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ABSTRACT

Scientific progress often relies on unexpected discoveries and unique observations. In

fact, many of the most groundbreaking scientific advances throughout history have been the

result of serendipitous events. For instance, the discovery of penicillin by Alexander Fleming

was a result of him noticing a mold growing on a petri dish that was contaminating his

bacterial culture. Similarly, the discovery of the cosmic microwave background radiation,

which is considered one of the strongest pieces of evidence for the Big Bang theory, was

the result of two scientists accidentally stumbling upon it while conducting a completely

different experiment. These types of unexpected discoveries can lead to new avenues of

research and open up entirely new fields of study. During my PhD, I experienced a similar

phenomenon when I stumbled upon an anomaly in my experimental data that led me down a

completely new path of investigation. This unexpected discovery not only provided me with

new insights into the underlying mechanisms of my research, but also opened new avenues for

future research directions. It was a reminder that sometimes the greatest scientific progress

can come from the most unexpected places.

My primary focus was initially directed towards topological superconductivity. However,

this research direction was modified by unexpected findings while characterizing a SQUID.

Specifically, a unique response by a Josephson junction was observed when exposed to an in-

plane magnetic field. Chapter 1 details our experimental results on the SQUID. We observed

intriguing effects resulting from the in-plane magnetic field in the asymmetric evolution of

the Fraunhofer pattern suggesting the existence of additional underlying physics in the het-

erostructure, which may have been previously overlooked. This serendipitous finding served

as the impetus to explore simpler superconducting devices such as nanowires and rings.

Remarkably, subsequent investigations into the critical current of a superconducting ring re-

vealed a bi-modal histogram arising from the application of an in-plane magnetic field, which

was an unforeseen outcome. This adds to our observations made in chapter 1. Chapter 2 de-

tails the unique properties of Al-InAs superconducting rings. Further experiments involving

a superconducting nanowire resulted in the observation of non-reciprocal critical current un-

der an in-plane magnetic field perpendicular to the current direction, subsequently referred
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to as the superconducting diode effect. Chapter 3 delves into the non-reciprocal properties

of an Al-InAs superconducting nanowire. Our findings revealed the diamagnetic source of

non-reciprocity generic to multi-layer superconductors. Finally, chapter 4 provides a detailed

account of the fabrication processes for the superconducting devices, along with a discussion

of the measurement techniques employed to unveil the underlying physics.
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1. SEARCH FOR TOPOLOGICAL SUPERCONDUCTIVITY

1.1 Introduction to Topological Superconductivity

Topology is a branch of mathematics that studies the properties of space that are pre-

served under continuous deformations, such as stretching, bending, twisting, and folding,

but not tearing or gluing. It focuses on understanding the fundamental characteristics of

spaces and the relationships between their various elements. In the realm of physics, topol-

ogy manifests itself through the energy spectrum of materials. In quantum mechanics any

two wave functions that can be smoothly connected without interruption are considered to

be topologically identical. To classify systems based on their topology, a calculation is per-

formed to determine an integer value known as a topological invariant, such as the Chern

number[  1 ].

The physics becomes even more intriguing when combining topology with superconduc-

tivity to obtain what is known as a topological superconductor (TSC). In the simplest case,

consider a 1D p-wave superconductor with broken time reversal symmetry. The Hamiltonian

takes the form

H =
∑

Ψ†
pHBdG(p,∆)Ψp (1.1)

with

Ψp = (cp, c
†
−p) (1.2)

and

HBdG =
1

2

ε(p) ∆p

∆∗
p −ε(p)

 (1.3)

The energy is given by,

H2
BdG = ε2(p)+ | ∆p |2 (1.4)

E± = ±
√

ε2(p)+ | ∆ |2 p2, (1.5)

where ε(p) = p2

2m
− µ.When µ < 0 the spectrum is always gapped(E+ and E− bands do

not cross) even when ∆ = 0. Hence it is topologically equivalent to a band insulator.
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However, when µ is positive the gap is non-zero for ∆ > 0 and becomes zero when ∆ = 0.

The superconducting state is topologically distinct from the the trivial bulk insulator. A

topological phase transition is associated here with a change of µ across zero. The same

dispersion relation can be defined for a 1D Kitaev chain[ 2 ] described by the Hamiltonian,

H =
∑
j

−t(c†jcj+1 + c†j+1cj)− µc†jcj+ | ∆ | (c†j+1c
†
j + cjcj+1) (1.6)

where j represents the lattice sites and t represents the hopping energy. The resulting

dispersion relation has the form,

E± = ±
√

(2t cos p+ µ)2 + 4 | ∆ |2 sin2 p (1.7)

Now, define

γ2j−1 = c† + cj, (1.8)

γ2j = i(c†j − cj) (1.9)

This implies

cj =
1

2
(γ2j−1 + iγ2j), (1.10)

γj = γ†
j (1.11)

with γi, γj = 2δij. The γ is thus a Majorana operator. We can rewrite the Hamiltonian as

H =
i

2

∑
−µγ2j−1γ2j + (t+ | ∆ |)γ2jγ2j+1 + (−t+ | ∆ |)γ2j−1γ2j+2 (1.12)

Here when µ < 0 and | ∆ |= t = 0 the Hamiltonian takes the form,

H =
−iµ

2

∑
j

γ2j−1γ2j (1.13)
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This represents a chain with no Majoranas left unpaired which is a trivial phase. Now

consider a particular case where µ = 0 and | ∆ |= t > 0 resulting in a Hamiltonian,

H = it
∑
j

γ2jγ2j+1 (1.14)

Suddenly, we note that the last and first Majoranas are unpaired resulting in a topologically

non-trivial phase. These unpaired Majoranas will remain unpaired unless the gap closes and

reopens : they are topologically protected from local perturbations. Similar results can be

extended to 2D case[  3 ] where the edge modes of the 2D p-wave superconductors can support

chiral Majoranas.

The hot pursuit for Majorana zero modes (MZM) are due to its huge potential to be used

in fault tolerant quantum computation[  4 ]–[ 6 ]. The presence of well-separated MZMs exhibit

non-Abelian braiding statistics representing a non-commutative operation which makes them

suitable for implementing unitary gate operations, which are essential for achieving fault-

tolerant quantum computation.

The quest for realizing MZMs has resulted in a wide array of theoretical proposals across

various systems. Numerous proposals have been put forward, encompassing a range of

physical systems such as fractional quantum Hall states[ 7 ]–[ 10 ], spinless chiral p-wave su-

perconductors[ 2 ], [  3 ], [  11 ]–[ 13 ], topological insulator-superconductor hybrids[ 14 ]–[ 16 ], non-

centrosymmetric superconductors[ 17 ], helical magnets[ 18 ], carbon nanotubes[  19 ], spin-orbit

coupled ferromagnetic Josephson junctions[ 20 ], and many others. Several comprehensive

reviews[ 21 ]–[ 25 ] delve into the plethora of theoretical proposals exploring MZMs, providing

valuable insights and analysis on this subject.

Addressing the challenge of scalability is a crucial aspect of practical adoption for these

proposals. Among the various approaches, the realization of a hybrid superconductor-

semiconductor heterostructure[  26 ]–[ 29 ] has emerged as one of the most promising avenues.

The combination of well-studied s-wave superconductivity with the tunability and scalability

of semiconductor technologies holds significant potential for large-scale implementations of

Majorana zero mode (MZM)-based quantum computing. A p + ip superconductor is engi-
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neered by combining conventional s-wave superconductivity, a semiconductor quantum well

with high spin-orbit strength and a ferromagnetic[ 28 ], [  29 ],

Heff = HQW +H∆ +Hz, (1.15)

HQW =

∫
dxΨ†

(
− ∂2

x

2m
− µ− iασy∂x + hσz

)
Ψ, (1.16)

H∆ =

∫
d2r∆(Ψ↑Ψ↓ +H.c), (1.17)

Hz =

∫
d2rΨ†σzΨ (1.18)

Here α represents strength of the Rashba spin-orbit interactions[ 30 ]. The Zeeman term

Hz breaks the time reversal symmetry.Alternatively the Zeeman term which comes from

the ferromagnet can be replaced by a term arising from an external magnetic field.This is

enabled by growing a (110) quantum well with both Rashbha and Dresselhaus terms[  26 ]

and applying an external magnetic field aligned perpendicular to the Rashbha field. The

Rashbha coupling lifts the spin-degeneracy of the parabolic energy band and the Zeeman

term opens a gap as illustrated in fig  1.1 . When the chemical potential µ is within this gap

the condition for the topological superconductivity is satisfied,

Ez >
√

∆2 + µ2 (1.19)

where Ez = gµBB, ∆ is the superconducting gap and µ is the chemical potential.
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Figure 1.1. a)The spin degeneracy of the parabolic energy band is lifted by
Rashbha field. b) The Zeeman field opens a gap at k = 0. When µ is within
the gap the condition  1.19 is satisfied.

Once all the necessary conditions are met for the realization of a TSC, the next obvious

step is to verify its existence and distinguish them from mundane subgap excitations like triv-

ial Andreev levels. One of the most fundamental signatures to look for is the phase signature

associated with the presence of MZMs. In a superconductor-normal metal-superconductor

(SNS) Josephson junction, the presence of MZM turns the junction into 4π periodic as op-

posed to 2π periodic in the trivial case. The Josephson current current Ij ∝ sinφ evolves into

Ij ∝ sinφ/2[ 31 ]. Also known as fractional AC Josephson effect, this can also be observed as

doubling of heights of Shapiro[  32 ] steps under irradiation of radio-frequency waves. Another

method is to look for is the tunnelling properties of the MZMs. The presence of an MZM

should show up as a zero bias peak[  33 ]–[ 35 ] quantized to G = 2e2/h in the tunnelling spectra

as the emergence of MZMs gives rise to resonant Andreev reflection. Signatures of TSC can

also be seen in Coulomb blockade experiments in quantum dots[  36 ]–[ 38 ]. But here the Γs

are closer and overlaps significantly causing a deviation from zero energy. The idea stems

from the fact that in a superconducting even-odd Coulomb blockade effect the conductance

is 2e–periodic. The presence of MZM makes this 1e–periodic and hence can be seen in the

spacing of the Coulomb blockade peaks although in a quantum dot the MZM pairs are closer

and their overlap causes the energy to deviate from zero. These signatures are considered

necessary but not sufficient and hence cannot be used as fail-proof way to confirm MZMs
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since these can have alternate explanations like disorder induced trivial subgap states, Kondo

effect, Yu-Shiba-Rusinov (YSR) states etc. Thus far, no single experiment has successfully

marked all the check-boxes required to establish an observation as a truly significant signa-

ture of Majorana zero modes (MZMs). In short, although lot of promising signatures of TSC

have been seen, we are still far from getting a conclusive evidence of non-Abelian modes.

1.2 Detection scheme to search for topological boundaries

Our efforts in the search for TSC is based on the hybrid Al/InAs heterostructure plat-

form[ 39 ]. Narrow band-gap semiconductors like InAs and InSb are suitable options[ 26 ] as a

material platform to realize TSC due to its large g factors and strong spin orbit coupling.

The growth and fabrication of Al-InAs heterostructure has been well established. InAs is

very popular because the Fermi level at the InAs surface is pinned inside the conduction

band. This leads to the absence of Schottky barriers which helps in making high quality

ohmic and superconducting contacts to InAs relatively easy. Proximity effect in InAs was

demonstrated as early as 1985 in a Nb-InAs-Nb Josephson junction[ 40 ]. The demonstration

of a hard superconducting gap[  39 ], [  41 ], the observation of zero bias peaks in the conduc-

tance spectrum of Al-InAs nanowire in tunnelling regime[  42 ], [ 43 ] and observation of other

signatures of a topological phase[  44 ]–[ 48 ] has proved the system to be very promising.

A boundary between a topologically trivial and non-trivial region can be created exploit-

ing the condition  1.19 in primarily 2 ways : varying µ or varying Ez. The former is usually

achieved by using gating or by varying material parameters at the boundary. The latter

can be achieved by varying the magnetic field locally. Specifically, Ez = gµBB | sinφ− θ |

where φ and θ are polar angles of the momentum k and magnetic field B respectively. Thus

Zeeman term can be varied by modulating φ− θ. This can be achieved as shown in fig.  1.2 .

A curved p-wave superconducting nanowire is subjected to an in-plane magnetic field. The

magnitude of φ− θ varies along the wire and the condition for topological superconductivity

is satisfied only in a section of the wire creating two boundaries between a topologically

trivial and non-trivial regions. The position of the boundary is controlled by the magnitude

and direction of B.

