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The observation of zero-bias conductance peaks in vortex cores of certain Fe-based superconduc-
tors has sparked renewed interest in vortex-bound Majorana states. These materials are believed
to be intrinsically topological in their bulk phase, thus avoiding potentially problematic interface
physics encountered in superconductor-semiconductor heterostructures. However, progress toward
a vortex-based topological qubit is hindered by our inability to measure the topological quantum
state of a non-local vortex Majorana state, i.e., the charge of a vortex pair. In this paper, we the-
oretically propose a microwave-based charge parity readout of the Majorana vortex pair charge. A
microwave resonator above the vortices can couple to the charge allowing for a dispersive readout
of the Majorana parity. Our technique may also be used in vortices in conventional superconduc-
tors and allows one to probe the lifetime of vortex-bound quasiparticles, which is currently beyond
existing scanning tunneling microscopy capabilities.

Introduction. Majorana zero modes were originally
proposed within the context of vortices in a topological
superconductor (SC) [1–5], and have since emerged as
a captivating subject of study in the field of supercon-
ductivity. The recent discovery of zero-bias conductance
peaks [6–14] in the vortex cores of certain Fe-based super-
conductors [15–19] has sparked renewed interest in vor-
tex Majorana zero modes (MZMs), which are predicted
to be bound in these vortices [5, 20, 21]. The inherent
topological nature of vortices as excitations within the
superconducting condensate gives hope that the bound
states hosted by them would be less susceptible to the
disorder, unlike Majorana approaches that require engi-
neered interfaces [22, 23]. The key motivation behind
studying MZMs is their predicted non-Abelian braiding
statistics and possible use in a topologically protected
quantum computer [3, 24–26].

However, the measurement of the topological quan-
tum state of a non-local vortex MZM remains a chal-
lenge, hindering progress toward a vortex-based topolog-
ical qubit. While it is in principle possible to move the
vortices and associated MZMs [27–30], it will be chal-
lenging to do this adiabatically for a large vortex, but at
the same time fast enough to avoid quasiparticle poison-
ing, the timescale of which in vortices is currently un-
known. Alternatively, measurement-based braiding tech-
niques could potentially circumvent the need for moving
the MZMs [31]. Non-local conductance [32, 33] and inter-
ferometric [34, 35] measurements have been suggested as
a means to identify and control Majorana vortex modes.
Nevertheless, it is important to note that a microwave-
based technique would be optimal for achieving fast read-
out [36, 37].

In this paper, we propose a solution to the measure-
ment problem using microwave (MW) techniques, which
have been established and demonstrated as an extremely
versatile tool to address electronic systems in various ex-
periments [38–45]. Specifically, we present a microwave-

based method for MZM charge parity readout analogous
to what has been proposed in different platforms [36, 46–
49].
Our approach focuses on studying the coupling be-

tween electrons in the Fe-based superconductor and the
microwave photons from a resonator positioned above
it. By analyzing the frequency-dependent transmission
of the resonator, we can achieve a dispersive readout of
the non-local vortex Majorana state. We provide the
necessary requirements for the resonator quality factor
Q to enable the parity readout. Importantly, our tech-
nique can also be applied to vortices in conventional su-
perconductors, offering insights into the lifetime and co-
herent manipulation of vortex-bound quasiparticles, sur-
passing the capabilities of existing scanning tunneling mi-
croscopy.
General theory of MW coupling to vortex

state. The interaction between the external electromag-
netic field with the charge density of the superconductor
results in a MW coupling Hamiltonian

δH cosωt =

ˆ
d3rρe(r)V (r) cosωt, (1)

where ρe(r) is the charge density operator and V (r) cosωt
is the scalar potential of the external electromagnetic
field. This electromagnetic field is created by a resonator,
which is within a wavelength of the SC surface. Thus
the field can be treated in the quasistatic approxima-
tion. The sketch of the measurement setup is shown in
Fig. 1(a).
In the static field approximation, screening in the su-

perconductor results in a decay of the field, character-
ized by a screening length λTF. The scalar potential
of the external electromagnetic field can be written as
V (r) = V0e

