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Topological insulator/superconductor two-dimensional heterostructures are promising candidates
for realizing topological superconductivity and Majorana modes. In these systems, a vortex pinned
by a pre-fabricated antidot in the superconductor can host Majorana zero-energy modes (MZMs),
which are exotic quasiparticles that may enable quantum information processing. However, a major
challenge is to design devices that can manipulate the information encoded in these MZMs. One
of the key factors is to create small and clean antidots, so that the MZMs, localized in the vortex
core, have a large gap to other excitations. If the antidot is too large or too disordered, the level
spacing for the subgap vortex states may become smaller than temperature. In this paper, we
numerically investigate the effects of disorder, chemical potential, and antidot size on the subgap
vortex spectrum, using a two-dimensional effective model of the topological insulator surface. Our
model allows us to simulate large system sizes with vortices up to 1.8µm in diameter. We also
compare our disorder model with the transport data from existing experiments. We find that the
spectral gap can exhibit a non-monotonic behavior as a function of disorder strength, and that it
can be tuned by applying a gate voltage.

I. INTRODUCTION

Majorana zero modes (MZMs) are exotic quasiparticles
that obey non-Abelian exchange statistics and can be
used for topological quantum computation[1–5]. Topo-
logical protection is governed by the bulk excitation gap
(topological gap) ∆0. The probability of errors induced
by the local noise sources is suppressed as exp(−∆0/T )
and exp(−∆0L/v) with T , L and v being temperature,
distance between MZMs, and Fermi velocity, respectively.
Another important energy scale is the minigap, which is
the energy difference between the zero-energy states in-
side a vortex core and the higher-energy localized states.
The minigap Em should also be larger than the tempera-
ture to enable fast and reliable measurement of the MZM
parity [6].

Nanowires with strong spin-orbit coupling and
proximity-induced superconductivity are one of the possi-
ble platforms for creating MZMs [7–9]. These nanowires
can be driven into a topological phase by applying a large
in-plane magnetic field. The size of the topological gap in
proximitized nanowires depends on several factors, such
as the spin-orbit coupling strength, the superconducting
gap of the parent material, and the Zeeman energy in-
duced by the magnetic field [7–9]. A recent experiment

reported a topological phase transition with a topolog-
ical gap of several tens of µeV in gate-defined proxim-
itized nanowires [10]. However, this platform requires
very high-quality nanowires with a localization length
larger than one micron, which poses significant challenges
for fabrication [10].

Another promising platform for MZMs is the surface of
a three-dimensional topological insulator (3D TI) covered
by a superconductor (SC) [11]. This platform does not
require a large magnetic field, as the surface of the 3D TI
naturally realizes topological superconducting state that
can host MZMs in vortices [12–14]. A possible way to
create and control vortices is to use an antidot structure,
where part of the SC is removed, as shown in Fig. 1a.
The size of the antidot can be chosen such that a small
magnetic field can induce a vortex with a single MZM.
For a large antidot, the magnetic flux quantum required
for a MZM can then be achieved with a relatively small
magnetic field. This should be contrasted with recently
studied zero modes in Abrikosov vortices at high mag-
netic fields in Fe-based type-II superconductors (typically
a few tesla) [15, 16] or in proximitized topological insula-
tor surfaces (at fields of order 0.1 T) [17, 18]. Moreover,
the electron density inside the antidot can be tuned by
a gate voltage, since it is not screened by the SC [19].
Despite the advantages of this platform, there are still
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many open questions and challenges that need to be ad-
dressed. Most of the previous studies on the 3D TI an-
tidot structure have focused on either the clean [20–22]
or the strongly disordered [23] regimes, where analyti-
cal results can be obtained. However, these regimes may
not be relevant for realistic experiments, where interme-
diate disorder strengths and finite system sizes are more
common. Therefore, numerical simulations are needed
to provide more accurate predictions and guidance for
experimental works regarding disorder requirements.

Recently, Ref. [24] performed a numerical study of the
low-energy antidot subgap spectrum using an effective
model that treats the SC outside the antidot as a bound-
ary condition for the 3D TI surface. In this paper, we
present a more realistic modeling of the antidot struc-
ture using a two-dimensional (2D) effective model for the
proximitized 3D TI surface, which we describe in Sec. II.
This model allows us to simulate large system sizes up
to 3.6µm × 3.6µm with a lattice spacing a = 6 nm, and
to capture the low-energy physics near the Dirac point.
We investigate how the minigap depends on various pa-
rameters, such as disorder strength, antidot radius, and
chemical potential (i.e., electron density), in Sec. III. We
also compare our disorder model with experimental mo-
bility data to estimate realistic disorder levels in exist-
ing materials. We discuss the implications of our results
for the feasibility of observing MZMs in this platform in
Sec. IV.

