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Abstract. Gabriele Giuliani was fascinated by spin-dependent phenomena. Here
we review experiments on spin separation in cyclotron motion, semiclassical the-
ory of effects of spin-orbit interactions on cyclotron resonance, and theory of spin
filtering by a quantum point contact in two-dimensional hole systems.

1. Introduction

It is a great honor to contribute to Gabriele Giuliani’s memorial volume,
and it has been a remarkable experience to work with Gabriele. In the
past 15 years, Condensed Matter physicists became greatly interested in
spin-dependent phenomena, creating a direction of research named ‘spin-
tronics’ [1]. Gabriele was genuinely interested in this trend, involved his
students in research in this field, and was instrumental in attracting sev-
eral faculty members with interest in spin-dependent phenomena to the
Purdue University Physics Department.
Among several interesting new phenomena discovered over the last

decade, there is spin-dependent magnetic focusing [2–4]. Classical elec-
tron focusing was first observed in metals [5, 6]. Coherent electron fo-
cusing is most remarkably pronounced in semiconductor nanostructures,
where it became a signature phenomenon for quantum ballistic trans-
port [7]. When two quantum point contacts in a two-dimensional elec-
tron gas are separated by multiples of the cyclotron diameter, injection
from one point contact results in an additional potential developed across
the detector point contact. It has been long appreciated that signature
quantum effects, such as the Aharonov-Bohm effect, have remarkable
spin counterparts due to spin-orbit interactions [8, 9]. In [2], it has been
discovered that the effect of magnetic focusing can be used as spin filter.
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The origin of such filtering can be traced to spin-orbit interactions intro-
ducing a dependence of the cyclotron radius on the spin of the charge
carriers.
Gabriele Giuliani recognized that several features observed in mag-

netic focusing experiments in two-dimensional hole gases are unaccoun-
ted for in a semiclassical theory of magnetic focusing. More specifically,
Gabriele was intrigued by the reappearance of a filtered spin component
at high in-plane magnetic fields. That led to the paper where a theory of
spin-dependent transmission through quantum point contacts in the two-
dimensional hole gas (2DHG) has been developed [10]. In the present
paper, which is our tribute to Gabriele, we review the results of exper-
iments on spin-dependent focusing, discuss the semiclassical theory of
spin-dependent focusing, and the spin filtering by quantum point contacts
in the presence of spin-orbit interactions.

2. Experiment

To demonstrate spatial separation of spins experimentally we fabricated
several 2DHG devices in the magnetic focusing geometry, see the in-
set in Figure 1. The structure is formed using atomic force microscopy
local anodic oxidation technique (AFM LAO) [11–13]. Oxide lines sep-
arate the 2DHG underneath by forming ∼ 200 mV potential barriers. A
specially designed heterostructure is grown by MBE on [113]A GaAs.
Despite very close proximity to the surface (350Å), the 2DHG has an ex-
ceptionally high mobility 0.4·106 V·s/cm2 and relatively low hole density
n = 1.38 · 1011 cm−2. The device consists of two QPCs oriented along
the [332̄] crystallographic direction, separated by a central gate; the litho-
graphically defined distance between QPCs is L = 0.8 μm. Potential in
the point contacts is controlled separately by two gates Ginj and Gdet , or
by the central gate GC . In our experiments the central gate was kept at
−0.3 V and∼ 0.2 Vwere applied to the gatesGinj andGdet . Asymmetric
biasing of point contacts provides sharper confining potential and reduces
the distance between the two potential minima by 
L ∼ 0.07 μm.
Magnetic focusing manifests itself as equidistant peaks in the mag-