− z
λTF , where z is the distance from the top

surface of the superconductor and V0 is the amplitude of
the external field.
In Eq. (1), the charge density ρe can be expressed as
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ρe = − 1
2eΨ

†τzΨ, where Ψ = ((c↑, c↓), (c
†
↑, c

†
↓))

T is the
Nambu field operator and τz = diag(1, 1,−1,−1). In
order to expand the field operator in the exact eigenbasis
of the unperturbed Hamiltonian H0, which is given by
Eq. (10) below, we define Φn as the spinor wave function
of the eigenstate with energy En, and Γn as the second
quantized annihilation operators of these quasiparticles.

The eigenstates of the system exhibit a particle-hole
symmetry (PHS) that is represented by an antiunitary
operator P. For each eigenstate Φn with energy En,
there exists another eigenstate Φ−n = PΦn with en-
ergy −En. The corresponding annihilation operator sat-
isfies Γ−n = Γ†

n. We consider energies below the SC gap
and include the excited vortex-bound states (Caroli-de
Gennes-Matricon states). The lowest energy state in the
system is the Majorana state ΦM with energy EM, and
its corresponding operator is given by ΓM = 1

2 (γ1 − iγ2),
where γ1 and γ2 are two Majorana operators as shown
in Fig. 1. We aim to read out the occupation number
nM = Γ†

MΓM [or its parity, (−1)nM = iγ1γ2] of this Ma-
jorana zero mode.

Expanding the Nambu spinor Ψ in terms of Γn,

Ψ =
∑
En>0

(ΦnΓn +Φ−nΓ
†
n), (2)

the MW coupling (1) can be written as

δH = V0

∑
En>0

qn,n(Γ
†
nΓn − 1

2
) (3)

+
1

2
V0

∑
En>0

∑
m̸=n
Em>0

[qn,mΓ†
nΓm + qn,−mΓ†

nΓ
†
m +H.c.].

Here we introduced the matrix elements of the (surface)
charge operator q̂ = 2

´
d3rρee

−z/λTF , e.g.,

qn,m = −e

ˆ
d3r(Φ∗

nτzΦm)e−z/λTF . (4)

Because the charge operator preserves PHS, the matrix
elements obey the same symmetry, encoded by the rela-
tions qn,−m = −q∗−n,m and qn.−n = 0.
Microwave readout of Majorana parity. In cir-

cuit quantum electrodynamics [50], the MW coupling be-
tween a resonator and the superconductor allows us to
read out the Majorana parity [48]. The electromagnetic
fields induced by the resonator interact with the super-
conductor in the manner described by the Hamiltonian
δH, Eq. (3). This interaction influences the complex
transmission coefficient τ (p)(ω) that relates the output
and input photonic fields of the resonator. Under the
limit L1C1 ≪ LC (see Fig. 1a) and frequency close to
the cavity resonance ωc = 1/

√
LCtot, we find

τ (p)(ω) ≈ κ

i(ω − ωc) + κ+ iωcΠ(p)(ω)
2Ctot

, (5)

Figure 1. Dispersive readout of vortex MZM parity. (a)
Schematic circuit model. The red square shows the cavity
resonator and the blue squares show the capacitive coupling
to the SC vortex state. The microwave response of the vortex
pair, represented by the charge-charge correlation function
Π(ω) depends on the MZM parity as described in Eq. (6). (b)
transmission vs. frequency in the detuning regime |E1−ωc| ≫
ωcζ, EM. Here E1, EM are the energies of the first bound state
and Majorana state, ζ is the dimensionless charge [see above
Eq. (8)], ωc is the resonant frequency of the cavity. The parity
readout is measuring ⟨iγ1γ2⟩, the occupation number parity
of the Majorana state on the top surface. We take here the
first bound state energy E1 ≈ 2ωc, EM = 0, ζ = 0.015, and
δζ = 0.02. These parameters correspond to critical cavity Q-
factor Qc ≈ 103, and in the plot, we take Q = 104 ≫ Qc, so
these peaks can clearly be resolved.