II. MODEL

A. Effective model of the proximitized TI surface

To be able to efficiently simulate a 2D surface of a
3D TI with a single Dirac cone, we utilize an effective
square-lattice model of the surface that breaks global
time-reversal symmetry [25, 26]. Within this model, the
Hamiltonian of a uniform surface has the form

hTI(k) = λ(sx sin akx + sy sin aky) + Mksz − µ, (1)

where Mk = m
(
3
2 − cos akx − cos aky + 1

4 cos 2akx +
1
4 cos 2aky

)
is the time-reversal symmetry breaking term,

si are Pauli matrices in the spin space, ki are electronic
momenta, a is the lattice spacing, and µ is the chemical
potential. In the absence of Mk, the Hamiltonian has
four Dirac cones at the high symmetry points Γ = (0, 0),
X =

(
π
a , 0

)
, Y =

(
0, π

a

)
, and M =

(
π
a ,

π
a

)
; the model

parameter λ determines the Dirac velocity, vD = λa/ℏ.
The term Mk breaks the global time-reversal symmetry
and opens gaps of the order of |m| at all high symmetry
points except for Γ, where its effect on the Dirac spec-

trum is minor, given that Mk ≈ ma4

8 (k4x + k4y) for small
k. The presence of the term Mk thus effectively creates
a 2D surface with a single Dirac cone at Γ. We refer the
reader to Ref. 25 for a detailed description of the model.

Proximity-induced superconductivity is included by
constructing a Bogoliubov-de Gennes Hamiltonian H =
1
2

∑
k Ψ†

kHBdG(k)Ψk with

HBdG(k) =

(
hTI(k) i∆sy
−i∆∗sy −h∗

TI(−k)

)
, (2)

where ∆ is the proximity-induced SC pairing potential
and the basis spinor is Ψ†

k = (c†↑,k, c
†
↓,k, c↑,−k, c↓,−k).

In our simulations we choose a discretization with the
lattice spacing a = 0.03πξ0, where ξ0 = ℏvD/(π∆0) is the
superconducting coherence length [27] in a clean proxim-
itized system, and ∆0 denotes the induced SC gap. By
definition, λ = π∆0ξ0/a. Furthermore, we fix m = −1.5λ
(the choice of sign is arbitrary). As demonstrated in Ap-
pendix A, up to energies |E| ≪ 60∆0 the term linear in
k in the power series expansion of (1) dominates over
higher order terms. Therefore, in the energy range inves-
tigated in this work (|E| ≤ 15∆0), our lattice model is a
good approximation of the TI surface Dirac Hamiltonian.

We note that, when |∆0| ≪ |m| and |µ| ≪ |m|,
the model has a non-zero Chern number C = sign(m),
which is due to the presence of time-reversal symme-
try breaking terms in (2). Hence, our finite-size sys-
tem with open boundary conditions will feature a chiral
edge mode, which is an artifact of the effective model.
Effectively, the edge of the sample is analogous to a
boundary between a SC-proximitized TI surface and a
magnetic-insulator-proximitized TI surface with Chern
number C = −sign(m). In the following simulations the
edges are located at least 12ξ0 away from the antidot
boundary. This ensures that the spurious edge states
have negligible influence on the antidot spectrum.

B. Model of the antidot system

To simulate the antidot device, we write the Hamilto-
nian (2) in the position space, and allow spatial variation
of the chemical potential µ and the pairing potential ∆.
Spatial variation of λ, which could emerge due to the
proximity-induced renormalization of vD, is neglected.

A schematic sketch of the modeled sample is shown in
Fig. 1. The system comprises a square fragment of a 3D
TI surface with a side length of L = 3.6µm, covered by
a SC layer everywhere except for a circular antidot area
of radius R in the middle. We fix the coordinate system
origin in the center of the antidot and denote (r, φ) as
polar coordinates. We assume that the magnetic field is
present exclusively in the antidot area and has the form

B(r) =

{
(0, 0, B0) for r < R,

(0, 0, 0) for r ≥ R,
(3)

which is a valid approximation in the case of a thick su-
perconductor with a short London penetration length.



3

TI surface covered
by SC

(a) (b)

SC

3D TI

bare
TI surface

RL

x
y z

L

Δ = 0

Δ = Δ0e
iφ

B = B0ez
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Figure 1. (a) Sketch of the sample structure and the modeled
distribution of the magnetic field. (b) Top view of the sam-
ple with a schematic representation of the parameters of the
model.

We choose B0 = Φ0/(πR2), such that the sample is per-
meated by a single flux quantum Φ0 = h/(2|e|). The
magnetic vector potential compatible with the assumed
magnetic field distribution is expressed in the London
gauge as

A(r) =


Φ0

2πR2
(−y, x, 0) for r < R,

Φ0

2πr2
(−y, x, 0) for r ≥ R.