netoresistance R(B⊥) for only one direction of B⊥. R is measured by ap-
plying a small current through the injector QPC while monitoring voltage
across the detector QPC. At B⊥ < 0, cyclotron motion forces the carriers
away from the detector. Then, only the 2DHG contributes to R, which has
almost no B⊥-dependence at low fields and shows Shubnikov–de Haas
oscillations at |B⊥| > 0.3 T. For B⊥ > 0, several peaks due to magnetic
focusing are observed. The peak separation 
B ≈ 0.18 T is consistent
with the distance between the injector and detector QPCs. The data is
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Figure 1. a) Magnetoresistance and layout of focusing devices. The voltage
across the detector (contacts 3 and 4) is measured as a function of magnetic field
perpendicular to the surface of the sample (B⊥). The lithographical separation
between point contacts is 0.8 μm. A current of 1 nA is flowing through the
injector (contacts 1 and 2). The positions of the magnetic focusing peaks are
marked with arrows. Inset: AFM micrograph of a sample (5μm×5μm). Light
lines are the oxide which separates different regions of the 2D hole gas. The
semicircles show schematically the trajectories for two spin orientations. b)
Focusing signal for the first focusing peak in a tilted magnetic field, plotted
versus B⊥. The values of the corresponding B‖, for B⊥ = 0.2 T, are marked
on the right. Curves are offset for clarity. The dashed black (solid red) curves
correspond to Ginj = 2e2/h (< e2/h).
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symmetric upon exchange of the injector and detector and simultaneous
reversal of the magnetic field direction.
When the conductance of both QPCs is tuned to be 2e2/h, the first

focusing peak splits into two peaks. When the in-plane component is
B‖ = 0 the peaks in the doublet have approximately the same height. If
the conductance of the injector QPC is Ginj < 2e2/h the rightmost peak
is slightly suppressed, which has been interpreted as due to spontaneous
polarization [14].
We use the spin filtering by QPCs in the presence of in-plane magnetic

field B|| to probe the spin states which correspond to the first focusing
peak doublet. Applying B‖ along [332̄] affects the energies of the spin
subbands without affecting the cyclotron motion. As the Zeeman splitting
of the spin subbands in a 2D gas increases, preferential transmission of
the largest-kF spin subband is expected for electrons, corresponding to
suppression of the left peak. Instead, in a hole gas we observe suppression
of the right peak up to B‖ ≈ 2.5 T, see Figure 1 b. For B‖ > 2.5 T the
right peak reappears and at B‖ = 7.3 T becomes as prominent as the left
one.

3. Theory

There has been a considerable interest to understand hole spectra in low
dimensional systems over the past decade, also in connection with re-
search in the field of quantum computing. Of special interest are hetero-
structures grown along the [001] direction, in which the hole spectra are
remarkably different from electron spectra. In this case, several authors
concluded that intrinsic Dresselhaus and Rashba spin-orbit interactions
are cubic in the wavevector [17], and that the in-plane g-factor describing
the Zeeman splitting of holes with an in-plane magnetic field is quadratic
in electron momentum and depends on its orientation. As it turns out,
however, earlier work [19] pointed out that for this crystallographic ori-
entation of the 2DHG, the Dresselhaus term gives rise to contributions
linear in momentum. Furthermore, approaches based on low-order per-
turbation theory are generally oversimplified because, as was discussed
in [20], do not take properly into account the non-perturbative effect of
a mutual transformation of heavy and light holes upon reflection from
the walls of the quantum well [21–23]. This effect results in the pres-
ence of two standing hole waves in the wavefunctions of hole states, cor-
responding to heavy and light holes moving along the growth direction,
as opposed to electron case with only one standing wave. Taking mu-
tual transformation of heavy and light holes into account considerably
alters the in-plane effective mass of holes, and the coupling constants of
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the intrinsic spin-orbit interaction as well. Numerical simulations taking
into account a finite number of levels of spatial quantization in the [001]
growth direction might also lead to inaccurate results, if proper care is
not taken upon truncation of the Hilbert space, because all levels of size
quantization result in contributions to the in-plane effective mass and cu-
bic spin-orbit splitting characterized by the same physical scale (i.e., all
contributions have in principle the same order of magnitude).
Our knowledge of properties of holes in quantum wells grown along