where κ = 2/(CtotR
∗) is the escape rate of the cav-

ity, and p = (−1)nM denotes the Majorana parity. We
denote Π(p)(ω) the parity-dependent charge-charge cor-
relation function. In the time domain, it is given by
Π(p)(t) = − i

ℏΘ(t)⟨[q̂(t), q̂(0)]⟩p, where Θ(t) is the Heavi-
side step function. As shown in Fig. 1a, Ctot = C + C1,
where C and C1 are the capacitance of the resonator
and the superconductor, respectively. The resonator is
coupled with capacitance Cκ to the input-output trans-
mission line with resistance R0, and the effective resis-

tance R∗ =
1+ω2

cC
2
κR

2
0

ω2
cC

2
κR0

incorporates the coupling strength

Cκ [51].
The interaction between the resonator and the su-

perconductor induces transitions between the Majorana
state and the vortex-bound states localized near the top
surface. The correlation function Π(p) contains informa-
tion of these transitions and can be written as a sum
(from hereon we set ℏ = 1)

Π(p)(ω) =
∑

l ̸=±M,El>0

(
1

ω
(p)
l + ω + iδ

+
1

ω
(p)
l − ω − iδ

)
[|ql,+M|2(nM − nl)− |ql,−M|2(nM − 1 + nl)],

(6)

here ω
(p)
l = El+pEM is the transition frequency and EM,

El, nM and nl are the energies and occupation numbers
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of the Majorana state and the bound state l. The in-
finitesimal level width δ > 0 accounts for causality and
ql,±M are the charge matrix elements between bound
state l and occupied/unoccupied (+/ − M) Majorana
state. At low temperatures, in the absence of occupied
bound states (nl = 0), we obtain that Π(+)(ω) ∝ |ql,−M|2
for nM = 0 and Π(−)(ω) ∝ |ql,+M|2 for nM = 1. The un-
equal charge matrix elements ql,M, ql,−M and transition

frequencies ω
(p)
l result in different Π(±)(ω), which sug-

gests that the MW coupling can be used to probe the
Majorana occupation number nM.
The critical cavity Q-factor. The parity-

dependent correlation function Π(p) allows for the mi-
crowave readout of MZM parity based on the transmis-
sion [Eq. (5)]. For simplicity, let us only consider the
first vortex-bound state l = 1 on the surface. Our pri-
mary interest lies in the strong coupling regime where
the coupling strength |q1,±M| greatly exceeds the level
width δ. In this regime, the transmission |τ (p)|2 versus
ω displays two parity-dependent peaks at ω > 0. Par-
ity readout is contingent upon the ability to distinguish
peaks between different parity, which sets limitations for
the cavity Q-factor Q = ωc

κ . Here, we define a minimum
critical cavity Q-factor Qc required for parity distinction,

Q−1
c =

∆Ωc

Ωc
, (7)

where ∆Ωc = Ω
(+)
c − Ω

(−)
c is the peak seperation of two

parities in Fig. 1(b), Ωc = 1
2 (Ω

(+)
c + Ω

(−)
c ) is the aver-

age of peak positions, and Ω
(±)
c are the shifted resonator

frequencies of p = ±1 parity [52], i.e., |τ (p)(Ω(p)
c )|2 = 1.

The Eq. (7) determines the approximate requirement
Q > Qc for distinguishing the different parity resonances.
There are two variables that affect the critical cavity Q-
factor Qc: the parity-dependent charge matrix elements

q1,±M and the parity-dependent transition energies ω
(p)
1

associated with the Majorana energy splitting EM. We

define the dimensionless variable ζ±M =
√

U±M

ωc
and the

capacitive energy U±M =
q21,±M

2Ctot
.