21



𝛾1 𝛾1
∗

𝛾2 𝛾2
∗

𝛾1

𝛾1
∗

𝛾2

𝛾2
∗𝐵 𝐵

𝛾1 𝛾1
∗

Trivial Trivial

Topological

(a) (b) (c)

𝐵

Figure 1.2. a) Scheme to realize a topological boundary. The condition to
realize TSC is satisfied in the brown shaded region. The length and position of
this region is controlled by the magnitude and direction of B. b)and c) Scheme
to realize braiding of MZMs. The TSC regions controlled by B is rotated by
rotating the direction of B causing an artificial brading of the MZMs at its
ends.

One of the ways to detect such a boundary is a charge sensor. A pair of Majoranas is

characterized by a charge which can be measured using a charge sensor conveniently placed

close to the boundary. The charge detector should reflect a change of its state when it

detects a charge associated with the formation topological non-trivial region or its motion

near it. Fig  1.3 illustrates such a quantum dot charge sensor fabricated from an Al/InAs

heterostructure. The bottom Al/InAs nanowire is separated from the top gates by a 25 nm

thick AlOx dielectric. The set of two quantum dots next to each other is intended to be

used as a single electron transistor-charge sensor pair to simulate the formation and test the

detection of charge. But the device performance did not meet the required sensitivity for

such a measurement as gaps of the pinch off gates were larger than required for the operation

of the device under the depletion regime. Further experimentation is required to develop the

device and is reserved for later.
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100nm Al/InAs

Gate

S1 S2

D1 D2

Figure 1.3. A double quantum dot device is fabricated consisting of the two
Al/InAs nanowires (bright yellowish region) isolated from each other by a gate.
Additional side gates form a pinch off region resulting in a superconducting
quantum dot(QD). One of the QDs is used to simulate an electronic charge
and the other QD is used as a single electron transistor to detect the charge.

One of the unique properties of Majoranas are their braiding statistics which serves as

the ultimate proof of their existence. Braiding a pair of particles in simple terms entails

swapping their positions. Swapping the positions of two indistinguishable particles produces

no measurable change. But braiding of non-Abelian particles transforms system into a new

quantum state. In the time axis the braiding leaves a unique traceable ’strand’ distinguishing

non-Abelian particles from Abelian particles. Fig.  1.2 b and c illustrates the scheme to braid

MZMs. As indicated before the direction of B can be used to control the position of MZMs

along a curved nanowire. Extending this idea into intertwined loops of nanowires may enable

the exchange of MZMs around each other by rotating B.
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1𝑢𝑚

Figure 1.4. An eight shaped Josephson junction could be a platform to
realize our braiding scheme discussed in fig  1.2 The central bright regions are
TiAu deposited over the Al/InAs to form central contacts. In the narrow black
regions Al is selectively etched away to form Josephson junctions.

Practically, such an idea could be implemented using either nanowires or Josephson

junctions shaped as figure-8. A preliminary attempt to test the feasibility of such a device

by fabricating a figure-8–shaped Josephson Junction device as shown in fig  1.4 . But we

realized that it was substantially challenging to make the central contact with sizes of the

order of 100nm without shorting the contacts and the gates. In this device the Al etching to

define the Josephson junctions were made first. Then a 20nm HfOx dielectric was grown to

be used as a gate dielectric. After depositing the gate electrodes another 15nm layer of HfOx

was grown. A small hole of 100-200nm diameter was defined using e-beam lithography and

was attempted to etch using ion-milling. We realized that on test devices with progressively

smaller hole diameters, no contact to the center contact could be made for holes smaller than

500nm. This is due to re-deposition of etched oxide and PMMA into the holes. Considering

the fabrication challenges we decided to focus on the study of curved Josephson junction in

order to understand whether we can detect and manipulate a boundary between topologically

trivial and non-trivial regions using electron transport measurements.
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1.3 Planar Josephson Junctions

Gate 1

Gate 2

Al/InAs

Insulating 
buffer

JJS

JJC
InAs

𝐵∥

𝐵⊥

𝜃

Figure 1.5. A SQUID device is fabricated employing two extended Josephson
junction connected together to form a loop. The darker yellow regions are
Al/InAs, in the dark brown region both Al and InAs is etched away resulting
in an insulating layer. Two wide Josephson junctions JJS (straight) and JJC
(curved) are fabricated by selectively etching only Al from two narrow regions.
A layer of AlOx is deposited everywhere and a layer of TiAu is deposited on
top of the two junctions forming two independent gates.

Wide planar Josephson junctions fabricated from super-semiconductor heterostructures

have emerged as highly promising platforms for the realization of topological superconduc-

tivity [  49 ], [  50 ]. By subjecting these junctions to an in-plane magnetic field, the quasi-one-

dimensional region defining the junction exhibits the potential to host Majorana zero modes

(MZMs) at its ends. The system is predicted to undergo a topological phase transition by

varying the magnetic field or chemical potential, resulting in the formation of a topological

boundary at the extremities of the extended junction. Encouraging experimental signatures

of such phase transitions have been reported [  44 ]–[ 46 ], [  48 ]. In our experimental study, we

investigate the feasibility of inwardly shifting the boundary by introducing a bend to the

Josephson junction, as depicted in Figure  1.2 . We anticipate that the presence of MZMs
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will manifest through distinct variations in the critical current profile (Fraunhofer pattern)

of the junction under in-plane magnetic fields [ 51 ].

A Superconducting Quantum Interference Device (SQUID) is fabricated with two Joseph-

son junctions: a straight planar Josephson junction (JJS) and a curved planar Josephson

junction (JJC). The junctions’ conductance can be individually controlled by two electro-

static gates fabricated on top of each junction. Application of an out-of-plane magnetic field

enables phase control across the junctions. Figure  1.5 depicts an atomic force microscopy

(AFM) image of the device along with the orientations of the magnetic field.

(a) (b)

Figure 1.6. a)Critical current modulation of the straight junction with gate
b) Critical current modulation of the curved junction with gate

The individual gate dependence of the junctions at zero magnetic field are shown in fig

 1.6 . The DC voltage VDC across the junction is plotted (color) as a function of bias current,

IDC and gate voltage V crv
g and V st

g . Each of the junction is calibrated when the other junction

is kept under a gate voltage of Vg = −2.5 V , which is sufficient to ensure complete isolation.

We find that the Ic − Vg characteristics of both junctions are almost identical at B = 0.

Figures  1.7a and  1.7b illustrate the Fraunhofer interference phenomenon in JJS and JJC,

respectively. The periods ∆BJJS = 2mT and ∆BJJC = 1.8mT correspond to effective

junction areas of 1.03µm2 and 1.15µm2 for JJS and JJC, respectively. This implies that the

effective penetration depth is approximately λJJS ≈ 170nm and λJJC ≈ 130nm which is
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very close to similar experiments reports elsewhere[ 44 ], [  47 ]. When both junctions are active

(V crv
g = V st

g = 0), we observe SQUID oscillations with a period of 0.2mT, enveloped by the

Fraunhofer interference pattern, as depicted in Figure  1.7c . This corresponds to an effective

area of A = 10.3µm2.

(a) (b) (c)

Figure 1.7. a) Fraunhofer pattern in the straight junction.b) Fraunhofer pat-
tern in the curved junction. c) SQUID interference pattern with a Fraunhofer
envelope.

The extracted IcRN = 0.056 mV product is found to be almost 10 times smaller than the

maximum theoretical value IcRN = π∆/e = 0.68mV , for a short ballistic junctionGolubov.

where we use experimentally measured critical temperature of Al Tc = 1.5 K.

1.3.1 Current phase relation of the SQUID

In an asymmetric SQUID with critical current in junctions 1 and 2 Ic1 � Ic2, the phase

difference across the junction 2 is approximately π/2 and the total critical current Ic =

Ic1 + Ic2(φ + π/2) where φ is the phase difference. For a junction with arbitrary junction

transparency t, the current phase relation can be written as[  52 ],

Ic = Ic,0 sin(φ)/
√

1− t sin2(φ/2) (1.20)

In order to extract the CPR a gate voltage of Vg,str = 0, Vg,crv = −1.3V is applied at

T = 20mK resulting in Istc ≈ 3.5Icrvc . The Ic as a function of Bz is measured as shown in

fig.  1.8a . A Fraunhofer envelope is extracted by fitting a sin(x)/x function to the minima
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points of the oscillations and subtracted from the curve. Data for −0.2mT < Bz < 0.2mT

is then used to fit eq.  1.20 . Bz is converted to φ/φ0 assuming an area of 9µm2. We observe

a good fit with t = 0.75 (magenta). Also plotted is the simulated CPR for t = 0 (diffusive

regime) and t = 1 (ballistic regime). This shows that our device performs close the ballistic

regime as expected since the mean free path le = 300nm is larger than the junction length

of 120nm.
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Figure 1.8. a) Ic measured as a function of Bz shows the squid pattern on
top of a Fraunhofer pattern dominated by JJS. A sinx/x fit(red) is subtracted
from the dependence and the Bz is converted to φ/φ0 b)The current phase
relation of the SQUID. A fit with t = 0.75 (magenta) indicates that the device
is in ballistic regime.

1.3.2 Current distribution and Fraunhofer Pattern
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𝜙

Figure 1.9. Schematic of a wide Josephson junction.
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Consider a wide Josephson junction of width w and length l as shown in fig.  1.9 . At any

point x along the junction the local value of the Josephson current density is given by

Js = Jc(x) sin(γ(x)), (1.21)

where γ(x) is the phase difference across the junction at a position x. The total current is

Is =

∫
Jc(x) sin(γ(x))dx (1.22)

Both Jc and γ are, in general, can depend on the external magnetic field and be position-

dependent. In the simplest case it is usually assumed that Jc(x) is position-independent,

Jc(x) = Jc, and γ(x) varies linearly with x

γ(x) = γ0 +
2πBl

φ0

x, (1.23)

in this case

Is = Ic |
sin(πφ/φ0)

πφ/φ0

| (1.24)

This equation approximately describes measured variation of critical current in our Josephson

junctions as shown in fig  1.10 a, however the subtle physics is hidden in deviations from

the ideal case, for example non-uniform and x-dependent J(x). The measured Fraunhofer

pattern for JJC is slightly tapered towards Bz = 0 compared to JJS and in both cases the

nodes of the pattern do not reach zero.
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Figure 1.10. a)Fraunhofer pattern for JJC(top) and JJC(bottom) extracted
from fig  1.7b and fig  1.7a b) The extracted current distribution from a) using
inverse Fourier transform.

The rational to study Fraunhofer pattern was to look for hidden signatures of MZMs

and their motion in the Josephson junction. At a boundary of a topologically trivial and

non-trivial phases, where MZM resides, superconducting gap closes opening an extra channel

for current flow. Thus, we expected modification of J(x) when the boundary is formed. A

non-uniform current distribution will modify Is(B) dependence, fig.  1.11 shows Is(B) for

some current distributions assuming a linear γ(x). For example when the entire current is

concentrated more on the edges the Fraunhofer pattern evolves into a SQUID like pattern,

Ic ∝ sin πφ/φ0. In an extreme case where there are two local spots where the current is

substantially higher than the rest both the period and height of subsequent lobes become

non-uniform. Eventually, when the the spots fuse to one the pattern differs substantially

from a usual Fraunhofer pattern.

Inversely, current distribution inside the junction can be recovered from the measured

Is(B) using inverse Fourier transform on the Fraunhofer pattern. The extracted current

distribution from the Fraunhofer pattern for our Josephson junctions are shown in fig.  1.10 b.