the [113] crystallographic orientation is even less extensive. Existing
analytical results [15, 16] were obtained in the so-called axial approx-
imation [17], which may take into account effects of the mutual trans-
formation of heavy and light holes upon reflection from the walls of
the quantum well only partially. Numerical work was performed which
should give more accurate results [10]. Although a progressively larger
number of spatial quantization levels were included, until the numerical
spectra did not change significantly, a more careful analysis of trunca-
tion errors seems necessary in the light of the non-perturbative nature
of the effects described above [20–23]. Nevertheless, conclusions about
certain properties can be drawn on symmetry grounds from the proper-
ties of [001]-grown structures. In particular, quantization along the [113]
crystallographic direction mixes in-plane and out-of-plane properties of
the [001] structures, which results in a contribution to the in-plane g-
factor independent of wavevector. This contribution is non-zero only be-
cause the bulk spectrum of holes is anisotropic. Both cubic- and linear-
in-momentum Rashba and Dresselhaus spin-orbit interactions are present
in the [113] configuration, and the linear in momentum Rashba spin-orbit
term is related to the anisotropy of the bulk hole spectra. Although the
precise magnitude and angular dependence of these interactions is not
known, we will describe how simple models explain the experimental
data on focusing in [113]-oriented hole quantum wells.

4. Semiclassical theory of focusing

It has long been appreciated that intrinsic spin-orbit (SO) interactions
can be interpreted as an effective momentum-dependent magnetic field
that influences the spin of charge carriers [24]. More recently, it has been
recognized [8,9,25–27] that SO interactions can be also viewed as an ef-
fective orbital magnetic field with an opposite sign for different spin ori-
entations. In order to explain the effect of spin filtering in magnetic focus-
ing qualitatively, it is reasonable to assume that charge carriers in GaAs
quantum well are characterized by an isotropic kinetic energy and the
Dresselhaus intrinsic spin-orbit interaction linear in the hole momentum.
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Indeed, for the lowest hole states in a 2DHG in both [113] and [001]
configurations, a linear Dresselhaus term is present. The simplified hole
Hamiltonian can be written as H = 1

2m (px + βσx)
2 + 1

2m (py − βσy)
2,

where m is the effective mass, �p is the electron momentum, σi are the
Pauli matrices (i = x, y), and β is the SO parameter. For simplicity it
is also reasonable to neglect anisotropy of the effective mass as this as-
sumption does not change the qualitative picture. In the semiclassical
description, appropriate for the range of magnetic fields B⊥ used for the
focusing experiments, the motion is described by simple equations:

d �p
dt

= e�v × �B �v = d�r
dt

= ∂ε±( �p)
∂ �p

ε± = 1

2m
(p ± β)2 + β2

2m
, (4.1)

where �r , �v and ε± are the charge carrier coordinate, velocity and energy
for the two spin projections. This description implies that the carrier
wavelength is smaller than the cyclotron radius, and that jumps between
orbits with different spin projections are absent, i.e., ε f � βp/m � h̄ωc.
Equation (4.1) show that the charge carrier with energy ε± = ε f is char-
acterized by a spin-dependent trajectory with momentum �p±, coordinate
�r±, and cyclotron frequency ω±

c . The solution to these equations is

p(x)± + i p(y)± = p± exp (−iω±
c t)

r (x)± + ir (y)± = i
√
2mε f

mω±
c

exp (−iω±
c t)

ω±
c = eB⊥

m
(1± β/p±). (4.2)

Thus, the cyclotron motion is characterized by a spin-dependent field
B± = B⊥(1 ± β/p±) = B⊥ ± Bso, where Bso is the SO effective field
characterizing the cyclotron motion. Using a semiclassical limit of the
quantum description [28], one obtains identical results.
In the focusing configuration, QPCs are used as monochromatic point

sources. Holes, injected in the direction perpendicular to the 2DHG
boundary, can reach the detector directly or after specular reflections from
the boundary. As follows from Eqs. (4.2), for each of the two spin pro-
jections there is a characteristic magnetic field such that the point contact
separation is twice the cyclotron radius for a given spin, L = 2Rc± =
2p f /eB±, p f =

√
2mε f . The first focusing peak occurs at

B±
⊥ = 2(p f ∓ β)

eL
. (4.3)
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The magnitude of β can be calculated directly from the peak splitting
β = (B+