In the resonant regime, when the resonator frequency
is close to the energy of the first bound state, character-
ized by |ωc − E1| ≪ ωcζ, where ζ = 1

2 (ζ+M + ζ−M), the
transmission curve of each parity exhibits two peaks of
width κ, separated by 2ωcζ. The parity difference causes
a shift in the position of the peaks by ωcδζ− 1

2δE, where
δζ = ζ+M − ζ−M is the dimensionless transition matrix
element difference, and δE is the change in resonance
frequency given by δE = −2EM. It is important to note
that these two contributions have opposite effects, which
can affect the behavior of the transmission curve in this
regime. By setting the shift in peak position equal to the
escape rate κ, we obtain

Qc ≈ | ωc

ωcδζ + EM
|, |ωc − E1| ≪ ωcζ. (8)

It is worth mentioning that Qc diverges at δζ = −EM/ωc

since the peak position does not shift, and thus parity
detection becomes difficult.

In the detuning regime, where the resonator frequency
is significantly detuned from the first bound state’s en-
ergy (|E1 − ωc| ≫ ωcζ, EM), the full expression for Qc

is more complex compared to the resonant regime (for
detailed derivation, see Ref. [52]). Nevertheless, Qc can
be approximated as:

Qc ≈


| E

2
1 − ω2

c

4ωcE1ζδζ
|, δζ

ζ ≫ EM(E2
1+ω2

c)

(E2
1−ω2

c)E1
, (9a)

(E2
1 − ω2

c )
2

4ωc(E2
1 + ω2

c )EMζ2
, δζ

ζ ≪ EM(E2
1+ω2

c)

(E2
1−ω2

c)E1
, (9b)

where |E1−ωc| ≫ ωcζ, EM. The two different forms high-
light the parity readout based on the parity-dependence
of the charge matrix element (δζ) or the transition en-
ergy (EM). The first form [Eq. (9a)] depends only on the
change in the dimensionless charge matrix element differ-
ence δζ as the parity-dependent factor, while the second
form [Eq. (9b)] depends only on the change in transition
energy 2EM as the parity-dependent factor.

Model for Fe-based superconductor. In order to
estimate the feasibility of the parity readout discussed
above, we will use a microscopic Hamiltonian to evalu-
ate the transition matrix element between the Majorana
state and the vortex-bound states.

We will analyze a two-band effective BdG
model for an Fe-based superconductor [20, 53–
57]. The Hamiltonian in the Nambu ba-

sis Ψ(k) = (c1↑, c1↓, c2↑, c2↓, c
†
1↑, c

†
1↓, c

†
2↑, c

†
2↓)

T can

be represented as HSC = 1
2

´
dkΨ†HSCΨ, where the

BdG Hamiltonian HSC is given by

HSC =

(
H0(k)− µ i∆0σy

−i∆∗
0σy µ−H∗

0 (−k)

)
, (10)

here µ = 5 meV represents the chemical potential, and
∆0 = 1.8 meV is the bulk pairing gap. In our lattice
model, H0(k) = νηx(σx sin kxa+σy sin kya+σz sin kza)+
m(k)ηz with m(k) = m0 − m1(cos kxa + cos kya) −
m2 cos kza, where ηi and σi represent the Pauli matrices
that account for the orbital and spin degrees of freedom,
respectively [53]. In this basis, P = τxK, where τx repre-
sents the Pauli matrix that accounts for the particle-hole
degrees of freedom and K denotes complex conjugation.
In our numerical simulation, we set ν = 10 meV and
a = 5 nm (the lattice constant), m0 = −4ν,m1 = −2ν,
and m2 = ν so that the system is in the topological phase
[53, 56] which can have vortex Majorana zero modes.

In the context of our model, we consider the s-wave
superconducting pairing potential in the presence of vor-
tices that extend along the z-axis. For a single vortex
centered at the origin, the pairing term can be expressed
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as [58]

∆1−v(w) = ∆0
w√

|w|2 + ξ2
, (11)

where ξ = 5 nm represents the characteristic radius of
the vortex and w = x+ iy.
In our specific model (shown in Fig. 1a), we consider

the presence of two vortices, each hosting a pair of MBSs
within the Fe-based superconductor. Assuming the vor-
tices are far apart, we can approximate the pairing term
as follows,

∆2−v(w) = ∆0
w − w1√

|w − w1|2 + ξ2
w − w2√

|w − w2|2 + ξ2
, (12)

where w1 and w2 correspond to the respective locations
of the two vortices.