. (4)

The flux trapped by the antidot induces a phase winding
of the pairing potential

∆(r) =

{
0 for r < R,

∆0e
−iφ for r ≥ R,

. (5)

Furthermore, the vector potential A(r) is introduced into
the hopping terms via the Peierls substitution,

c†r1cr0 → c†r1cr0 exp

(
−i

|e|
ℏ

ˆ
L01

A(r) · dr
)
, (6)

where L01 is the straight line pointing from r0 to r1.
The chemical potential profile is made up of two parts:

µ(r) = µ0(r)+δµ(r). The first part describes an idealized
impurity-free sample, while the second part represents
the effect of the disorder. We assume that the chemical
potential is fixed in the SC part of the system, while in
the antidot it can be controlled by gating, and write

µ0(r) =

{
µin,0 for r < R,

µout for r ≥ R.
(7)

C. Disorder model and its relation to the
scattering rate

The disorder in the system is modeled by distributing
2NC charged impurities at randomly chosen distinct lat-
tice sites rCn throughout the sample. The charges have

equal magnitude, although half of them are negative and
half are positive, such that the net charge in the system is
exactly zero, and the correction to the chemical potential
due to disorder is

δµ(r) =

NC∑
n=1

V (r− rCn ) −
2NC∑

n=NC+1

V (r− rCn ). (8)

As our TI surface model (1) features spin-polarized bands
away from Γ, the disorder-induced scattering could po-
tentially generate a magnetic gap in the surface Dirac
spectrum. To avoid this issue, we choose the single im-
purity potential V (r) to have a Gaussian profile, such
that the high momentum scattering is suppressed. The
model potential in (8) is assumed to have the form

V (r) = − V0√
N

exp

(
− r2

2σ2

)
, (9)

where V0 is the magnitude of the potential, while
σ gives the radius of the potential well, and N =∑

i∈lattice exp
[
−r2i /σ

2
]

is the normalization factor de-
signed to fix the variance of V (r) at the lattice sites ri
such that

∑
i∈lattice V

2(ri) = V 2
0 . The parameter σ−1

gives an estimate for the largest momentum change in
the scattering process. We fix σ = 2.5a in all calcula-
tions, for which choice the sum can be approximated by
an integral and N ≈ π(σ/a)2.

Finally, we connect the abstract parameters of the nu-
merical model with measurable disorder characteristics.
For µ0 = 0 we estimate the electron elastic scattering
rate, averaged over fluctuations of δµ, to be

Γ =

〈
ℏ
τk

〉
δµ

=
√

8π
σ2s3

ℏ2v2D

(
1 − 2

σ2s2

ℏ2v2D

)
, (10)

where

s2 = ρimp
V 2
0 πσ

2

N
≈ ρimpV

2
0 a

2 (11)

is the estimated variance of δµ(r) at fixed r. Expres-
sion (10) is valid if |δµ| ≪ |ℏvD/σ| everywhere in the
sample. For stronger disorder, and for µ0 ̸= 0, we evalu-
ate Γ numerically. See Appendix B for the derivations of
both the approximate and the numerical approaches and
a plot of the dependence Γ(s). Finally, we estimate the
electron mean free path as

l = vD

〈
1

τk

〉−1

δµ

=
ℏvD

Γ
. (12)

III. RESULTS

Our main objective is to investigate how the minigap
and the local density of states change upon introducing
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disorder in the sample. To that end, we calculated the
energy spectrum of the antidot system, while varying the
impurity potential magnitude V0 and the impurity den-
sity ρimp. In addition, we considered different values of
the antidot radius R and of the chemical potential µin,0

inside the sample, as these are the degrees of freedom
that can be controlled directly in experiment. While in
principle the results depend on the details of the distri-
bution of impurities, we present the data calculated for
a specific, representative realization of disorder. Thus,
we capture the qualitative features of the investigated
phenomena, whereas the quantitative details are to be
understood as coarse estimates.

We characterize the antidot system with dimensionless
quantities µ/∆0, R/ξ0 = πR∆0/(ℏvD), and V0/∆0. Fur-
thermore, we fix the chemical potential in the SC part of
the system to be µout = 2∆0. We have verified numeri-
cally that varying µout in the range of several ∆0 has a
negligible effect on the minigap, although the energies of
higher excited states can be affected more significantly.

First, we consider a fixed impurity density ρimpξ
2
0 ≈ 17,

which in our model corresponds to the fraction of 0.15
of the lattice sites being occupied by impurities, and
two different antidot radii: R = 1.26πξ0 ≈ 4ξ0 and
R = 4.5πξ0 ≈ 14ξ0. The smaller (larger) value of R
represents the regime in which the antidot area consti-
tutes the minority (majority) of the area ≈ π(R + πξ0)2

occupied by the wave functions of states bound to the
vortex core. The specific numerical values of R are dic-
tated by the convenience of numerical calculations. In
Figure 2(a,b) we present the calculated energy spectra
for the two antidot sizes, where the magnitude of the
impurity potential V0 is varied from 0 to 15∆0 for the
smaller antidot, and from 0 to 8.2∆0 for the larger one.
For the chosen impurity density these ranges correspond
to Γ changing from 0 to 4.3∆0 and from 0 to 0.8∆0,
respectively. The introduction of the disorder potential
δµ(r) in the numerical model leads to a shift in the av-
erage of the chemical potential inside the antidot:

⟨µin⟩ = µin,0 +
1

πR2

ˆ
r<R

δµ(r) d2r. (13)

We account for this effect by adjusting µin,0 such that
⟨µin⟩ = 0 in every calculation.