We note that the current distribution extracted for JJS and JJC looks different. For JJC

the current is more uniform along the width of the junction, while for the JJS the current is

concentrated towards the centre. We note here that the accuracy of the current extraction

process is not high due to a limited number of lobes observed in the Fraunhoffer pattern.
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The alternate lobes of the Fraunhofer needs to be inverted before doing an inverse Fourier

transform. This becomes difficult when the nodes do not reach zero as noted earlier. Hence

this process can only be used to get a qualitative picture of the real distribution. Extracted

current distribution of some special cases of Fraunhofer patterns is shown in appendix fig

 1.12 .
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Figure 1.11. Fraunhofer patterns resulting from different current distribu-
tions with linearly increasing phase difference along the junction. As the cur-
rents are concentrated more on the edges the pattern turns SQUID-like. The
motion of a local spot of high current is immediately reflected in the Fraun-
hofer pattern.
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1/21/2
1/101/10

Ic

Ic

Figure 1.12. Dynes futon analysis can be used to extract the current dis-
tribution in a Josephson Junction from the Fraunhofer pattern. A simulated
junction with manually suppressed side lobes are shown on top. The side lobes
are suppressed by 1/2 and 1/10 in the second and third plots. The extracted
current from the real data is shown on the bottom. As the side lobes are sup-
pressed more the extracted current is more concentrated towards the middle.
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Figure 1.13. Evolution of Fraunhofer pattern with B‖ in a straight junction
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1.3.3 Evolution of the Fraunhofer pattern under in-plane magnetic field

The critical in-plane magnetic fields for our junctions are approximately Bc
‖ ≈ 400mT

and Bc
⊥ ≈ 350mT for magnetic fields aligned parallel and perpendicular to the junction,

respectively. The lower value for Bc
⊥ is attributed to the effect of flux focusing. In this

phenomenon, magnetic field lines bend into the junction area around the edges of the su-

perconducting Al leads resulting in non-zero Bz component. We have observed that flux

focusing becomes a significant challenge in device design when dealing with curved geome-

tries. The presence of Bz(x) field component alters J(x) distribution, making it challenging

to establish a clear boundary between topologically trivial and non-trivial regions. Further-

more, this non-uniformity in magnetic fields can also be present in straight junctions with

non-uniform edges[ 43 ].

We note here that similar device with only straight junctions was reported to have signa-

tures of gap closing and reopening under certain magnetic fields and gate voltages[ 46 ], [  47 ].

We do not see such a signature in our system, which can partly be attributed to the low

transparency of the junctions.
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Figure 1.14. Evolution of Fraunhofer pattern for a) JJS and b) JJC under in
plane magnetic field B‖. Fraunhofer pattern of JJS becomes asymmetric for
B‖ > 50mT . For JJC the Fraunhofer pattern becomes asymmetric and is sup-
pressed sooner than JJS. c)On applying B⊥ the entire pattern is symmetrically
suppressed for JJS.

The evolution of the Fraunhofer interference pattern as a response to in-plane magnetic

field B‖ is shown in Fig  1.14 . We observe that for JJS the Fraunhofer pattern becomes
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asymmetric for B‖ ≥ 100mT eventually disappearing at B‖ = 400mT . For JJC , again, the

pattern becomes asymmetric for B‖ ≥ 100mT , but also suppressed much faster. When B⊥

is applied on JJS the pattern is symmetrically suppressed much faster. The plots here are

extracted from the contour plots of I-V curves in fig.  1.13 and  1.17 .
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Figure 1.15. Current distribution extracted from fig.  1.14 for a) JJS and b) JJC.

Fig.  1.15 displays the extracted current distribution from fig.  1.14 where only the Bz > 0

half of the Fraunhofer pattern is used to extract the current. We find that for JJS, as B‖ is

increased the current is slightly concentrated more towards the edges along with a decrease

in overall magnitude, whereas in JJC we do not observe such a behaviour. The current is

uniformly distributed along the junction for all values of B‖. A qualitative understanding

can also be formed from the evolution of the relative heights of the lobe as shown in fig.  1.16 .

We observe that the relative lobe height for the 2nd lobe increases for Bz > 0 for both JJS

and JJC. But for Bz < 0 the relative lobe heights decreases for JJS while it still increases for

JJC. An increase in relative 2nd lobe height can be associated with a SQUID–like behaviour

of a Josephson junction with currents concentrated near the edges. Such behavior has been

reported in straight junctions before [ 43 ]. And the opposite can be inferred as a concentration

of current towards the centre.
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Figure 1.16. Relative heights of the 2nd lobe, as a function of B‖ for a)JJS and b) JJC
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Figure 1.17. Evolution of Fraunhofer pattern with B⊥ in a straight junction

Looking closely at the available data, we realize that the asymmetry is present primarily

in the lobe heights. The central lobe and the other lobes are symmetric around its maxima

points except for the fact that the nodes do not reach zero. The nodes of the Fraunhofer

pattern at the point of insertion of a full quantum flux and at each insertion the maximum

critical current decreases or increases depending on the direction of the magnetic field. Hence
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if n is the vorticity associated, then the equation for the Fraunhofer pattern can be written

as ,

Is = Ic(n) |
sin(πφ/φ0)

πφ/φ0

| (1.25)

where, Ic(n) = Ic(0) + sign(Bz)sign(B‖)nI
′
c, where I ′c is a constant. Similar experimental

result on a straight junction was reported in ref [ 53 ]. We note here that both of these obser-

vations defers from the observations of non-reciprocal super current in Josephson junctions

fabricated from similar heterostructures[ 54 ] where critical current asymmetry depends on

the current direction.

We also measured the Fraunhofer interference for the curved junction for different angles

of in-plane fields, in particular, that shown in fig  1.18 . We applied a magnetic field of 100mT.

When θ = 45o, the component along the junction,Bl, points along the same direction relative

to the junction with maximum magnitude at the middle. This causes asymmetry in the

Fraunhofer pattern similar to the effect of B‖ in the straight junction. The field component

perpendicular to the junction,Bp, points in opposite direction in the two sections. In the

middle Bp vanishes. For θ = 135o, Bl points in opposite direction relative to the junction

and vanishes at the middle. Whereas Bp points along the same direction with maximum

magnitude at the middle. This causes the Fraunhofer pattern to be symmetric but the critical

currents are much more suppressed, similar to the effect of B⊥ on the straight junction. The

extracted current distribution only shows a suppression of the critical current distribution

and no other patterns upon rotating the magnetic field.
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Figure 1.18. Development of Fraunhofer pattern in curved junction with
in-plane magnetic field of magnitude 100mT for a) θ = 45o and b) θ = 135o.
c) The extracted current distribution from a) and b).

39



𝐵∥ = 400𝑚𝑇

𝐵∥ = 50𝑚𝑇 𝐵∥ = 100𝑚𝑇

𝐵∥ = 150𝑚𝑇 𝐵∥ = 200𝑚𝑇

𝐵∥ = 300𝑚𝑇

Figure 1.19. Evolution of Fraunhofer pattern with B‖ in a curved junction
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Figure 1.20. Effect of gate on critical currents for different in-plane fields for device A
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1.4 A note about Josephson penetration depth

(a)

𝐵∥

𝐵𝑧

Josephson vortex 2

Josephson vortex 1

𝐴𝑙

𝐼𝑛𝐴𝑠

𝐼𝑛𝐺𝑎𝐴𝑠

(b)

Figure 1.21. a) Formation of Josephson vortices in a wide Josephson junc-
tion. b) Vortices can be formed in the vertical heterostructure too producing
additional non-reciprocal effects which could lead to asymmetric Fraunhofer
patterns.

In the previous calculations, effects of the screening currents ware ignored. In order to

account for the screening currents, we can assume a vector potential, ~A = Bz(y)xŷ, where

the magnetic field is pointed along ẑ, and write eq  1.23 in the form,

γ(y + dy)− γ(y) =
2π

φo

Bz(y)l dy, (1.26)

Bz(y) =
dγ

dy

φo

2πl
(1.27)

employing Maxwell’s equation,

∇× ~B = µo
~j = µo

~jc sin γ (1.28)
d2γ

dy2
=

sin γ

δ2j
(1.29)
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where,

δj =

√
φo

2πjcµol
. (1.30)

δj is the Josephson penetration depth. Eq  1.29 is the sine-Gordon equation. If jc is

sufficiently small, such that δj > w, then we can ignore the effect of screening currents. But

if δj < w, screening effect must be considered while calculating the currents. The screening

currents flow in both the superconductors in a layer of width, δj as shown in fig  1.21a . In

case of strong fields, the sine-Gordon equation can have a "soliton" type solution,

γ(y) = 4 arctan
[
e(y−yo)/δj

]
. (1.31)

This leads to the formation of Josephson vortices, with each vortex carrying a flux quan-

tum, as depicted in  1.21a [ 55 ], [ 56 ]. For the Josephson junctions we fabricated, jc ≈ 50

uA/um2, l ≈ 2 µm and δj ≈ 1mm � w. Hence, we can ignore the effects of screening

currents here. But it becomes interesting and relevant when such vortices are formed not

in the planar Josephson junction but in the vertical heterostructure as shown in fig  1.21b .

Our devices are fabricated from a heterostructure of Al/InAs where the Al induces super-

conductivity into InAs. Josephson coupling between Al and InAs layers is strong and in the

presence of in-plane magnetic field Josephson vortices can form between the layers. Forma-

tion of such vortices and associated effects of critical current non-reciprocity are discussed

in Chapter 3.

1.5 Conclusion

In conclusion, in this chapter we investigate whether signatures of Majorana zero modes

(MZMs) can be detected in the shape of Fraunhofer patterns. However, our attempts to

observe these signatures in Josephson junctions (JJs) were hindered by two main challenges.

Firstly, the critical in-plane magnetic field of the JJs was found to be significantly lower than

the field of a 0− π transition, another signature of the topological transition[ 46 ]. Secondly,

strong flux focusing was found to alter current flow in the junction and further mask any
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enhancement of current associated with boundaries between topologically distinct phases.

Despite these obstacles, we observed intriguing effects resulting from the in-plane magnetic

field in the asymmetric evolution of the Fraunhofer pattern. This observation suggests the

existence of additional underlying physics in the studied heterostructure, which may have

been previously overlooked. As a result, we have decided to pursue our next idea of realizing

a topological superconductor (TSC) using nanowires, acknowledging the potential for novel

findings and advancements in this direction.
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2. STATISTICS OF SWITCHING CURRENT IN A RING

2.1 Introduction

The experimental investigations conducted on Josephson junctions have provided valu-

able insights into the characteristics of our heterostructures and the challenges associated

with establishing a boundary of a topological superconductor (TSC) within a curved Joseph-

son junction. Our initial attempt to localize Majorana zero modes (MZMs) in the region

between the two superconducting banks of the Josephson junction proved unsuccessful pri-

marily due to the premature loss of superconductivity at low in-plane magnetic fields and the

occurrence of flux focusing effects, masked the signatures of a topological boundary. Conse-

quently, we have shifted our focus to a new approach involving the localization of MZMs in

nanowires. But a direct probe is difficult as the transport properties will be dominated by

Al in an Al/InAs heterostructure in its superconducting state. Therefore, we have opted for

an indirect probing method, which involves analyzing the statistics of switching current of

the nanowire.

Quantum fluctuations of order parameter play a major role in superconducting transi-

tions[ 57 ]. Intrinsic quantum fluctuations can induce phase slip events called quantum phase

slips (QPS), which have been studied extensively [  58 ]–[ 60 ]. QPS are often regarded as the

dual counterpart of Josephson junctions [ 61 ]. Experimental observations of QPS have been

reported in nanowires [ 62 ]–[ 64 ]. In our study, we aim to explore the possibility of detecting

Majorana zero modes (MZMs) using similar methods. The presence of MZMs is associated

with a 2π winding of the superconductor’s phase, enabling them to act as phase slip junc-

tions [  38 ], [ 65 ]. Thus, our investigation focuses on determining if we can identify signatures

of MZMs as QPS centers and observe corresponding effects in the statistical properties of

the switching current [  62 ], [  63 ].
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Figure 2.1. AFM images of a) device A and b) device B. The yellow regions
are Al/InAs, in the dark regions Al is etched away exposing InAs. A trans-
parent layer of AlOx covers the entire device. A Ti/Au gate layer (not shown
in image) is subsequently added on top.

We extended the bend nanowire design in fig  1.2 a into a doubly connected structure:

a ring. We measured two devices A and B fabricated from Al/InAs quantum well wafers

M and J respectively. These wafers have similar heterostructure design with a the major

differences in the thickness of Al layers (7nm for wafer M and 20nm for wafer J) and surface

morphology shown in the AFM image in fig  2.4a and  2.4b . For further details regarding the

heterostructure, refer to Chapter 4.