⊥ − B−
⊥ )eL/4 = 7 ·10−9 eV·s/m. A larger value of β ≈ 25 ·10−9

eV·s/m was extracted from the splitting of the cyclotron resonance at
3 times higher hole concentration [29]. We note that Equation (4.3) is
more general than the Eqs. (4.2). The coefficient β essentially describes
the separation in momentum space of the two parts of the Fermi surface
which correspond to ε± = ε f , and includes contributions of various spin-
orbit terms in the 2DHG.
The difference of the spin-dependent focusing field B±

⊥ is proportional
to β and does not depend on the cyclotron frequency ωc = eB⊥/m. At
the same time, the difference of spin-dependent cyclotron frequencies
in Equation (4.2) is proportional to both ωc and β. Thus, the effective
magnetic field Bso is itself proportional to B⊥. This effect differs from
the spin-dependent shift of the Aharonov-Bohm oscillations in the con-
ductance of rings, where the additional spin-orbit flux and the Aharonov-
Bohm flux are independent of each other [9]. If the Zeeman effect is
taken into account, both ω±

c and R±
c acquire an additional dependence on

B⊥, as well as on the in-plane component B||.

5. Focusing peaks in in-plane magnetic field

The behavior of the focusing peaks in Figure 1b requires to consider sim-
ultaneously the charge carriers motion in the 2DHG and their transmis-
sion through quantum point contacts. The observed results cannot be
explained by considering only an intrinsic spin-orbit coupling of the 2D
hole system linear-in-momentum. Furthermore, both 2DDresselhaus and
Rashba SO terms which are cubic-in-momentum necessarily generate
additional linear-in-momentum contributions within the quantum point
contact, similar to the generation of both cubic and linear terms in the 2D
electron Hamiltonian from the bulk cubic Dresselhaus terms. To illustrate
the physics of filtering by point contacts we consider, for example, an
Hamiltonian with the cubic Rashba term of the form iγ

2 ( p̂
3−σ̂+ − p̂3+σ̂−).

Here, p̂± = p̂x ± i p̂y and σ̂± = σ̂x ± i σ̂y . Such cubic spin-orbit in-
teraction is responsible for a peculiar dispersion of the lowest two one-
dimensional (1D) subbands. For a channel with lateral extent W , aligned
with the x-axis, we can substitute 〈p2y〉 ∼ (h̄π/W )2 and 〈py〉 ∼ 0 in the
2D Hamiltonian, which gives

Ĥ1D = p̂x
2

2m
+ γ

(
3h̄2π2

W 2
p̂x − p̂3x

)
σ̂y + h̄2π2

2mW 2
. (5.1)

Due to the lateral confinement, a linear spin-orbit term appears in Equa-
tion (5.1), which is dominant at small momenta and coexist with a cubic
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contribution with opposite sign. Therefore, spin subbands in such a case
cross not only at kx = 0, but also at finite wave vectors kx = ±

√
3π

W .
In [10], the spin splitting due to Rashba term in quantum point contacts
was computed numerically taking into account up to 10 levels of size
quantization in the quantum well for various applied electric fields, as
shown in Figure 2. The 1D bands clearly display the main feature: the
presence of a crossing point at finite wave vector.
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Figure 2. Energy subbands of 1D channels obtained from a 15 nm quantum
well grown in the [113] direction. An electric field Ez = 1 V/μm along [113]
is present. The lateral confinement has width W = 40 nm. Upper panel: wire
along [332̄]. The inset shows the energy splitting of the two lowest subbands
at several values of B‖. The solid curve is for B‖ = 0 and the dashed curves
for B‖ = 0.5, 1, . . . 2.5 T. Lower panel: wire along [11̄0]. The inset shows the
energy splitting with a lateral electric field. The solid curve is for Ey = 0 and
the dashed curves for Ey = ±0.05,±0.015 V/μm (the splitting is reduced for
negative values of Ey).