For both antidot radii we find that the minigap de-
creases approximately linearly with increasing Γ, and at-
tains a minimum at a certain critical value Γc, but does
not reach zero due to the finite size of the antidot. At the
same time, the MZM wave function changes its distribu-
tion with growing Γ, as illustrated in Figure 2(c-j). In the
case of a clean sample, the MZM wave function is smooth
in the entire antidot area and distributed symmetrically
along the polar axis around the antidot center. This is
due to ⟨µin⟩ being fixed at the charge neutrality point of
the TI surface Dirac spectrum. At Γ > 0 the wave func-
tion, albeit still permeating the whole antidot, develops

maxima at certain randomly located points. Figure 2(c-
h) shows the wave function density maps for values of
Γ varied between 0 and 0.5 ∆0, such that the minigap is
open. The square moduli of the MZM wave function pre-
sented in the Figure are equivalent to the local density
of states (LDOS) profiles, as the MZM is the only state
within the 0.1∆0 range of zero energy. In Figure 2(i,j)
we present cross sections through the LDOS profiles for
several more values of Γ.

We complement the above results obtained for a fixed
value of ρimp and variable V0 with a series of calculations
performed for fixed V0 = 6∆0 and changing ρimp with val-
ues ranging from 0 up to ρimpξ

2
0 ≈ 20, which corresponds

to Γ ranging from 0 to 0.43∆0. The energy spectra cal-
culated for the two antidot radii, R ≈ 4ξ0 and R ≈ 14ξ0,
are presented in Fig. 3(a,b). The results for subsequent
values of ρimp were obtained by successively adding impu-
rity sites to the system, such that all impurity locations
at a given value of ρimp are preserved in calculations for
all larger ρimp values. We allowed the new impurity sites
to fall both inside and outside of the antidot. At each
step µin,0 was adjusted according to Eq. (13) such that
⟨µin⟩ = 0 at all times. Similarly to the case of fixed ρimp

and variable V0 described in Fig. 2, here we find that the
decrease of the minigap with growing Γ is approximately
linear, albeit with some fluctuations which we attribute
to the randomness of the process of increasing the impu-
rity density.

Our findings consistently indicate that the energy spec-
trum of the smaller antidot is less susceptible to disorder.
The calculated dependence of the spectrum on the anti-
dot radius is presented in Fig. 3(c) for the case of a clean
sample, and Fig. 3(d) for the disordered one with a fixed
disorder profile. In the case of no disorder, the mini-
gap decreases monotonically, and at R ≫ ξ0 becomes
inversely proportional to R, while in the limit R → 0 it
saturates to a finite value. For the disordered case with
Γ/∆0 ≈ 0.33, the decrease of minigap is not monotonic,
which is due to the impurities being localized at random
locations in the sample. As R is increased, more and
more impurity sites fall within the antidot area, and the
mean value of δµ in the antidot fluctuates. At each step
µin,0 was adjusted such that ⟨µin⟩ = 0. We find that the
decrease of the minigap with growing R is more signifi-
cant in the disordered sample than in the clean sample.
Comparing Figs. 3(c) and 3(d), we conclude that antidots
with the radius near πξ0 are not significantly affected by
disorder and are thus favourable for potential applica-
tions in topological quantum computation.

So far we have adopted a fixed average chemical poten-
tial ⟨µin⟩ = 0, although in a real device it would generally
attain a different value determined by the specific proper-
ties of the materials comprising the heterostructure and
its fabrication quality. However, it is our assumption
that ⟨µin⟩ can be effectively controlled by an external
electric field through tuning µin,0 in (13). This could be
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(c)

Γ = 0
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(f)

(e) (h)

(d) (g)

(b)

(c)

(d)

(e)
(i)

(j)(f) (g) (h)