2.2 Critical current oscillations in a superconducting ring

A superconducting ring is governed by the relation

∮
dlv = 2π~/m(n− φ/φ0) (2.1)

where n is a quantum number and φ is the external flux through the ring. The diamagnetic

persistent current flowing through the ring is given by,

Ip = C(n− φ/φ0) (2.2)
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where, C = f(l, A, ns,m). For the simple case of a symmetric ring with constant properties

throughout the ring,

C = 2Anseπ~/ml (2.3)

and the kinetic energy of the system becomes,

En =
C

2
φ0(n− φ

φ0

)2 (2.4)

-3 -2 -1 0 1 2 3

𝐸

𝜙 / 𝜙0

𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4

Δ𝐸

𝐼𝑝 0

𝐼𝑐

𝐼𝑐,1 + 𝐼𝑐,2

𝐼𝑐,1 + 𝐼𝑐,2 − 𝐼𝑝,𝑚𝑎𝑥

𝐼𝑝,𝑚𝑎𝑥

−𝐼𝑝,𝑚𝑎𝑥

Figure 2.2. switching current dynamics for a symmetric ring. The
kinetic energy curves(bottom) corresponding to the vorticity n cross each other
when half fluxes(φ/φ0 = n + 1/2) are inserted. The energy gap ∆E between
two such curves exponentially suppresses the probability of the second meta-
stable state which is reflected in the bimodal switching current distribution
in fig.  2.4a . The persistent currents Ip (middle) switches sign at the crossing
points. Correspondingly the critical current of the ring oscillates (top) with
a maxima at integer flux quantum and a minima at half fluxes (where Ip is
maximum).
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The kinetic energy and the persistent current variation as a function of φ/φ0 is illustrated

in fig  2.2 . The vorticity is different for different parabolas. If the system evolves adiabati-

cally, the system stays in the ground state, changing vorticity at every crossing point of the

parabolas(φ = (n+1/2φ0). If there is a rapid change of parameters( such as a rapid change

of current through a nanowire), there is a finite probability, for the system to remain in an

excited state, exponentially suppressed by the energy gap ∆E.This is evident in the switch-

ing current current statistics in fig.  2.4a which shows the histogram of switching currents for

N = 10000 as a function of out-of-plane magnetic field Bz. The color scale represents the

counts in a logarithmic scale. The inset shows a single histogram at Bz = −1.6mT , where

the vertical axis shows counts in logarithmic scale, which is near a crossing point. Clearly,

the first peak is exponentially smaller than the second peak conforming to the theoretical

illustration of energy variation in fig  2.2 . At the crossing points of parabolas the persistent

current Ip switches sign.

On applying an external current Iext with Bz = 0 the currents are distributed between

the two arms in the inverse ratio of the kinetic inductances of the two arms Lk as illustrated

in fig.  2.3 .

I1/I2 = Lk2/Lk1 (2.5)

Since the ring is symmetric Lk1 = Lk2. Hence,

I1 = I2 = Iext/2 (2.6)

Thus the effective critical current becomes Ic,eff = 2Ic. When Bz 6= 0 Ip adds to the current

through one arm and subtracts from the other giving,

I1 = Iext/2 + Ip (2.7)

I2 = Iext/2− Ip (2.8)
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Note here that the entire ring turns normal when the current through either of the arms

exceeds its respective Ic. Thus Ic,eff is determined by whichever arm turns normal first. In

this case for B⊥ > 0 since | Ip | adds to I1 Ic,eff is determined by arm 1,

Ic,eff = 2Ic − 2Ip = 2Ic − 2CB⊥ (2.9)

when B⊥ < 0 ,| Ip | adds to I2 Ic,eff is determined by arm 2 but takes the same form as

before giving,

Ic,eff = 2Ic − 2Ip = 2Ic + 2CB⊥ (2.10)

Φ
𝑝

𝐼1 − 𝐼𝑝

𝐼2 + 𝐼𝑝

𝐼𝑒𝑥𝑡

x

𝐵𝑧 𝐵𝑧

𝐼𝑒𝑥𝑡
𝐼𝑝

Φ

𝐼1 + 𝐼𝑝

𝐼2 − 𝐼𝑝

Figure 2.3. In a symmetric ring the external current is distributed equally
between the two arms . For Bz 6= 0 the persistent current Ip adds and subtracts
to the either of the arms depending on the direction of Bz and vorticity n of
the ring.

Thus Ic,eff falls linearly and symmetrically as the magnitude of B⊥ is increased in either

directions. The same effect is repeated at every addition of half a flux quantum, when

Ip switches sign and the arm determining the Ic,eff also switches repeating the triangular

pattern as illustrated in the top section of fig  2.2 .
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Figure 2.4. Contour plots of histogram of switching current as function of
Bz of a) device A and b)device B. The color scale indicates the counts in a
logarithmic scale. Device A shows normal oscillations and bimodal histogram
corresponding to the meta-stable states associated with multiple vorticity. The
lower peak is exponentially suppressed as is obvious from the exponentially
smaller peak value in the line cut shown in the inset. Device B shows an
unusual behaviour where the bimodal distribution is not seen near the minima
indicating the absence of meta-stable states which is also seen in the line cut
in the inset.

2.3 Switching current statistics in superconducting rings

In order to measure the switching current statistics the current was ramped from 0 to

a large value and the voltage across the ring was measured. The voltage jump from zero

to a non-zero value was detected and the corresponding current was recorded. The process

is repeated N times with a typical value of N = 10000. The standard deviation and mean

value was computed in a standard way.

Switching current statistics of device A and B is shown in fig  2.4a and  2.4b respectively.

Here, the histograms of switching currents are plotted in the vertical axis where the color

represents the counts in a logarithmic scale. The insets display the line cuts showing the

histogram for a fixed value of Bz on a logarithmic scale.
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In device A the switching current Isw follows the discussion in section 2.2 . Isw oscillates

with a period ∆B ≈ 2mT matching the calculated period ∆B = φ0/A
A
loop where Aloop is the

area of the ring. The switching current distribution is multi-valued due to the meta-stable

states associated with the winding number n of the order parameter(vorticity). The vorticity

fluctuates between the nearest number near the crossing points with the state with higher

energy exponentially suppressed. This is evident from the exponentially different heights of

the peaks in fig  2.4a . Similar statistics and oscillations of the switching current has been

previously observed[ 66 ], [  67 ] in superconducting rings.

The Isw statistics of device B is significantly different from device A as shown in fig  2.4b .

We observe that the histogram oscillations do not show any signs of a double distribution

associated with the fluctuations in n. The vertical cut (inset) shows only a single peak in

logarithmic scale showing no signs of meta-stable states. The periodicity of the oscillations

match the theoretically calculated value ∆B = φ0/A
B
loop ≈ 1mT .

2.4 Effect of in-plane magnetic field

𝐵∥ = 1.9𝑇

(a) (b)

Figure 2.5. a) Contour plot of histograms of switching currents in device A
at B‖ = 1.9T .b) Histogram of switching currents as a function of B‖ shows an
anti-crossing at B‖ = 1.8T .
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Fig  2.5 a shows the switching current statistics as a function of Bz when in-plane field

B‖= 1.9T is applied. The switching current is suppressed to about 50% of its value at B = 0.

We do not notice any other significant effect of B‖. But we notice a unique anti-crossing

behaviour in the plot of IswvsB‖ as seen in fig  2.5 b. B‖ exhibits a slight misalignment of

φ ≈ 0.05o, resulting in a non-zero Bz component. The distribution in this scenario follows

the expected behavior, with a crossing point observed at B⊥ ≈ 0.4 T. At B⊥≈ 1.8 T, an

anti-crossing is observed instead of the expected crossing. This implies a gap opening in

the E − Bz curve shown in fig 2.2 . But the absence of any such signatures in in fig  2.5 a is

intriguing.

(a) (b)

Figure 2.6. switching current distribution as function of in-plane magnetic
field B‖ in a) logarithmic and b) linear scale. The distribution turns bimodal
distribution of switching currents is observed for B‖ > 400mT . This is not
the same as the meta-stable states as the lower arm of the distribution is not
exponentially suppressed.

The Isw distribution in device B under B‖ is shown in fig  2.6a . Initially, a slight increase

in Isw is observed, reaching a maximum at B‖≈ 0.2 T (A similar behavior was also observed

in the nanowires discussed in Chapter 3, suggesting a common underlying mechanism). No-

tably, an unexpected and surprising behavior manifests itself at B‖= 0.4 T in device B. The

histogram exhibits a bimodal distribution, a departure from the single-peaked distribution
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observed in other regions. Importantly, this bimodal distribution is observed specifically

within the range of 0.4 T < B‖< 0.5 T. It is crucial to emphasize that this bimodal distribu-

tion is distinct from the bimodal behavior caused by fluctuations in the vorticity of the ring,

where the distribution is exponentially suppressed due to the presence of an energy gap. In

contrast, the bimodal distribution observed in this case remains observable and comparable,

even in a linear color plot as seen in fig  2.6b .

(a) (b)

Figure 2.7. Histogram of switching currents as a function of in-plane mag-
netic field B‖ for a) θ = 450 and b) θ = −450. A field misalignment of φ = 1.20

effects in a small Bz component for B‖ which provides more information re-
garding the nature of the bi-stable states. The colors represent the counts
in a logarithmic scale. The bottom plots in a) shows the Isw distribution as
function of Bz at fixed B‖ showing the transition between the two bi-stable
states.

Further insights into the bimodal distribution is gained by intentionally misaligning B‖ by

an angle of approximately 1.2o. This deliberate misalignment allows for a comparison of the

vortex state of the ring in two distinct states. Fig 2.7a and  2.7b summarizes all the different

observations. First, the two multi-valued states have phase difference of approximately π, as

evidenced by the phase-shifted oscillations of the switching current (Isw) shown in Fig.  2.5 

fro θ = 450 where θ is the angle between the in-plane field and the current direction. Second

we observe two bimodal distribution, the first beginning at B‖ = B1 and the second at B‖
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= B2. For θ = −450 we observe that the bimodal distribution vanishes but a new set of

phase shifted oscillations intertwined starts at B‖ ≈ 400mT . A complete set of data showing

the dependence of the statistics on θ is plotted in fig  2.8 where there is no Bz component

for B‖ and in fig  2.9 where a small misalignment is present. A summary of the extracted

parameters from these plots is shown in fig  2.10 . The slope, α = dImax
dB‖

, plotted as a function

of θ shows a sinusoidal oscillation with the maxima and minima occurring around θ = 90o

and θ = 270o. This results from from the non-reciprocity due to the diamagnetic currents in

the Al-InAs multilayer structure[  68 ]. When the direction of the current is inverted, the slope

of the entire curve is inverted, as shown in fig  2.11 which, again, shows the non-reciprocal

superconductivity due to the diamagnetic response to in-plane field. B1 stays between 200mT

and 400mT while B2 ≈ 600mT only for specific values of θ.The gap between the peaks of the

bimodal distribution ∆Ijump remains constant in magnitude switching sign around θ = 1500.
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1 arm

1 arm
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Figure 2.8. Complete set of data for the histogram of switching currents as
a function of in-plane magnetic fields for different θ.
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Figure 2.9. Complete set of data for the histogram of switching currents as
a function of in-plane magnetic fields for different θ with slightly misaligned
magnetic field producing a Bz component.

Figure 2.10. Plot of extracted parameters as a function of θ for device
B. The slope α = dImax

dB‖
varies sinusoidally with angle θ with a maxima and

minima at θ = 90o and θ = 270o where the perpendicular component B⊥
has the maximum magnitude. B1 stays between 200mT and 400mT while
B2 ≈ 600mT only for specific values of θ.The gap between the peaks of the
bimodal distribution ∆Ijump remains constant in magnitude switching sign
around θ = 1500.

55



𝐼 −𝐼 +

𝜃 = 45

𝜃 = 225

𝐵∥ (mT)

𝐼 𝑠
𝑤
(𝑢
𝐴
) 𝜃 = 45

𝜃 = 225

𝐼 −𝐼 +

Figure 2.11. a) When the direction of current is inverted, the slope of the
entire curve is inverted which results from the non-reciprocity due to the dia-
magnetic currents in the Al-InAs multi-layer structure.

2.4.1 Effect of gating

One of the unique and unexpected observations of the effect of gating on switching cur-

rents is that the switching current shows an increase in magnitude on applying negative gate

voltage as shown in fig.  2.12 . Such a behaviour was observed on multiple superconducting

devices. The underlying physics is not clearly understood yet although we hypothesize the

physics as follows. On applying a negative gate voltage the InAs around the superconductor
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is depleted of conducting electrons and the superconducting gap is hardened. This reduces

scattering of electrons into the normal regions from the superconducting InAs. This could

potentially increase the current current. The increase is very small(< 1%) albeit observable

within the precision of our measurement technique. Detailed contour plots of gating is shown

in fig.  1.20 in appendix.
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Figure 2.12. a) A negative gate voltage causes the switching current to
increase for B‖ < 2.35T . b) Standard deviation as a function of gate voltage
for different B‖

2.4.2 Effect of temperature

As seen in fig  2.13 , on cooling down device A we observed that the mean value of the

switching current follows an expected Bardeen relation[  69 ]. The standard deviation decreases

initially until T = 800 mK and then remains constant. This is a unique behaviour associated

with a quantum phase transition from a thermally activated phase slip regime to a quantum

phase slip regime[  62 ], [  63 ]. But we did not see any other signatures and hence cannot confirm

conclusively of any phase transitions.