As illustrated by the inset of Figure 2 (first panel), the degeneracies at
kx = 0 and finite kx are removed when B‖ �= 0. Within the effective
Hamiltonian (5.1), an external magnetic field is taken into account by
adding a Zeeman term g∗μB B‖σ̂x/2, where g∗ is the effective g-factor
[30] andμB the Bohr magneton. The total effective magnetic field, which
includes spin-orbit interactions, depends on values ofW and kx as follows

�Bef f (W, kx) = B‖ x̂ + 2γ h̄3

g∗μB

(
3π2

W 2
kx − k3x

)
ŷ, (5.2)

where x̂, ŷ are unit vectors along the coordinate axes. The eigenstates
of Equation (5.1), ψW (kx ,±) = eikx x |kx ,±〉W , have spinor functions
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|kx ,±〉W parallel/antiparallel to �Bef f and energies

ε±(W, kx) = h̄2k2x
2m

∓ 1

2
g∗μB | �Bef f (W, kx)| . (5.3)

At kx = 0 and kx = ±√
3π/W the spin splitting is g∗μB B‖, i.e., it is

only due to the external magnetic field.
In a realistic QPC the width W (x) of the lateral confinement changes

along the channel. As in [31], a sufficiently smooth variation of the
width is assumed, such that holes adiabatically follow the lowest orbital
subband. Introducing in Equation (5.1) a x-dependent width W (x) =
W0ex2/2
x2 , where 
x is a typical length scale of the QPC and W0 its
minimum width, one obtains the following effective Hamiltonian

ĤQ PC = p̂x
2

2m
+ V (x̂)+ g∗μB

2
B‖σ̂x

+γ [3m{V (x̂), p̂x} − p̂3x
]
σ̂y, (5.4)

with {a, b} = ab+ba [32]. The potential barrier has the following form:

V (x) = h̄2π2

2mW (x)2
= h̄2π2

2mW 2
0

e−x2/
x2 . (5.5)

The main qualitative conclusions are independent of the detailed form of
the potential, but Equation (5.5) allows to solve explicitly the 1D trans-
mission problem and obtain a spin-resolved conductance in the Landauer-
Büttiker formalism. The scattering eigenstates are obtained with incident
wavefunctions ψW=∞(kμ, μ) at x � −
x , where μ = ± denotes the
spin subband and k± are determined by the Fermi energy ε f , at which the
holes are injected in the QPC. For x � 
x , such QPC wavefunctions
have the asymptotic form

∑
ν=± tμ,νψ∞(kν, ν), where tμ,ν are transmis-

sion amplitudes. The spin-resolved conductances are simply given by
G± = e2

h

∑
μ=±

v±
vμ
|tμ,±|2 [33], where the Fermi velocities are v± =

∂ε±(∞,k±)
∂ h̄kx

, from Equation (5.3). The total conductance is G = G+ + G−.
Typical results at several values of B‖ are shown in Figure 3. As usual,
by opening the QPC, a current starts to flow above a minimum value of
W0 and, with a finite magnetic field, G+ �= G−. At zero magnetic field,
there is structureless unpolarized conductance (G+ = G−). At larger
magnetic fields, G− > G+, i.e., holes in the higher spin subband have
larger transmission at the first plateau. The sign is opposite to the case
of linear Rashba spin-orbit coupling (see [34]) and in agreement with the
experimental results of Figure 1. For a magnetic field B‖ ≈ 7 T (see
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the third panel of Figure 3) G+ � G− and the transmission becomes
unpolarized, as observed in the data of Figure 1. Finally, at even larger
values of B‖ > 7 T, G+ � e2/h, G− � 0 (fourth panel of Figure 3).
For such sufficiently large magnetic field the role of the spin-orbit coup-
ling becomes negligible and the spin direction (parallel/antiparallel to the
external magnetic field) of the holes is conserved. The injected holes re-
main in the original (+ or −) branch and the current at the first plateau
is polarized in the + band, which has lower energy. Deviations from this
behavior are due to non-adiabatic transmission in the spin subband. In
order to gain a qualitative understanding, we consider the semiclassical
picture of the hole motion in quantum point contact.
When a hole wave-packet is at position x , it is subject to a mag-