R ≈ 4ξ0

R ≈ 14ξ0

0

0.46Δ0

0.94Δ0

Γ

0
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0.43Δ0

Γ
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(e)
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Figure 2. Left column: Energy spectra of the vortex cores pinned inside the antidots of radii (a) R ≈ 4ξ0 and (b) R ≈ 14ξ0
plotted as functions of the disorder scattering rate Γ, obtained by fixing the distribution of impurities at density ρimp ≈ 17/ξ20
and by tuning the parameter V0 in (9). Central column: Density maps of the MZM wave functions’ squared moduli in the
antidots of radii (c-e) R ≈ 4ξ0 and (f-h) R ≈ 14ξ0, calculated (c,f) without disorder, and (d,e,g,h) with disorder with the
scattering rate indicated in the plots. The color scale in (c) is common for all maps (c-h). Right column: Radial profiles of
the MZM wave functions’ squared moduli, drawn along the lines crossing the density maxima [shown as dotted lines in (c-h)]
for the antidots of radii (i) R ≈ 4ξ0 and (j) R ≈ 14ξ0, obtained for several values of V0 corresponding to evenly spaced values
of Γ corresponding to arrows in (a,b). Vertical spacing of (i) 2 × 106 or (j) 1 × 106 has been applied to the baselines of the
curves to enhance clarity of the data.

achieved by introducing a gate terminal adjacent to the
heterostructure in the vicinity of the antidot. Thus, in
a given sample, one would ideally be able to optimize
the minigap size by tuning the gate voltage. Additional
tuning can be achieved by using multiple gates [24].

In Fig. 4(a-d) we present the energy spectra of the an-
tidots of radii R ≈ 4ξ0 and R ≈ 14ξ0 plotted as functions
of ⟨µin⟩, which is varied in the range of a few ∆0. Fig. 4(a-
b) presents the results for clean samples, confirming that
in fact ⟨µin⟩/∆0 ≈ 0 corresponds to the largest minigap.
Note that the plotted spectra are not symmetric with re-
spect to ⟨µin⟩ = 0, which is due to the chemical potential
µout outside the antidot having a non-zero value.

In the presence of disorder with Γ ≈ 0.33∆0 (as calcu-
lated at ⟨µin⟩ = 0), the two samples with different radii
respond differently to adjusting ⟨µin⟩. Fig. 4(c) shows
that for the antidot with R ≈ 4ξ0 the optimal minigap
again occurs at ⟨µin⟩/∆0 ≈ 0. On the contrary, the spec-
trum of the disordered antidot with R ≈ 14ξ0 features
states lying in the gap of the clean system. Due to their
presence, ⟨µin⟩/∆0 corresponding to the optimal minigap

is clearly shifted away from zero.

For |⟨µin⟩| above a certain value, both in the clean and
the disordered system, the minigap nearly closes, and the
spectrum can feature densely spaced energy levels corre-
sponding to trivial Caroli-de Gennes-Matricon (CdGM)
states bound to the vortex core localized inside the an-
tidot. This is consistent with scanning tunneling mi-
croscopy and spectroscopy (STM/STS) experiments with
Abrikosov vortices in SC-TI heterostructures, where the
bound states manifest themselves as an apparent split-
ting of the zero-bias peak at a certain distance from the
vortex core [17].

Importantly, tuning the chemical potential ⟨µin⟩ also
results in the change of the MZM wave function distri-
bution. In a clean sample at ⟨µin⟩ = 0 the MZM is al-
most evenly distributed throughout the antidot area and
spills into the surrounding SC region with an exponen-
tially decreasing amplitude. For non-zero ⟨µin⟩, however,
the MZM density develops a distinct peak at the vortex
core. The radial profiles of the MZMs in clean samples
are shown as dashed lines in Fig. 4(e,f). In the disor-
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(a)

(a)

(a)
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(c)
(d)

(c)
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(b)

(c)

(d)

R ≈ 4ξ0

R ≈ 14ξ0

no disorder

Γ ≈ 0.33 Δ0

Figure 3. Left column: Energy spectra of the vortex cores
pinned inside the antidots of radii (a) R ≈ 4ξ0 and (b) R ≈
14ξ0 as functions of the disorder scattering rate Γ, obtained
by changing the impurity density ρimp with a fixed single-
impurity potential magnitude V0 = 6∆0. Right column:
Analogous energy spectra as functions of the antidot radius
(c) without disorder and (d) with disorder characterized by
parameters V0 = 6∆0 and ρimp ≈ 17/ξ20 .