Another remarkable phenomenon emerges in device B. The theoretical curves for the

Bardeen dependence of Ic on temperature and the BCS energy gap ∆BCS are also displayed.

Strikingly, the experimental curve aligns with the curve corresponding to ∆BCS(T ) rather

than Ic(T ), defying our expectations.
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Figure 2.13. a) The switching current follows the Bardeen relation[  69 ] b)
Standard deviation decreases and saturates below T = 800mK which is a
signature of quantum phase transition from a thermally activated phase slip
regime to a quantum phase slip regime.

It is important to mention that several additional circular loop devices from the same

wafer (wafer J) were fabricated and measured. However, this effect was not observed in any

other devices. Nevertheless, the observed phenomenon in device B remained robust across

multiple cooling cycles. Furthermore, no abnormal features were detected in the AFM image

of the device. Regrettably, the origin of these observations has not yet been comprehensively

understood. We speculate that the underlying physics may be intricately linked to the

mechanisms governing non-reciprocal effects in multi-layer superconductors, combined with

non-uniform material parameters within the specific region of the wafer where the ring is

fabricated. This motivated us to further study superconducting nanowires fabricated from

this heterostructure.

2.5 Conclusion

In light of the observed switching current statistics of Device A, although certain distinc-

tive characteristics are present, we have determined that they lack the necessary significance

to be considered indicative of a topological transition. However, the remarkable anti-crossing
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behavior exhibited at high magnetic fields necessitates further experimentation. The ex-

perimental observation of bimodal distribution has provided invaluable insights into the

underlying physics of the heterostructure which might have been previously overlooked. Bi-

stable devices form a critical component of quantum computing technologies. Nevertheless,

the non-reproducibility of our devices raises concerns and emphasizes the need for further

investigation. Consequently, we have embarked on additional experimental investigations

concerning Al/InAs superconducting nanowires. In Chapter 3, we discuss non-reciprocal su-

perconductivity, which, when combined with local non-uniformity in heterostructure growth,

emerges as the most plausible explanation for the observed bimodal distribution.
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3. NON-RECIPROCAL CRITICAL CURRENT IN A

NANOWIRE

3.1 Introduction

This chapter presents an experimental investigation of the non-reciprocal critical cur-

rent (NRC) in nanowires fabricated from an Al/InAs hybrid heterostructure. The primary

objective of this study is to unravel the underlying origin of this observed non-reciprocity.

By carefully designing and fabricating the nanowires, we gain insights into the fundamental

physical mechanisms governing the NRC phenomenon. We discover that the mechanism is

applicable to any generic multi-layer superconductors. Our findings provide a compelling ex-

planation to the NRC observed in previous works [  70 ] and [  71 ] and can lead to development

of future applications.

3.2 Observation of non-reciprocal critical current in a nanowire

The term “superconducting diode effect” has been used to describe NRC in different

systems, including thin superconducting films [  72 ]–[ 77 ] and Josephson junctions [  54 ], [ 78 ]–

[ 85 ]. In the former experiments the presence of out-of-plane magnetic field and formation of

vortices is essential for the observation of NRC, in this case the critical current is determined

by the strength and symmetry of the flux pinning potential. In the latter case the critical

current in Josephson junctions is determined by the overlap of Andreev states. In this paper

we restrict our discussion to the origin of NRC in long nanowires, where critical current is

determined by the de-pairing velocity of Cooper pairs (the Bardeen limit [  69 ]).
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Figure 3.1. Non-reciprocal critical current in Al/InAs nanowires. (a)
Histograms of switching currents for 10,000 positive I+sw and negative I−sw cur-
rent sweeps performed at T = 30 mK and B⊥ = 100 mT. Inset shows a typical
current-voltage characteristic. (b) Average switching current for positive 〈I+sw〉
and negative 〈I−sw〉 sweeps, non-reciprocal difference ∆I = 〈I+sw〉 − 〈I−sw〉 and
an average of all sweeps 〈Isw〉 is plotted as a function of in-plane magnetic
field B⊥. In (c) enlarged ∆I data is colored to signify non-monotonic field de-
pendence and multiple sign changes. (d) Dependence of ∆I on in-plane field
orientation is measured at a constant B = 100 mT. Blue line is a fit with a
sine function. Insert shows an AFM image of a 3 µm-long wire connected to
wide contacts, yellow areas are Al, in darker areas Al is removed and InAs is
exposed.

We have studied switching currents Isw defining a transition from superconducting to

normal state in nanowires fabricated from Al/InGaAs/InAs/InGaAs heterostructures [  39 ],

where patterned Al top layer forms a nanowire and induces superconductivity in a high

mobility InAs quantum well via the proximity effect. An AFM micrograph of a typical
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device is shown in the inset in Fig.  3.1 . A typical current-voltage characteristic exhibits a

sharp switching transition limited by the current resolution (< 5 nA for the fastest sweep

rates used in our experiments). A histogram of switching currents I±sw for positive (+) and

negative (-) current sweeps is shown in Fig.  3.1 (a) for 10,000 sweeps. Field dependence of

average values 〈I+sw〉 and 〈I−sw〉 is plotted in Fig.  3.1 (b) for the in-plane field B⊥ perpendicular

to the wire. The 〈I+sw〉 and 〈I−sw〉 can be separated into a symmetric 〈Isw〉 = (〈I+sw〉+ 〈I−sw〉)/2

and asymmetric ∆I = 〈I+sw〉 − 〈I−sw〉 parts, the latter being the non-reciprocal component

of the supercurrent. Both 〈Isw〉 and ∆I are non-monotonic functions of magnetic field. As

shown in the Supplement, a minima of 〈Isw〉 at low fields vanishes above 350 mK (0.3 TC),

while there is no change in ∆I at least up to 750 mK (> 0.6TC). This difference in energy

scales for the appearance of NRC and non-monotonic evolution of 〈Isw〉 indicates that these

are unrelated phenomena, and below we focus on the origin of NRC. Some devices were

fabricated with a top gate, which allows electrostatic control of the electron density in the

InAs layer not covered by Al; we found that depletion of the 2D electron gas in the exposed

InAs results in a slight increase of 〈Isw〉 but does not affect ∆I. Similar field effect has been

observed previously in superconductor nanodevices [  86 ] and was attributed to the presence

of quasiparticles [  87 ], a conclusion consistent with the observed gate dependence of the 〈Isw〉.
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Figure 3.2. Dependence of NRC on the nanowire length and crystal-
lographic orientation. (a) NRC is plotted for two 2 µm-long wires oriented
along [110] and [110] crystallographic axes. Insets define mutual orientataion
of wires and fields. (b) NRC for 2, 3, and 5 µm wires. The top and bot-
tom curves are shifted vertically by 0.2 µA. Brackets with arrows indicate a
maximum ∆B needed to insert a flux φ0 = h/2e in the area defined by the
corresponding wire lengths, as indicated by a dashed loop in the inset. An
effective length for the period marked by a magenta bracket is l = 0.5 µm for
the same loop.

3.3 Diamagnetic source of non-reciprocity

Unlike the linear in Cooper pair momentum terms, higher order terms cannot be removed

by gauge transformation and it was shown that the presence of terms ∼ α3Q
3∆2 cubic in the

Cooper pair momentum in an expansion of the Ginsburg-Landau coefficients can generally

lead to non-zero ∆I which is a non-monotonic function of B and can even change sign [  88 ],

[ 89 ] (here Q = −i~∇− 2eA is a generalized Cooper pair momentum, A is electromagnetic

vector-potential). However, for proximitized InAs layer, a generation of the terms higher

order in the Cooper pair momentum in the presence of the Rashba spin-orbit and Zeeman

interactions coexists with a similar generation of such terms due to the Dresselhaus spin-orbit

interactions. The importance of the Dresselhaus-like terms in the electron spectrum is not

limited to proximity structures, and they can play significant role in any noncentrosymmetric

material.
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Investigation of realistic cubic terms in the Cooper pair momentum showed [  90 ] that

nonreciprocity becomes highly anisotropic as a result of Dresselhaus-induced contribution.

For comparison with experiments, it is instructive to express the odd in Cooper pair momen-

tum part of the kinetic energy in coordinates rotated by π/2 with respect to the principal

crystallographic axes of InAs, where x̂ || [110] and ŷ || [110], see insert in Fig.  3.2 (a). In

these coordinates, the cubic in the Cooper pair momentum kinetic term originating from the

cubic Dresselhaus electron spin-orbit interaction reads

fk =| κ(ByQ
3
x +BxQ

3
y −QxQy[BxQy +ByQx])∆ |2, (3.1)

where coefficient κ contains the Dresselhaus constant βD and other material parameters.

The resulting NRC correction to the supercurrent is

∆I ∝ (ByI
2
x +BxI

2
y ). (3.2)

This correction is independent of the sign of I and is added or subtracted to the B =

0 current value depending on the direction of the current flow. Here Bx and By enter

symmetrically for wires oriented along x and y. However, in the configuration with the

current I‖x̂ and magnetic field By and the configuration with I‖ŷ and Bx, this expression

has opposite signs for the same mutual orientation of I and B, see inset in Fig.  3.2 (a). Thus,

the Dresselhaus-induced contribution results in NRC with opposite sign for wires oriented

along [110] and [110] crystallographic axis. The cubic (and generally all odd) in Cooper pair

momentum terms originating from the Rashba electronic interactions, when added with the

Dresselhaus-induced terms, will produce anisotropy in the absolute value of NRC, and, in

particular, different values of non-reciprocal asymmetrical component of the current for those

two directions. Theoretical investigation of electronic spectra of these systems [  91 ] suggests

that in narrow InAs quantum wells cubic Dresselhaus terms are larger than the Rashba

terms. The lower limit for the value of the Dresselhaus contribution can be extracted from

the total spin-orbit anisotropy (which is defined by the ratio between a linear Rashba, and

a linear and cubic Dresselhaus terms in electronic spectrum), which was measured to be
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70% in spin-galvanic and circular photogalvanic experiments [  92 ] and > 15% in transport

experiments[ 93 ], [  94 ]. Such anisotropies must result in the corresponding crystallographic

anisotropy of the NRC, which is not observed in our experiments, Fig.  3.2 (a). Therefore, we

conclude that the NRC we observed is not intrinsic. The observed NRC does not depend on

the wire length, Fig.  3.2 b, which rules out trivial effects related to the formation of spurious

loops due to the presence of wire/contact boundaries.
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Figure 3.3. NRC in an asymmetric superconducting loop. (a) An
average switching current for positive 〈I+sw〉 and negative 〈I−sw〉 sweeps, non-
reciprocal difference ∆I = 〈I+sw〉 + 〈I−sw〉 and an average of all sweeps 〈Isw〉
plotted as a function of out-of-plane magnetic field Bo for a loop shown in the
insert in (b). Note that 〈Isw〉 is maximal while ∆I = 0 when the flux φ = nφ0.
In (b) ∆I for the nanowire and the loop are plotted together as a function of
a reduced flux φ/φ0, where we used Swire = 0.0052 µm2 for the effective area
in the wire and Sloop = 2.59 µm2 in the loop.