The two-vortex pairing term and the BdG Hamil-
tonian exhibit a Z2 symmetry represented by RZ2 =
R(z, π)τzηz. This operator is characterized by a π ro-
tation around the z-axis, with respect to the midpoint
of the two vortices, taken here as the origin. Its action
on a function f(x, y, z) is given by R(z, π)f(x, y, z) =
f(−x,−y, z). The symmetry operator has eigenvalues
±1. The manifestation of this symmetry results in the
observation of double degeneracy in the system’s spec-
trum, as evident in the inset of Fig. 2. The operator RZ2

commutes with the Hamiltonian (1), establishing a selec-
tion rule that governs the allowed MW transitions within
the system. According to the selection rule, transitions
within the system can only occur between states that
share the same eigenvalues of RZ2

. Since the PHS opera-
tor P = τxK changes the eigenvalue of RZ2

, at least one
of the transition matrix elements qn,+M, qn,−M vanishes.

However, the presence of random disorder in realistic
conditions disrupts the symmetry, resulting in the elimi-
nation of the double degeneracy in the spectrum (Fig. 2).
Consequently, this compromises the strict adherence to
the selection rule. None of the transition matrix elements
qn,+M, qn,−M are generally zero (Fig. 3). Thus, in realistic
experimental settings, the selection rule is not rigorously
maintained.

Numerical studies of two-vortex systems. We
employ a numerical approach to investigate a two-vortex
system. To perform the numerical analysis, we discretize
the Hamiltonian given by Eq. (10) and utilize the Kwant
package [59] in Python to implement and solve the cor-
responding tight-binding model. The system under con-
sideration is a cuboid with dimensions 500 nm × 250 nm
× 25 nm (refer to Fig. 1a for an illustration), discretized
with a lattice constant a = 5 nm.
We utilize the results obtained in Ref. [52] to calculate

the screened electric potential of two vortices [58], which
is then included in the real space version of the Hamil-
tonian in Eq. (10), similar to the way the chemical po-
tential µ is incorporated. We take the screening length

Figure 2. Eigenvalues vs distances with 50 realizations in the
disordered system. The mean values and standard deviations
are shown for each energy. The inset shows the spectrum in a
clean system, illustrating the degeneracy of excited state pairs
at large distances. This degeneracy arises from the symmetry
RZ2 discussed below Eq. (12).

λTF as one lattice constant. Our investigation encom-
passes both clean and disordered systems. To model the
disorder, we introduce a position-dependent random po-
tential into the Hamiltonian. The disorder potential fol-
lows a normal distribution, with the standard deviation
of this distribution matching the gap ∆0. The spectrums
and charge matrix elements acquired through numerical
computations are depicted in Fig. 2 and Fig. 3.
Discussion. We showed that a microwave coupling

enables the parity readout of a non-local Majorana zero
mode hosted in a vortex pair. We quantified the sensi-
tivity of the readout by defining a critical cavity Q-factor
Qc, Eqs. (8)-(9b), required of the resonant cavity coupled
to the vortices. To estimate a typical value of Qc, let us
consider a resonant frequency 5 GHz (much below a typ-
ical superconducting gap ∆0) and effective capacitance
1×10−12 F of a typical coplanar waveguide resonator [51].
In our simulation, we find that the MZM energy EM for
a system with a large vortex separation d = 36ξ can be
neglected while the first excited state is approximately
at E1 ≈ 0.58∆0 ≫ ωc (see Fig. 2), implying the system
is in the detuning regime. The relevant charge matrix el-
ements are numerically estimated to be q1 ≈ 0.009e and
δq1 ≈ 0.002e, the ratio of which is shown in Fig. 3. In this
case, Eq. (9a) gives the required critical cavity Q-factor
Qc ∼ 108, which is close to state-of-the-art experimental
conditions [60]. Below distance d ≈ 20ξ, the system is
still in the detuning regime of Eq. (9a). There, Qc ∼ 106,
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Figure 3. The ratio of parity-dependent charge difference
|δqn| = |qn,+M | − |qn,−M | to the total charge qn = |qn,+M | +
|qn,−M | vs distance for 50 disorder realizations. The charges
between MZMs and the 2 lowest excited states are shown with
their mean values and standard deviations. The ratio in the
clean system is always 1 due to the selection rule discussed
below Eq. (12).