netic field �Bef f determined by W (x) and kx(x) as in Equation (5.2).
For holes injected at ε f , the momentum is determined by energy con-
servation. Treating the spin-orbit coupling as a small perturbation com-

pared to the kinetic energy, one has kx(x) �
√

k2f − π2/W (x)2, where

k f = √
2mε f /h̄ is the Fermi wave-vector in the absence of spin-orbit

coupling. Therefore, the injected hole experiences a varying magnetic
field in its semiclassical motion along x , due to the change of both kx and
W (x). For adiabatic transmission of the spin subbands, the spin follows
the direction of the magnetic field, but this is not possible in general if
B‖ is sufficiently small. In particular, for B‖ = 0 Equation (5.1) implies
that σ̂y is conserved. Therefore, the initial spin orientation along y is not
affected by the motion of the hole. On the other hand, �Bef f of Equa-
tion (5.2) changes direction when kx = √

3π/W . After this point, a hole
in the + branch continues its motion in the − branch and vice-versa.
At finite in-plane magnetic field the degeneracy of the spectrum is

removed but the holes do not follow adiabatically the spin branch, un-
less the Landau-Zener condition d By/dt

B‖ � ωB is satisfied, where h̄ωB =
g∗μB B‖. The change 
By in the spin-orbit field is obtained from Equa-
tion (5.2): |By| is equal to 2γ h̄3k3f /g

∗μB far from the QPC and vanishes
at the degeneracy point. This change occurs on the length scale 
x of
the QPC, and the estimate of the time interval is 
t � 
x/v, where v is
a typical velocity of the hole. This gives

B‖ �
√

h̄
By

g∗μB
t
�

h̄2
√
2γ k3f v/
x

g∗μB
. (5.6)

The estimate of v at the degeneracy point kx = √
3π/W is obtained from√

3π/W �
√

k2f − π2/W 2, which gives kx =
√
3
2 k f . Therefore, v is
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Figure 3. Total conductance G (black solid curves) and spin-resolved conduct-
ances G+ (blue, long-dashed) and G− (red, short-dashed), plotted in units of
2e2/h as functions of the minimum width W0 of the QPC [see Equation (5.5)].
In these simulations, m = 0.14m0 [16], where m0 is the bare electron mass,
g∗ = 0.8 [30], γ h̄3 = 0.45 eV nm 3, 
x = 0.3μm, and ε f = 2.3 meV.

large at the degeneracy point (v � v f , where v f = h̄k f /m is the Fermi
velocity), and to follow adiabatically the spin branches requires a large
external field. The crossover occurs for

B∗ � (h̄k f )
2√2γ h̄/(m
x)

g∗μB
. (5.7)

Below B∗, holes injected in the + band cross non-adiabatically to the −
spin branch when kx � √

3π/W . Therefore, holes injected in the lower
subband have higher energy at x � 0 and are preferentially reflected, as
seen in the second panel of Figure 3 (with B‖ = 3 T). The reflection is not
perfect, due to non-adiabaticity at kx � 0: at this second quasi-degenerate
point the − holes can cross back to the + branch, and be transmitted.
This discussion shows that, in a model where the cubic Rashba term

of 2D holes givs rise to both linear- and cubic-in-momentum terms in the
QPC, the degeneracy of the hole spectrum at kx = √

3π/W is crucial to
obtain the anomalous transmission of Figures 1 and 3. We expect that
when all cubic and linear terms are taken into account, arising from both
Rashba and Dresselhaus SO interactions, the result will be qualitatively
the same.

6. Conclusion

The cyclotron motion makes it possible to spatially separate spin cur-
rents in materials with sufficiently strong intrinsic spin-orbit interactions.
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We have understood the physical mechanisms which give rise to spin-
dependent magnetic focusing and the anomalous spin filtering by quan-
tum point contacts. Professor Gabriele Giuliani made important contri-
butions to the theory and our current understanding of spin-dependent
magnetic focusing, as well as in the broader field of spintronics and spin
transport.
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