While recent interest in NRC has been motivated by a possibility of the intrinsic origin of

the effect, NRC naturally arises in multiply-connected superconductors. In superconducting

loops, the critical current is modulated by an external flux φ = BSloop piercing the loop. In

a loop with asymmetric arms, the current maximum is shifted from B = 0, and the sign of

the shift depends on the direction of the current as shown in Fig.  3.3 (a). A non-reciprocal

component of the switching current ∆I is linear in B in the vicinity of B = 0, reaches extrema
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at φ ≈ φ0/4, changes sign and oscillates with a period ∆φ = φ0. Thus, an asymmetric loop is

the simplest “superconducting diode”. There is a clear similarity between ∆I measured in an

asymmetric superconducting loop and in an Al/InAs nanowire as emphasized in Fig.  3.3 (b),

suggesting that non-monotonic NRC in our nanowires may be due to emerging current loops.
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Figure 3.4. Non-reciprocity of the critical current in the presence of
diamagnetic currents. Diamagnetic currents in (a) a uniform superconduc-
tor and (b) a heterostructure. (c) A two-layer heterostructure is modeled as
two zero thickness wires separated by a distance d with coupling described by
the Josephson energy EJ . (d) Schematic of current distribution between the
wires Ii = I0i− (−1)iIdia, i = 1, 2, and the phase difference ∆φ as a function of
an external current Iext = I1 + I2 for B = 0 (solid lines), B > 0 (dotted lines)
and B < 0 (dashed lines). For weakly coupled wires EJ � Ek, the critical
current is field-independent I

′
c = Ic1 + Ic2, see the text; the critical current

is reduced and acquires a linear-in-B correction in a strong coupling regime
EJ � Ek due to the phase locking ∆φ = 0. (e) In the intermediate coupling
regime EJ ∼ Ek Josephson vortices may form generating a 2π phase twist, in
this case NRC becomes a non-monotonic function of B. (f) Calculated NRC
∆I is plotted as a function of flux Φ = SvBy for several Bx, Eq. (  3.15 ).
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External magnetic field generates circular diamagnetic currents in a superconductor, as

shown schematically in Fig.  3.4 (a,b), and these currents affect the critical current. In homo-

geneous superconductors the presence of diamagnetic currents will not result in the critical

current non-reciprocity, but in a heterogeneous superconductor, in general, their presence

will lead to NRC. Qualitatively, the origin of NRC can be understood from a simplified

model of a superconductor heterostructure represented as two coupled zero thickness super-

conducting wires separated by a distance d, Fig.  3.4 (c). The total energy of the two-wire

system can be written as a sum of kinetic and Josephson energies,

Etot =

∫
dx [Ek − EJ cos(∆φ)] , (3.3)

where Ek = L1I
2
1 + L2I

2
2 , EJ is the Josephson coupling, ∆φ = φ1(x) − φ2(x) is the phase

difference between superconducting condensates, and Li are the kinetic inductances per unit

length in wires labeled by an index i = 1, 2. Supercurrents in each wire Ii = (2eLi)
−1(~∂xφi−

2eAx) should satisfy charge conservation constraint I1(x) + I2(x) = Iext, where Iext is the

applied external current. Detailed solution for this model can be found in the Supplementary

Materials, and we outline now the main results. For small external currents (I1 < Ic1 and

I2 < Ic2, where Ici are the critical currents in the wires) it is energetically favorable to keep

the phase difference ∆φ constant (∆φ = 0 for EJ > 0). Then, the currents can be expressed

as I1 = I01 + Idia and I2 = I02 − Idia, where I01, I02 ∝ Iext with I01/I02 = L2/L1 = η−1 and

Idia = Byd/(L1 + L2). Dependence of I1 and I2 on Iext for By > 0, By = 0 and By < 0

is plotted schematically in Fig.  3.4 (d). As Iext increases and one of the currents (I1 in our

example) reaches the critical value Ic1, further external current increase requires an increase

of | ∆φ | because the excess current has to flow through the remaining superconducting

wire with the current I2. In the case of weak interwire coupling, EJ � Ek, deviation of ∆φ

from zero does not lead to a significant energy penalty and the critical current of the whole

system I ′c = Ic1+Ic2 does not depend on the magnetic field direction. In the opposite regime

of strong coupling, EJ � Ek, the energy cost associated with the formation of Josephson

currents (the last term in Eq. (  3.3 )) is prohibitively high and the whole system transitions

to a normal state at Iext ≈ (1 + η)(Ic1 − Idia), resulting in ∆I = −2(η + 1)Idia(By) (this
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equation is correct for β > η + (η + 1)Idia/Ic1, where β = Ic2/Ic1, NRC for other scenarios

is listed in the Supplementary Materials). Thus a superconducting diode effect is a generic

property of coupled multilayer superconductors.

As By and diamagnetic currents increase, the phase locking condition ∆φ = 0 along the

length of the wires leads to a significant increase of Ek. At a critical field Bc = (3/π2)Φ0/(lJd)

it becomes energetically favorable to reduce the overall energy by twisting the phase differ-

ence by 2π locally forming a Josephson vortex (lJ ≈ Φ0/(2π
√
2EJL2) and Φ0 = h/2e is

the flux quantum). Evolution of the phase difference ∆φ(x) = 4 arctan [ exp(x/lJ)], vortex-

induced currents in the wires Iv(x), and interwire Josephson current density jJ(x) across a

vortex are shown schematically in Fig.  3.4 (e). The maximum of Iv(x) at the center of the

vortex determines the Josephson vortex contribution to NRC. In the absence of quantum

fluctuations formation of a vortex is accompanied by an abrupt re-distribution of currents be-

tween the wires, which results in a sawtooth NRC dependence on magnetic field. Generation

of multiple Josephson vortices does not modify NRC compared to a single vortex case un-

less the vortices significantly overlap so that the maximum of Iv(x) exceeds its single-vortex

value.

In Fig.  3.4 (f) we plot ∆I(By) for several Bx using Eq. (  3.15 ) in the Supplemental Material.

A gradual change of ∆I near Φ0/2 is due to quantum fluctuations of the winding number due

to strong coupling of the vortex to current-carrying wires. This smearing is similar to the

gradual change of a critical current in a ring connected to superconducting leads (Fig.  3.3 ),

as compared to an abrupt reversal of persistent currents at Φ0/2 in isolated rings [  95 ].

The period of oscillations of ∆I corresponds to the flux threading an effective vortex area

Sv = (π2/3)lJd = lvd. The period ∆B⊥ = 400 mT translates into the length lv ≈ 500nm,

where ∆φ substantially deviates from zero. We estimate lv < ξInAs =
√

ξ0InAsl
m
InAs ≈ 750

nm and expect proximity-induced superconductivity in InAs to be preserved in the presence

of a vortex. Here we use ξ0InAs = ~vF/π∆∗ ≈ 1.8 µm, induced gap in InAs ∆∗ ≈ ∆ =

1.796kBTc = 230µeV (induced gap is close to the gap of Al in these heterostructures [  42 ]),

and the mean free path in uncapped InAs 2D gas lmInAs ≈ 300 nm.

Finally, we use the two-wire model to estimate the temperature and in-plane field B‖‖x̂

dependences of NRC assuming that both parameters affect the Cooper pair density n2 in
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InAs. In the vicinity of B⊥ = 0 the amplitude of ∆I ∝ L−1
2 ∝ n2 and is expected to

decrease with an increase of T or B‖. The critical field Bc ∝
√
EJL2 depends on EJ ∝

n2, and the period of oscillations is expected to be T - and B‖-independent, Fig.  3.4 (d).

Josephson coupling EJ is exponentially sensitive to the thickness of the InGaAs spacer and we

expect slight variations of the period ∆B⊥ between the samples. These qualitative estimates

are consistent with experimental observations, see Figs.  3.6 and  3.7 in the Supplemental

Material.

3.4 Dependence of non-reciprocity on various parameters

Comparison of symmetric and asymmetric contributions to the critical current.
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Figure 3.5. Field dependence of symmetric and asymmetric parts
of the switching current. (a,b) Temperature dependence of ∆I and 〈Isw〉
measured as a function of B⊥ (θ = 90 deg). The curves are offset by -0.1
µA (∆I) and 0.01 (〈Isw〉). (c,d) Angle dependence is measured by rotating
magnetic field of constant magnitude B = 100 mT at the base temperature.

The switching current can be decomposed into symmetric 〈Isw〉 = (〈I+sw〉+ 〈I−sw〉)/2 and

asymmetric ∆I = 〈I+sw〉 − 〈I−sw〉 parts. Their dependence on magnetic field is plotted in

Fig.  3.5 . Both 〈Isw〉 and ∆I are non-monotonic functions of B⊥, however they have very
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different T - and field-angle-dependencies. ∆I is almost unaffected by temperature up to

T ∼ 0.6Tc, while a dip around B⊥ = 0 in 〈Isw〉 is developed at T < 0.3Tc. At constant B =

100 mT, the angular dependences are ∆I ∝ sin(θ), but field-dependent correction to 〈Isw〉

is ∝ cos(2θ). These differences in energy scales (T -dependence) and angular dependencies

indicate that suppression of 〈Isw〉 near B = 0 and asymmetric ∆I have different physical

origins. Indeed, suppression of a critical current near B = 0 has been reported in previous

works on single-layer nanowires and was attributed to the presence of quasiparticles and/or

magnetic impurities [  87 ], [  96 ], which differ from geometrical effects responsible for ∆I(B)

dependence.

Dependence of NRC on Temperature.
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Figure 3.6. The effect of temperature on NRC. (a) The amplitude of
NRC [∆I(−100mT )−∆I(100mT )], (b) the standard deviation of the switching
currents at B⊥ = 0, and (c) the average switching current at B⊥ = 0 are
plotted as a function of the reduced temperature. NRC amplitude follows the
T-dependence of the Cooper pair density ns(T ), consistent with Eq. (  3.16 ).
〈Isw〉(T ) follows the Bardeen relation[  69 ].
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Dependence of NRC on in-plane field.

Non-reciprocity of the switching current is linearly suppressed by an in-plane magnetic

field B‖‖I and vanishes at ≈ 750 mT. Within the same range of B‖ the magnitude of the

switching current remains almost constant (decreases < 2.5% at B‖ = 750 mT).
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Figure 3.7. The effect of an in-plane current B || I on the non-
reciprocal supercurrent. (a) Evolution of ∆I in the presence of B‖. The
plots are vertically shifted for clarity (b) The NRC amplitude falls approxi-
mately linearly with | B‖ | (c) Dependence of average switching current 〈Isw〉
at B⊥ = 0 on B‖. All data is taken at the base temperature.

NRC in nanowires of various width

We have studied NRC in several nanowires of different width and length. Since all devices

were fabricated from similar wafers, the Josephson coupling and, therefore, lJ are similar in

all devices, and we expect the amplitude of ∆I and period ∆B to be similar. Indeed, that

is the case for most devices, see Fig.  3.8 a. One nanowire showed ≈ 2× enhancement of ∆I

and ≈ 2× reduction of ∆B, which would be consistent with a local enhancement of lJ by a

factor of 2.
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Figure 3.8. NRC in other devices. (a) NRC in nanowires of different
width. The plots are shifted vertically for clarity. (b) Multiple sign reversal of
∆I in another nanowire. (c) one out of ∼ 20 nanowires fabricated from similar
wafers showed enhanced magnitude of ∆I and reduced ∆B.

Gate dependence of NRC and critical current.

On one of the samples we fabricated an electrostatic gate which covered the wire and a

surrounding InAs 2D gas. In order to deplete electrons in InAs in the regions where it is

not screened by Al, we apply a large negative gate voltage. We see no observable effect on

the NRC when varying the gate voltage. InAs is expected to be fully depleted for applied

gate voltage -1.5V. We measured NRC at different gate voltages varying from 0 to -4.5V and

observed no variation of α = d∆I/dB⊥ near B = 0 or ∆B. Slight (up to 0.26%) increase of

〈Isw〉 at large negative gate voltages is observed. Negative gate voltage also depletes carriers

in Al (albeit their negligibly small fraction) and, thus, should result in the decrease of Ic,

contrary to the observed increase. The observed increase of the switching current may result

from the reduction of quantum fluctuations due to the reduction of InAs volume for Cooper

pairs to enter and, as a consequence, increasing switching current to be closer to the value

of the critical current.
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Figure 3.9. The effect of gate voltage on NRC. (a) NRC shows no
observable difference on varying the gate voltage. (b) α shows very little
variation with gate voltage. (c) When a negative gate voltage is applied the
〈Isw〉 increases.
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Absence of NRC in aluminum nanowire.sf6
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semi-insulating Si wafer. This device shows no NRC.
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In-plane magnetic field alignment
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Figure 3.11. (a) Field dependence of 〈Isw〉 shows a Meissner state up to
Bz ≈ 18 mT. (b) No NRC is observed in an out-of- plane magnetic field.

Magnetic fields are generated by a 3-axis vector magnet. The critical out-of-plane field

for our wires is Bz
c2 ≈ 60 mT. A sharp reduction of 〈Isw〉 at Bz > 18 mT is associated with

an entrance of Abrikosov vortices. In order to align the in-plane field with the plane of the

sample the following alignment procedure has been used. The in-plane field was ramped to

B
′

‖ ≈ 800 mT, beyond the field where NRC is observed. Next, Bz field is scanned ±30 mT

and a symmetry point B
′
z is determined. In subsequent scans a linear correction Bz = aB‖,

where a = B
′
z/B

′

‖, is applied to keep B‖ aligned with the sample plane with a precision of

< 0.1 degree.

3.5 Geometric effects and critical current non-reciprocity in coupled supercon-
ducting wires

In this section we derive the critical superconducting current in two Josephson-coupled

superconducting wires (the “two-wire model”) in the presence of an external magnetic field.

