiBS(gμBS|B|/
kBT )σ · b, where ρi is the density of ions, BS is the Brillouin
function, kB is Boltzmann’s constant, and b is a unit vector in
the direction of a magnetic field. We consider the high-field

limit BS(x) = 1. We also assume a uniform Mn doping in
the range zmin < z < zmax. The electric potential is φ(x,z) ≈
−Ezz; we consider Ez > 0.

The Hamiltonian describing motion in the z direction
is

Hz = − �
2

2m

∂2

∂z2
+ Vb(z) − e|Ez|z

− Jθ (z − zmin)θ (zmax − z)σz, (A2)

where θ (z) is the Heviside function. Its eigenvalues for the
lowest sub-band are

�s = e|Ez|
[
−w −

(
�

2

2me|Ez|
) 1

3

ai1

]
+ sJ

Ai′(ai1)2
{Ai′[�(zmin)]2 − Ai′[�(zmax)]2

− Ai[�(zmin)]2�(zmin) + Ai[�(zmax)]2�(zmax)}, (A3)

where Ai denotes the Airy function, ai1 is its first zero, �(z) = (w + z)(2me|Ez|/�
2)1/3 + ai1, and s = 1 for spin-up states and

s = −1 for spin-down states.
In the presence of a perpendicular magnetic field an effective Hamiltonian is

H0 =
(

�ωC

(
a†a† + 1

2

) + 1
2 (gμBB + δ�) i

γD√
2�3

(
â†ââ† − a3 − 2�2k2

z â
†) + √

2 γR |Ez|
�

â

−i
γD√
2�3

[
ââ†â − (â†)3 − 2�2k2

z â
] + √

2 γR |Ez|
�

â†
�ωC

(
a†a† + 1

2

) − 1
2 (gμBB + δ�)

)
, (A4)

where lowering and raising operators are defined as a† = (k̂y − ik̂x)/
√

2, a = (k̂y + ik̂x)/
√

2, � = √
eB/� is the magnetic length,

and �ωC = �eB/m is the cyclotron energy.
We treat spin-orbit perturbation as perturbations and find that only the Rashba term has a nonzero matrix element between

|0↑〉 and |1↓〉 energy levels. In the vicinity of crossing the energy spectrum is

E± = �ωC ± 1

2

√
(�ωC − gμBB − δ�)2 + 8γ 2

RE2
z

�2
, (A5)

and the anticrossing gap is given by Eq. (2).
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[20] J. Jaroszyński, T. Andrearczyk, G. Karczewski, J. Wróbel,
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