dered antidots case, on the other hand, the MZMs ex-
hibit spatial fluctuations and peaks at random points,
even at ⟨µin⟩ = 0. Upon the variation of the chemical
potential, the spatial profile of the wave function is al-
tered, such that the existing peaks level off, and the new
peaks emerge at different locations. The MZMs in disor-
dered samples are represented by solid lines in Fig. 4(e,f).
Such variation of the wave functions both in the clean
and the disordered case can be attributed to the change
of the Fermi momentum kF ≈ ⟨µin⟩/(ℏvD) in the TI
surface with the changing chemical potential, and the
associated change of the density of states per unit area
ρTI ≈ |⟨µin⟩|/(2πℏ2v2D). At larger |⟨µin⟩|, states from
a larger Fermi contour of the TI surface spectrum con-
tribute to the formation of the MZM, allowing a tighter
peak of the MZM amplitude near the vortex core in clean
samples. In disordered samples the scattering from im-
purities obscures this effect. However, the change of the
make-up of the Fermi contour with changing ⟨µin⟩ re-
sults in the MZM wave functions exhibiting different in-
terference patterns. We propose that the evolution of the
MZM wave function upon varying the gate voltage can
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Figure 4. The influence of the chemical potential on the
energy spectra of the vortex cores pinned inside the antidots
of radii (a,c,e) R ≈ 4ξ0 and (b,d,f) R ≈ 14ξ0. The spec-
tra are plotted as functions of the mean chemical potential in
the antidot ⟨µin⟩, both (a,b) in clean systems and (c,d) in sys-
tems with disorder characterized by parameters V0 = 6∆0 and
ρimp ≈ 17/ξ20 , which at ⟨µin⟩ = 0 corresponds to Γ ≈ 0.33∆0.
(e,f) Radial profiles of the MZM wave functions squared mod-
uli, corresponding to states indicated by black arrows in (a-d).
Dashed (solid) lines present the results for the clean (disor-
dered) systems. To enhance the clarity of the data vertical
spacing of (e) 1 × 107 or (f) 3 × 106 has been applied to the
baselines of the curves. Dashed lines in (f) represent original
data multiplied by a factor of 2.

be observed by means of the STM/STS method.

The above results motivate a comprehensive study of
the antidot with the smallest meaningful size, which is
estimated by the radius of the core of an Abrikosov vor-
tex ≈ ξ0. We expect that the disorder magnitudes al-
lowed by our model have a minor effect on the spec-
tra of such systems. Instead, we focus on the case of
R = 0.8πξ0 ≈ 2.5ξ0, which is closer to the theoretical
limit than the previously investigated radii. We calcu-
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Figure 5. A color map of the minigap value for the antidot
of radius R ≈ 2.5ξ0 as a function of the chemical potential
inside the antidot ⟨µin⟩ and the disorder strength. The dis-
order strength is tuned by varying the parameter V0 between
0 and 15∆0 with a fixed distribution of impurities of density
ρimp ≈ 17/ξ20 , and expressed in terms of the scattering rate
Γ calculated at ⟨µin⟩ = 0. Black dashed lines are constant Γ
contours and are labeled by the associated values of the mean
free path l = ℏvD/Γ.

late the minigap as a function of both the chemical po-
tential inside the antidot ⟨µin⟩ and the impurity potential
strength V0, for a fixed impurity density ρimp ≈ 17/ξ20 .
The results are shown as a color map in Fig. 5, with
the disorder strength expressed as the scattering rate Γ
calculated for the chemical potential tuned to the Dirac
point of the TI surface states (⟨µin⟩ = 0).

Note that a uniform change of ⟨µin⟩, e.g., by applying
gate voltage, corresponds to a vertical displacement in
the plot in Fig 5. However, such a process would result
in a change of measured Γ, since the density of states de-
pends on ⟨µin⟩. For reference, contours denoting selected
values of Γ for arbitrary ⟨µin⟩ are included in Fig. 5 as
black dashed lines and labeled with the associated value
of the mean free path (12).

Noticeably, vertical linecuts of the data presented in
Fig. 5 agree in qualitative terms with analogous spec-
tra shown in Fig. 4(a-d), obtained by fixing the disorder
magnitude and varying ⟨µin⟩. Similarly, the horizontal
linecut for ⟨µin⟩ = 0 is in agreement with the analogous
data in Fig. 2(a-b). Very clearly, the minigap decreases
both with growing |⟨µin⟩| and growing Γ, albeit with sig-
nificant oscillations. Therefore, for a given disordered
sample, a wide scan of ⟨µin⟩ has to be performed to find
the configuration ensuring the maximal value of the mini-
gap.

IV. CONCLUSIONS

We performed a detailed numerical analysis of the TI-
SC device with an antidot structure, using realistic pa-
rameters. We focused on how the minigap, which sepa-
rates the zero-energy Majorana mode in the antidot from
the first excited trivial CdGM state, depends on various
factors, i.e. geometrical dimensions, Fermi energy, and
disorder strength. We also examined how these factors
affect the Majorana wave function profile inside the anti-
dot. We considered a realistic correlated disorder model
mimicking randomly distributed charged impurities. We
established a relationship between impurity density, po-
tential strength and the corresponding scattering rate,
see Fig. 6, which can be used to calibrate our disorder
model based on transport measurements. Our conclu-
sions are therefore general and are not limited by the
specific choice of disorder model.