well within reach of the experiments.

Our method offers a compelling approach to measur-
ing the non-Abelian nature of Majorana zero modes. By
employing two resonators to measure quantities sz =
iγ1γ2 and sx = iγ2γ3, we can effectively measure two
non-commuting parities of MZMs. Through monitor-
ing these observables [61, 62], we can estimate quasi-
particle poisoning time and MZM hybridization EM.
Additionally, incorporating a third resonator to mea-
sure sy = iγ1γ3 and an ancillary pair of MZMs, would
enable measurement-based braiding [31, 32, 63] within
timescales shorter than the quasi-particle poisoning time,
when the total parity is conserved. Alternatively, braid-
ing can be achieved through time-dependent control
of MZM hybridization in a non-topologically protected
manner [64]. Thus, the resonator-based approach not
only allows one to measure the essential quasi-particle
poisoning time but also enables one to demonstrate
the non-Abelian characteristics of vortex-based MZMs,
thus holding significant promise for advancing topologi-
cal quantum computing and related technologies.
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S1. DERIVATION OF THE CRITICAL CAVITY Q-FACTOR

In the strong coupling limit, where the MW coupling strength greatly exceeds the vortex bound state level width
δ, we can approximate the correlation function in Eq. (6) by neglecting its imaginary part. The approximation leads
to an expression for the correlation function given by (take l = 1)

Π(p)(ω) ≈ 2ω
(p)
1

(ω
(p)
1 )2 − ω2

[|q1,M|2nM + |q1,−M|2(1− nM)], (S1)

where nM is the Majorana occupation number and p = (−1)nM its parity. The resonator transmission, Eq. (5) of the
main text, then takes the form

|τ (p)(ω)|2 ≈ κ2

[ω − ωc +
ωcΠ(p)(ω)

2Ctot
]2 + κ2

. (S2)

We can read off the modified resonance frequencies from the equation,

ω − ωc +
ωcΠ

(p)(ω)

2Ctot
= 0. (S3)

Next, we solve this equation in both the resonant limit and the detuning limit, and find that there are always 3

solutions, we denote them as Ω
(p)
n ,Ω

(p)
c , and Ω

(p)
t .

In the resonant region |ωc − E1| ≪ ωcζ, these solutions are given by
Ω

(p)
n ≈ −ω

(p)
1 +

(ωc−ω
(p)
1 )

2 [ζ+MnM + ζ−M(1− nM)],

Ω
(p)
c ≈ 1

2 (ωc + ω
(p)
1 )− ωc[ζ+MnM + ζ−M(1− nM)],

Ω
(p)
t ≈ 1

2 (ωc + ω
(p)
1 ) + ωc[ζ+MnM + ζ−M(1− nM)].