We show that at high enough magnetic field, it becomes energetically favorable to form a

Josephson vortex (Fig.  3.12 a), which in turn can lead to an oscillatory non-reciprocity of the
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critical current (Fig.  3.4 of the main text). Furthermore, the oscillations will be damped due

to one of the wires turning normal upon increasing the magnetic field.

Let us consider a pair of parallel superconducting wires 1 (Al wire) and 2 (proximitized

InAs) along the x-direction with a magnetic field B⊥ in the y-direction, normal to the plane

containing two wires. The corresponding vector potential is Ax(z) = B⊥z with the two wires

separated by distance d being at positions z = z1,2 = −(−1)1,2d/2, see Fig.  3.12 a. We ignore

here the screening of the magnetic field by the Josephson vortex; this effect would merely

modify the Josephson length lJ (introduced below). We also approximate the wires as one-

dimensional, given that their typical thickness is smaller than the penetration depth and the

(a) (b)

Figure 3.12. (a) Schematic picture of the model to explain non-reciprocity.
The dark grey regions depict two superconducting wires labeled 1 and 2 (cor-
responding to Al and proximitized InAs wires, respectively) with the order
parameter phases φ1, φ2. The region between the wires denotes the insu-
lating barrier of thickness d. In most positions x, the phases are locked to
φ1 = φ2 (mod 2π) due to a strong Josephson coupling. In the region of length
lv spanned by the Josephson vortex the phases are not equal and as a result
the phase difference winds by an additional 2πn over the vortex. The vertical
arrows denote the resulting Josephson currents flowing between the two wires
in the vortex. (b) Total energy vs magnetic field in the two-wire model. The
dashed curves show the spectrum obtained from Eq. (  3.10 ). The three parabo-
las correspond to Josephson vortices/antivortices with n = −1, 0, 1. The solid
curves show the energies when coherent vortex tunneling (strength Et = 0.4
in units of η

1+η
~2

e2L1lJ
) is included, leading to avoided crossings of states with

different n.
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width is smaller that the size of the Peal vortex. This makes the supercurrent distribution

approximately uniform within the wire. Denoting φ1,2 the phases of the superconducting

order parameters, we have a supercurrent in wire i given by

Ii =
1

2eLi

(~∂xφi − 2eAx(x, zi)) , (3.4)

in terms of the kinetic inductances (per length) Li = mi/(e2Sini) for wires i = 1, 2. Here Si,

mi, and ni denote the cross-sectional area, the effective mass, and the Cooper pair densities.

For Al wire (i = 1) we will account for disorder by multiplying ni by
√

l/ξ, where l ≈ 2nm

is the mean free path and ξ ≈ 1µm is the coherence length [  69 ]. Thus, we use L1 → L1

√
ξ/l

in our final estimates.

The phases φ1,2(x) can be found by minimizing the total energy

Etot =

∫
dx

[
1

2
L1I

2
1 +

1

2
L2I

2
2 − EJ cos(φ1 − φ2)

]
, (3.5)

that includes kinetic energies of each wire and a Josephson energy density EJ coupling the

two wires. In the presence of an applied external supercurrent Iext, there is a constraint

I1(x) + I2(x) = Iext at every point x. The constrained energy minimization leads to the

Sine-Gordon equation for ϕ = φ1 − φ2,

∂2ϕ

∂x2
= l−2

J sinϕ , (3.6)

where lJ = 1/
√

8e2EJ(L1 + L2)/~2 is the Josephson length that determines the characteristic

size of a Josephson vortex. We now solve Eq. (  3.6 ) with the appropriate boundary conditions.

We assume that the Josephson coupling in Eq. (  3.5 ) is strong, such that φ1 = φ2 (mod 2π)

for most x. If the two phases were locked for all x, i.e. ϕ(x) = 0 (mod 2π), we would

find a non-reciprocal critical current Ic(B⊥) with the non-reciprocity ∆I = Ic,+ − Ic,− that

increases monotonically with B⊥. Experimentally, a non-monotonic dependence is observed,

see Fig.  3.1 b.
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The non-monotonic ∆I can be explained by a formation of a Josephson vortex, see

Fig.  3.4 . In the Josephson vortex, the phase difference ϕ increases by 2π approximately over

the distance 2πlJ ; explicitly, ϕ(x) = 4 arctan ex/lJ for a vortex at x = 0.

The Josephson vortex solution yields a current distribution

I1(x) =
1

1 + η
Iext + δIn(x) , (3.7)

I2(x) =
η

1 + η
Iext − δIn(x) , (3.8)

δIn(x) =
2η

1 + η

1

2eL1

~
lJ

(
n sech x

lJ
− 3

π

Φ

Φ0

)
, (3.9)

where we introduced an integer index n, n = ±1 for the Josephson vortex/antivortex and

n = 0 in the absence of the vortex. The vortex is centered at x = 0, which also turns out

to be the position of the maximal circulating currents in the wires 1 and 2. We denote

η = L1/L2 = S2
n2

m2
/S1

n1

m1
and introduce the flux Φ/Φ0 = SvB⊥/(π~/e) through the effective

vortex area Sv = (π2/3)lJd.

The formation of the Josephson vortex becomes energetically favorable at a large enough

magnetic field B⊥. The energy cost is determined from Eq. (  3.5 ) by the balance of the

Josephson energy EJ lost and the kinetic energy gained in the creation of a vortex. Ignoring

n-independent terms, we find (see Fig.  3.12 b),

EVortex(n) =
η

1 + η

~2

e2L1lJ

[(
n− 3

2

Φ

Φ0

)2

+
1

2
| n |

]
(3.10)

where n = 0,±1. This energy is analogous to the (inductive) energy of a superconducting

ring with a phase winding 2πn [ 97 ] apart from the last term in Eq. (  3.10 ) which is the cost

in Josephson energy. In the absence of quantum fluctuations and at T = 0, one finds from

Eq. (  3.10 ) that the thermal average 〈n〉 = [Φ/Φ0] is given by the nearest integer to Φ/Φ0,

leading to a sawtooth-like dependence for ∆I versus B⊥ (see below). Fluctuations will smear

out the sawtooth dependence. In analogy to a superconducting ring [ 97 ], we expect to find
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a harmonic dependence on the flux on a linear background in the case of strong quantum or

thermal fluctuations,

〈n〉 = Φ

Φ0

− δn sin
2πΦ

Φ0

, (3.11)

where δn � 1 due to strong fluctuations.

Importantly, in the case of quantum fluctuations, δn is independent of the temperature,

whereas for thermal fluctuations one has exponential dependence on 1/T . As we discuss

below, the harmonic dependence on the flux translates to a similar dependence in the non-

reciprocal part ∆I of the critical current, in agreement with experimental data. The observed

weak T -dependence in Fig.  3.5 a indicates that quantum fluctuations exceed thermal fluctu-

ations in the experiment.

The critical current through our two wire system with contacts, effectively forming a ring-

like structure is determined by the condition that at large enough Iext, one of the wires (

arms of the ring) turns normal. (Experiment indicates that the switching happens in Al, i.e.,

Figure 3.13. Left: The critical current non-reciprocity ∆I, Eq. (  3.15 ), versus
the flux Φ = B⊥dlv through the Josephson vortex. The crosses correspond to
the approximation, Eq. (  3.16 ). The applied field B‖ suppresses the proximity
effect and therefore ∆I. In the figure Et = 0.4 in units of η

1+η
~2

e2L1lJ
. Right: ∆I

(at B‖ = 0) for different strengths Et (in units of η
1+η

~2
e2L1lJ

) of coherent vortex
tunneling that controls vortex number fluctuations; weak tunneling leads to a
sawtooth-like ∆I.
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wire 1, see below.) Assuming that Iext > 0 and the wire 1 turns normal, the corresponding

condition is Iext = Ic,+, where

Ic,± = (1 + η)(±I1,c − δI) , (3.12)

I1,c is the critical current of wire 1 and δI = 〈δIn(0)〉 is the circulating current at its peak

value at x = 0. Likewise, for Iext < 0 we find Iext = Ic,−. This yields

∆I = Ic,+ + Ic,− (3.13)

= −2η
1

L1e
~
lJ

(
〈n〉 − 3

π

Φ

Φ0

)
, (3.14)

which determines the slope α = d∆I/dB⊥. We note that if the wire 2 is normal, then

n2 = 0, η = 0 and ∆I vanishes. The B⊥-dependence of the critical current Ic,± in such

case would merely show a monotonic decrease (without non-reciprocity) corresponding to

suppression of the superconducting gap in Al. Experiments show a few distinct oscillations

in the asymmetric non-reciprocal part ∆I of the critical current, see Figs.  3.1 c and  3.7 . We

attribute the experimentally observed vanishing amplitude of ∆I (loss of non-reciprocity) at

fields higher than B⊥ ≈ 750mT to the destruction of proximity effect. We can model this

by taking η in Eq. (  3.14 ) to be magnetic field -dependent, detailed below.

Proximity effect is also destroyed by an in-plane field B‖ along the wire (along x) at

roughly the same 750mT scale, see Fig.  3.6 a. Since the wire 2 is proximitized in our model,

we include a linear in the field suppression of the Cooper pair density n2 at fields lower

than those describing the superconducting gap suppression in the Al wire. This leads to

η = η0(1− | B | /BInAs,c) in Eq.  3.14 . Here We take BInAs,c ≈ 750mT and denote | B |=√
B2

⊥ +B2
‖ assuming that the suppression of proximity is isotropic (in a magnetic field

parallel to heterostructure layers).

The linear suppression is taken to match with experimental observations. In particular,

a linear field-dependence is seen in Fig.  3.7 b where the slope α is plotted as a function of

B‖. The measurement shows also that the switching current does not differ much from its

B⊥ = 0 value (see Fig.  3.6 c), indicating that the critical current is determined by Al wire,
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as we assumed in Eq. (  3.12 ). We thus obtain the following expression for the non-reciprocal

contribution to the critical current, plotted in Fig.  3.4 and Fig.  3.13 ,

∆I(B⊥, B‖) = −2η0
1

L1e
~
lJ

(
〈n〉 − 3

π

Φ

Φ0

)(
1− | B |

BInAs,c

)
(3.15)

≈ −2η0
1

L1e
~
lJ

(
c
Φ

Φ0

− δn sin
2πΦ

Φ0

)(
1− | B |

BInAs,c

)
, (3.16)

where c = (1− 3
π
) ≈ 0.05 and we assumed strong quantum fluctuations of n, see discussion

below Eq. (  3.11 ). The approximate period is B⊥ = Φ0(3/π2)/(lJd), experimentally observed

to be approximately 400mT. This period indicates 500nm for the effective size of the vortex,

given that d = 10nm.

From Eq. (  3.16 ) we obtain a zero-field slope d∆I/dB⊥ ≈ −c0η0d/L1. Here c0 = (2π/3) (c− δn2π)

is an unknown numerical coefficient (since δn is unknown). However, the dimensionless quan-

tity δnq � 1 characterizes the amplitude of the persistent current in the loop (Fig.  3.4 ) and

is suppressed due to quantum phase slips [ 97 ]. We can therefore take c0 ≈ 2πc/3 ≈ 0.1.

Using values S1 = 150nm×10nm, n1 = 18 ·1028m−3 and m1 = 9.1 ·10−31kg (Al electron den-

sity and effective mass), we obtain d/L1 =
√
l/ξS1

e2n1d
m1

≈ 3.4mA/T. By comparing to the

zero-field slope d∆I/dB⊥ ≈ 1.6µA/T in Fig.  3.6 b, we obtain η0 ≈ 10−2. This is consistent

with an estimate η0 ≈ 10−2 based on the ratio of Al and InAs kinetic inductances. We note

that non-reciprocal component is proportional to the Cooper pair density, ∆I ∝ L−1
2 ∝ n2,

which is consistent with the temperature-dependence of both quantities plotted in Fig.  3.6 a.

Different properties of wires 1 and 2, i.e., their asymmetry, is essential to get non-

reciprocity in our model. If the wires were identical, the wire that switches to normal

state first [in Eq. (  3.12 )] would change upon reversing the current direction. We note that

non-reciprocity emerges even if there is no loop (lJ → 0) due to Josephson vortex and no

phase winding, n = 0 from Eq. ( 3.10 ), but there is nevertheless a circulating diamagnetic

current Idia, Eq. (  3.9 ), leading to non-reciprocity, Eq. (  3.15 ), due to the assumed Josephson

coupling induced phase locking φ1 = φ2 between the wires.
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3.6 Determining total critical current in a 2 wire model
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Figure 3.14. Schematic of current distribution between the wires Ii = I0i −
(−1)iIdia, i = 1, 2, and the phase difference ∆φ as a function of an external
current Iext = I1 + I2 for (a) β ≤ η − η′, (b)η − η′ < β < η + η′ and (c)
β ≥ η + η′.