Our results have implications for the current and fu-
ture experiments on antidots in TI-SC devices, which are
a promising platform for topological quantum comput-
ing. The minigap is the crucial parameter for such ap-
plications – it has to be larger than the temperature to
enable fast and reliable quantum information processing
and storage. We studied the dependence of the mini-
gap on antidot radius in clean and disordered limits, as
shown in Fig. 3(c-d), and found that small antidots with
R ≤ 5ξ0 are fairly robust with respect to disorder. We
also demonstrated that the electron density in the anti-
dot strongly affects the minigap, with the minigap val-
ues peaking at or near the Dirac point ⟨µin⟩ = 0, see
see Figs. 4(a-d) and 5. These results emphasize the im-
portance of being able to adjust the chemical potential
inside the antidot using external gates to achieve the op-
timal minigap values in realistic experimental devices. In
particular, we found that for some levels of disorder, the
optimal value is obtained by tuning ⟨µin⟩ away from the
charge neutrality point, see Fig. 5.

We found that disorder has a negative effect on the
minigap, as in other proposed MZM platforms. The ef-
fects of disorder are shown in Figs. 2(a-b) and 5: the
minigap decreases in an oscillatory manner, nearly clos-
ing at certain critical values Γc. However, we also found
that by tuning electron density inside the antidot one is
able to tune away from the local minima of the minigap,
as demonstrated in Figs. 4(d) and 5. For the smallest
investigated antidot size with R ≈ 2.5ξ0, we found that
the scattering rate as high as Γ ≈ 4.5∆0 allows a minigap
of about 0.5∆0.

For typical TIs, such as (Bi0.4Sb0.6)2Te3 (BST)[13]
and BiSbTeSe2 (BSTS)[28], the reported values of the
mean free path, extracted from Hall measurements, are
l ≈ 15 nm and l ≈ 17 nm, respectively. Taking into ac-
count the reported Dirac velocities, vD ≈ 4 × 105 m/s
for BST and vD ≈ 3 × 105 m/s for BSTS, we estimate
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the corresponding scattering rates, Γ = ℏvD/l, to be
Γ ≈ 17.5 meV for BST and Γ ≈ 11.6 meV for BSTS,
respectively. Hence, we have found that for antidots of
radii ∼ πξ0 or larger, the scattering rate in state of the
art TIs may be too high to exhibit a detectable mini-
gap, even for large-gap superconductors, such as Nb.
Thus, cleaner devices or smaller-sized antidots would be
required to achieve a sizable minigap. For example, tak-
ing BSTS compound as a TI, Nb as a SC (∆0 ≈ 1meV),
and the antidot of the radius R ≈ 2.5ξ0, the electronic
mean free path has to be increased to l > 45 nm from
the current l ≈ 17 nm to achieve a meaningful value of
the minigap. Nevertheless, our findings are encourag-
ing in the sense that for reasonably small-sized antidots
(R < 5ξ0) the disorder strength required for the clos-
ing of the minigap corresponds to a scattering rate that
is several times higher than the gap of a clean system.
In addition, the minigap can be reopened by gating, as
illustrated in Fig. 5. While our use of a low-energy effec-
tive model prevents us from doing simulations at stronger
disorder strength and/or higher chemical potential, we
envision that the diagram in Fig. 5 continued for higher
values of Γ involves further oscillations of the minigap,
and includes more areas where a significant minigap mag-
nitude can be found.
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Appendix A: Validity of the lattice model

1. Fermi contour warping

For small ak the Hamiltonian (1) reduces to a simple
Dirac Hamiltonian

hTI ≈ λa(sxkx + syky) − µ0 (A1)

characterized by a circular Fermi contour. In the lattice
model, at the energy at which the terms of higher order
in ak become significant, the Fermi contour warps. We
estimate this energy threshold by comparing the first and
the third order terms of the expansion of sin(a|k|)

a|k| ≫ a3|k|3

6
⇒

∣∣∣∣ E∆0

∣∣∣∣ ≪ √
6
πξ0
a

, (A2)

where we used |E| = λa|k|. In our model a = 0.03πξ0,
and thus the Fermi contour warping can be neglected if
|E| ≪ 81.7∆0.

2. TRS breaking

Near Γ the effect of the TRS breaking terms in the

Hamiltonian (1) is given by ma4

8 (k4x + k4y)sz. We com-
pare the physical Dirac term in (A1) to the magnetic
perturbation

|λak| ≫
∣∣∣∣ma4

8
k4

∣∣∣∣ ⇒
∣∣∣∣ E∆0

∣∣∣∣ ≪ 2
πξ0
a

3

√∣∣∣∣ λm
∣∣∣∣. (A3)

For the parameter values used in our lattice model, the
effect of TRS breaking terms near Γ is negligible if |E| ≪
58.3∆0.

Furthermore, we note that the magnetic gap at X and
Y points in the Brillouin zone is 4|m| = 200∆0, and at
M it is 8|m| = 400∆0. Our analysis is confined within
these energy gaps.