(S4)

The first solution Ω
(p)
n is negative, so the peak with the lowest positive frequency of the transmission is located at

Ω
(p)
c , with a peak width approximately equal to κ. The shift of the peak positions, denoted as ∆Ωc, is given by

∆Ωc = Ω(+)
c − Ω(−)

c ≈ EM + ωcδζ. (S5)

Approximate to the zero-order of ζ, the average of peak positions Ωc = 1
2 (Ω

(+)
c + Ω

(−)
c ) ≈ ωc. The critical cavity

Q-factor is achieved when the shift in peak position equals the escape rate, ∆Ωc = κ. This lead to the expression for
Qc,

Qc =
ωc

|EM + ωcδζ|
, (S6)

giving Eq. (8) of the main text.
In the detuning region |E1 − ωc| ≫ ωcζ, EM, the Eq. (S3) has 3 solutions given by

Ω
(p)
n ≈ −ω

(p)
1 − ω2

c

(ωc+ω
(p)
1 )

[ζ2+MnM + ζ2−M(1− nM)],

Ω
(p)
c ≈ ωc − 2ω

(p)
1 ω2

c

|ω2
c−(ω

(p)
1 )2|

[ζ2+MnM + ζ2−M(1− nM)],

Ω
(p)
t ≈ ω

(p)
1 − ω2

c

|ωc−ω
(p)
1 |

[ζ2+MnM + ζ2−M(1− nM)].

(S7)
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Similar to the resonant region, the peak with the lowest positive frequency of the transmission is located at Ω
(p)
c , and

the peak width is now doubled to 2κ. The shift of the peak positions is given by

∆Ωc = Ω(+)
c − Ω(−)

c ≈ 4(E2
1 + ω2

c )ω
2
c

(E2
1 − w2

c )
2

EMζ2 − 4E1ω
2
c

|E2
1 − w2

c |
ζδζ. (S8)

Approximate to the zero-order of ζ, the average of peak positions Ωc = 1
2 (Ω

(+)
c + Ω

(−)
c ) ≈ ωc The critical cavity

Q-factor is achieved when the shift in peak position equals the escape rate, ∆Ωc = κ.

Qc =
(E2

1 − w2
c )

2

4ωcζ|(E2
1 + ω2

c )EMζ − E1(E2
1 − w2

c )δζ|
, (S9)

leading to Eq. (9a,9b) of the main text.

S2. SCREENING OF A VORTEX

Here we model the screened potential of a vortex based on 3D parabolic bulk bands [58, 65–67]. The opening of a
gap ∆(R) in the spectrum results in a displacement of the carrier density by δn(R), corresponding to a (non-screened)
charge density ρ(R) = −e δn(R). For a single vortex of size ξ with order parameter given by Eq. (11),

ρ(R) = eNµ∆
2
0

ξ2

R2 + ξ2
d lnTc

dµ
, (S10)

with R the radial distance from the vortex core and Nµ d lnTc/dµ ≈ n/µ2 [58], where n is the electron density and Nµ

is the density of states at chemical potential µ. With two vortices separated by a distance d > ξ, the charge density
contains contributions from each vortex.

To account for electric screening due to bulk carriers [65, 66] in the superconductor, we use a Thomas-Fermi
approximation and solve the screened Poisson equation for the screened electric potential φscrn(R) [58]:

[∇2 − λ−2
TF]φscrn = −4πρ , (S11)

where λTF = (8πe2Nµ)
−1/2 is the screening length. In our numerical simulation, we take λTF to be one lattice constant,

λTF ≈ 5 nm. The Green’s function corresponding to Eq. (S11) is G(r⃗, r⃗ ′) = − 1
4π|r⃗−r⃗ ′|e

−|r⃗−r⃗ ′|/λTF , therefore, on the

lattice we have

φscrn(r⃗) =

ˆ
V

ρ(r⃗ ′)

|r⃗ − r⃗ ′|
e−|r⃗−r⃗ ′|/λTFd3r ′. (S12)

After performing this calculation with a two-vortex source term, we then use φscrn in Hamiltonian given by Eq. (10),
by setting µ → µ+ eφscrn.
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Figure S1. The screened potential in x and z (inset) directions for a system with two vortices and λTF = a = ξ. The system is
a cuboid with dimensions 100ξ× 50ξ× 5ξ. The two red dots indicate the positions of the two vortices. The screened potential
in the x direction is plotted along the blue line in the left cuboid and in the z direction (inset) it is plotted along the orange
line in the right cuboid.