Appendix B: Estimation of the scattering rate for
the disorder model (8)-(9)

The scattering rate 1/τk can be estimated using the
Fermi’s golden rule:

1

τk
=

2π

ℏ
∑
k′

| ⟨k|δµ|k′⟩ |2δ(ϵk − ϵk′), (B1)

where |k⟩ and |k′⟩ are the eigenstates of the 2D Dirac
Hamiltonian (A1) at zero energy. Without loss of gen-
erality, we choose µ0 > 0. The square modulus of the
matrix element of δµ, as defined in (8), is

| ⟨k|δµ|k′⟩ |2 =
V 2
0

N
4π2σ4

Ω2
×

exp
[
−σ2(k′ − k)2

] 1 + cos (ϕ− ϕ′)

2
×

2NC∑
n=1

2NC∑
m=1

(
ηnηm exp

[
i(k′ − k) · (rCn − rCm)

])
, (B2)

where Ω is the surface area, ϕ(′) is the polar angle in the
reciprocal space, and

ηn =

{
1 for n = 1, 2, . . . , NC ,

−1 for n = NC + 1, NC + 2, . . . , 2NC .
(B3)

In the double sum in (B2) the terms with m = n sum to
2NC . Assuming the uniform probability distribution of
rCi , the disorder average of the exponents in the remain-
ing terms, in the limit of infinite Ω, is

exp [i(k′ − k) · (rCn − rCm)] ≈ δkk′ . (B4)
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Thus, for k ̸= k′

| ⟨k|δµ|k′⟩ |2 ≈ V 2
0

N
ρimp4π2σ4

Ω

× 1 + cos (ϕ− ϕ′)

2
exp

[
−σ2(k′ − k)2

]
, (B5)

where ρimp = 2NC/Ω is the impurity density per unit
area. In the limit of the infinite surface area, the sum-
mation in (B1) is replaced with the integration, and the
k = k′ term becomes negligible. The integral evaluated
for small σ|k| thus yields

1

τk
≈ 2π2

ℏ
|µ0|
ℏ2v2D

V 2
0

N
σ4ρimp

[
1 −

(
|µ0|σ
ℏvD

)2
]
. (B6)

Here we used the fact that the Fermi momentum satisfies
|k| = |µ0/(ℏvD)| and that the density of states per unit
area is |µ0|/(2πℏ2v2D).

As our primary interest lies in the case of µ0 = 0, we
replace the chemical potential in (B6) with appropriate
averages of |δµ|. Per the central limit theorem, at any
position r the probability density function of δµ(r) is
given by the normal distribution

f(δµ) =
1√
2πs

exp

(
−δµ2

2s2

)
, (B7)

where

s2 = Var[δµ(r)] ≈ 2NCVar[V (r)] ≈ ρimp
V 2
0 πσ

2

N
. (B8)

It’s straightforward to show that the averages in the nor-
mal distribution are

⟨|δµ|⟩δµ =

√
2

π
s, ⟨|δµ|3⟩δµ = 2

√
2

π
s3, (B9)

from which it follows that〈
1

τk

〉
δµ

≈ 2
√

2π2

ℏ
|V0|3

ℏ2v2DN 3
2

σ5ρ
3
2

imp

(
1 − 2π

ρimpV
2
0 σ

4

Nℏ2v2D

)
.

(B10)
In (10) we express the estimated scattering rate Γ =

ℏ⟨1/τk⟩δµ in terms of s. Multiplying both sides of (10)
by σ/(ℏvD), we find that Γσ/(ℏvD) depends only on one
dimensionless parameter sσ/(ℏvD). This dependence is
plotted in Fig. 6.

For larger fluctuations δµ and for µ0 ̸= 0 the approxi-
mation expressed in (10) and (B6) and is insufficient. To
describe these cases we evaluate the integral exactly

1

τk
=

2π2

ℏ
|µ0|
ℏ2v2D

V 2
0

N
ρimpσ

4 exp

(
−2

µ2
0σ

2

ℏ2v2D

)
[
I0

(
2
µ2
0σ

2

ℏ2v2D

)
+ I1

(
2
µ2
0σ

2

ℏ2v2D

)]
, (B11)

0.0 0.1 0.2 0.3 0.4
s /( vD)

0.0

0.1

0.2

0.3

/(
v D

)

small |k| approx.
numerical result

Figure 6. The dependence of the scattering rate Γ on the
variance of the disorder potential s, both in units of vD/σ,
evaluated for average chemical potential µ0 = 0. Approxima-
tion for small impurity potential fluctuations given by Eq. (10)
(blue curve) and the true dependence evaluated by means of
numerical integration (orange curve).

where Iα(x) are modified Bessel functions of the first
kind. Then, we substitute µ0 → µ0 + δµ and calculate
numerically averages of 1/τk with respect to the proba-
bility distribution (B7). The scattering rate obtained in
this way is compared to the approximate formula (10) in
Fig. 6, for the special case of µ0 = 0.
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Stankevič, L. Stek, H. Suominen, J. Suter, V. Svidenko,
S. Teicher, M. Temuerhan, N. Thiyagarajah, R. Tho-
lapi, M. Thomas, E. Toomey, S. Upadhyay, I. Urban,
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