The total critical current in a two-wire model depends on the two dimensionless pa-

rameters: the ratio of kinetic inductances η = Lk1/Lk2 and the ratio of critical currents

β = Ic2/Ic1. (The former also determines the current distribution in the absence of mag-

netic field, η = I2/I1.) In a magnetic field, the total critical current will also depends on

the diamagnetic current, which enters via the dimensionless ratio η′ = (η + 1)Idia/Ic1. The

expression of NRC depends on the magnitude of β ≷ η + η′.

For β ≥ η + η′, the wire 1 turns normal first for both directions of By, Ic(B) = (1 +

η)(Ic1 − Idia) and

∆I = −2(1 + η)Idia (3.17)

For β ≤ η − η′, the wire 2 turns normal first for both directions of By and

∆I = +2
1 + η

η
Idia (3.18)
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Finally, for η − η′ ≤ β ≤ η + η′, the wire 1 turns normal first for By > 0 and the wire 2

turns normal first for By < 0 resulting in

∆I =
1 + η

η
[(η − β)Ic1 + (1− η)Idia] (3.19)

The current distribution between the wires for these three cases is shown schematically in

Fig.  3.14 

We note that the slope d∆I/dB⊥ differs by a large factor 1/η depending on which wire

turns normal first. Our data is consistent with Al (wire 1) turning normal first (at that point

the whole structure is turned normal).
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4. DEVICE FABRICATION AND MEASUREMENT

4.1 Fabrication

Wafer Heterostructure

All the devices in my experiments were fabricated from one of the two wafers, wafer M

and wafer J, grown in the laboratories of Prof. Michael Manfra and Prof Javad Shabani

respectively. These two wafers are very similar in structure, as shown in fig  4.1 , except for

the thickness of the Al layer. The wafers differ in mobility and density of InAs, and critical

fields of Al.

Al(930)  (~7nm)

InGaAs(10nm)

InAs(7nm)

InGaAs(4nm)

InAlAs(25nm)

InAlAs (varying conc)
(1000nm)

In0.52Al0.48As(2.5nm)
In0.53Ga0.47As(10nm)

SL x 5

In0.52Al0.48As(100nm)

InP substrate
Uniblock P

Al(930)  (~20nm)

InGaAs(10nm)

InAs(7nm)

InGaAs(4nm)

InAlAs(6nm)

InAlAs (varying conc)
(1000nm)

InP substrate
Uniblock P

Si-doping

InAlAs(25nm)
InGaAs(25nm)

InAlAs(25nm)
InGaAs(25nm)

…

Wafer M
Manfra Lab , Purdue

Wafer J
Shabani Lab, New York

Superconductor

Quantum well

Buffer

Substrate

𝜇 ≈ 12900 𝑐𝑚2/𝑉𝑠
n ~ 8.9e11 /cm2 
𝐵∥𝑐𝐴𝑙 ~ 2T 

𝐵⊥𝑐𝐴𝑙 ~ 60mT 

Al Tc ~ 1.5K

u ~ 28000 cm2/Vs 
n ~ 8e11 /cm2 
𝐵∥𝑐𝐴𝑙~ 2.5T 

𝐵⊥𝑐𝐴𝑙 ~ 60mT 

Al Tc ~ 1.5K

Figure 4.1. Heterostructure and properties of wafer M and wafer J.

Sample preparation

The fabrication starts with preparing small chips of 4x4 cm lateral dimensions. The pieces

are cut from a 2" wafer. The heterostructure usually is grown in MBE chambers where the

substrate is attached to the chuck using Indium. This indium is removed by mildly heating

the pieces and wiping the Indium using a Qtip. The sample is then immersed in Acetone for
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5-10 minutes followed by an Isopropyl Alcohol spray to remove acetone residue and then blow

dried using a Nitrogen gun. The sample is then spin coated with e-beam photoresist typically

PMMA A series followed by a baking on a hot-plate. Maintaining a low temperature of the

sample is imperative to prevent Al diffusion, which can have a significant impact on the band

structure. To this end, the pre-baking temperature is kept below 150 C for a duration of

3 minutes, followed by an extended oven bake at 90 C. This pre-bake temperature is lower

than the conventional 180 C pre-bake used for PMMA. For the purpose of etching, thinner

PMMA is preferred, especially for finer features. PMMA A2 when spin coated at 5000 rpm

or more gives a thickness of 80-90 nm which is ideal for defining sub 100nm structures.

E-beam Patterning

The spin-coated sample is further subjected to electron beam lithography to define specific

devices. Usually multiple devices are patterned in a single sample which is cut into individual

at the end of all the fabrication. A Zeiss Evo 40 system is primarily used to define devices

with feature sizes bigger than a few hundred nanometers. Finer features are defined using

a Raith e-line system with a Field emitter. The samples exposed to electron beams are

further processed by dipping into developers which dissolves the resist in the exposed area (

or unexposed areas if negative resist). We usually use 2 developers : MIBK:IPA(1:3) and DI

water:IPA (1:3). The latter developer is a fast developer compared to the former. A typical

dose of 100uC/cm2 is ideal for PMMA A2 if developed using MIBK:IPA(1:3). The ideal

dose decreases to about 60 uC/cm2 if DI water:IPA (1:3) is used. Higher doses are required

as the thickness of the resist increases.
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Aluminium etching

External thermocouple

Al etchant beaker

DI water beaker

Water bath

Hot plate

Figure 4.2. Caption

Aluminum is etched using Transene D. The etch rate is highly temperature-dependent.

In cases where the thickness of Al is less than 9nm, the majority of the etching time is

spent removing the 2nm oxide layer on the surface, while the rest is rapidly etched away.

Hence, timing plays a critical role in this process, and even shaking can affect the etch

rate. Placing the glass beaker directly on top of the heater may yield non-reproducible

results, as the temperature of the etchant can deviate from that indicated by the heater

thermocouple. To ensure temperature reproducibility, a water bath arrangement is utilized,

with an external thermocouple immersed in the water to maintain its temperature at 40 ±

0.3 C. The beaker containing the etchant is also immersed in the water bath, placed on top

of a plastic spacer to avoid direct heating from the bottom. After allowing approximately

30 minutes for the temperature to stabilize, the sample is immersed in the etchant for 9 ±

1 seconds, while being gently stirred. Failure to stir the sample could lead to a localized

increase in temperature, resulting in an increased etch rate and reduced reproducibility. This

etching recipe is applicable for samples with 5-7nm thick Al, while for thicknesses of 15-20

nm, the etching time is extended to approximately 13 seconds. At the end of the etching
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duration, the sample is promptly dipped into a water beaker, which is kept immersed in the

same water bath. While it may not be critical to maintain the temperature of water beaker,

keeping it near facilitates the immediate transfer of the sample from the etchant to the water,

arresting the etching process faster. Finally, the sample is cleaned using acetone/IPA.

Mesa etching

The process of mesa etching entails the initial removal of the aluminum (Al) top layer,

followed by the etching of the indium arsenide (InAs) heterostructure. The etching solution

used in this process is a mixture of phosphoric acid (H3PO4), hydrogen peroxide (H2O2),

and deionized (DI) water (H2O). The etch rate of the solution is heavily dependent on the

specific ratio of the chemicals employed. In our experimentation, a ratio of 1:8:85 by volume

was found to produce an etch rate of approximately 90 nanometers per minute. The addition

of acetic acid to the etchant solution reduces the roughness of the etched surface, thereby

enhancing the adhesion of metals deposited on top of the surface. Notably, Al is impervious

to this etchant and can be employed as an etch mask if necessary. It was also observed that

the PMMA C series exhibits weaker adhesion and etch resistance compared to the PMMA

A series over areas where Al was previously removed. In fact, some of the samples were

destroyed entirely when PMMA C4 was used as an etch mask. A long bake of 1 hour in an

oven at 90 0C significantly enhances the etch resistance.

Gate fabrication

The process of gate fabrication involves the deposition of a gate dielectric across the

sample surface using an atomic layer deposition (ALD) system(Cambridge Nanotech FIJI

ALD). Typically, the growth of the dielectric is carried out at a temperature of 900◦C, wherein

atomic layers of the dielectric material are deposited using a cycle of precursor and water

pulses at a rate of approximately 1 angstrom per cycle. The two types of dielectrics commonly

used for this purpose are HfOx and AlOx, with HfOx possessing a higher dielectric constant

than AlOx, albeit with a greater propensity for charge trap states. Trimethylaluminum and
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Tetrakis(dimethylamino)hafnium are employed as the precursors for the growth of AlOx and

HfOx, respectively.

For our devices, a 20nm HfOx film grown at 90◦C is found to be optimal for achieving

good electrical properties. WE observed that HfOx exhibits superior electrical stability and

is less prone to breakdown compared to AlOx. The low-temperature growth process takes

approximately 8 hours to complete.

After the dielectric is grown, gate electrodes are deposited. For very fine features a 10nm

Ti is deposited as the gate electrode. For bigger features Ti/Au (5nm/120nm) is deposited.

Bond pads and wire-bonding

Usually for bond pads the pre-grown Aluminium is good enough although it is less than

10nm thick. But depositing a thick gold layer helps in improving adhesion. The processed

samples are finally cut into individual devices of 2x 2 mm in size. These are glued on the

chip carriers using GE varnish and then wire-bonded usually using Aluminium wires. The

bond pads below the gate dielectric is contacted by using higher powers for wire-bonding

and physically punching through the oxide. A power about 200W usually works well. For

Gold bond pads Gold wires works much better than Aluminium wires at much lower powers

of approximately 125W.

4.2 Measurement Techniques

4.2.1 Dilution refrigerator

The wirebonded samples are loaded to the probe which is then loaded to the dilution

refrigerator Leiden CF50. The probe is loaded to the bellow and pumped for about 2 hours

before loading inserting it into the fridge. It takes roughly 7 hours for the probe to go

from room temperature to 4K. It takes another 2 hours once the mixture condensation is

started to go to milliKelvin temperatures. Care is taken to keep all the contacts grounded

during the entire process to ensure that the device does not feel any sudden electrical shocks

which can damage the device, particularly the gates. The dielectric is prone to breakdowns
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especially at higher temperatures. The dielectric resistance increases substantially at lower

temperatures.

4.2.2 Transport and Fast critical current measurements

The resistance measurements are conducted employing conventional lock-in techniques.

Specifically, an ac voltage of 1 volt is applied on resistance of 100MO in series with the

device under test (DUT) resulting in an ac excitation current of 10nA. The voltage probes

are either directly connected to the input amplifier of the lock-in instrument or, alternatively,

amplified using an external pre-amplifier before being fed into the lock-in input. Usually a

frequency between 10Hz and 100Hz is used depending on other instruments in use around

and staying away from 60Hz harmonics. A spectrum analyzer is usually employed to find

the optimal frequency and eliminating noise sources and ground loops.

For precise measurements of critical, a specialized setup employing a Digital-to-Analog

Converter (DAC) was assembled. This setup utilized a DAC chip controlled by a pro-

grammable micro-controller module (Teensy). The DAC assembly was capable of generating

output voltages within the range of ±10V. By incorporating a high resistance in series with

the Device Under Test (DUT), this setup could effectively function as a current source.

The voltage probes across the DUT were connected to a preamplifier. The amplified

signal was subsequently fed into the Analog-to-Digital Converter (ADC) input of the Teensy

module. The current was incrementally increased at a constant rate starting from zero until

the voltage surpassed a predetermined threshold. The precise value of the current at which

this voltage jump occurred was recorded in the Teensy’s memory. This ramping procedure

was repeated a fixed number of times after which the recorded values were transferred to a

computer for further analysis. The data was processed to generate a histogram and subse-

quently scrutinized to extract relevant statistical parameters. It should be noted that the

switching currents observed during the measurements were contingent upon the specific pa-

rameters employed during the ramping process, particularly the ramp rate and the wait time

between consecutive ramps.
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A higher ramp rate could potentially prompt the DUT to transition to a normal state

at an earlier stage. Similarly, a slower ramp rate could also induce this transition due to

the heating effect caused by normal conductors carrying current until reaching the sample.

Additionally, the wait time between ramps needed to be sufficiently long to mitigate the

heating effect arising from the DUT in its resistive state.Optimal parameter values were

determined prior to commencing the actual measurements in order to ensure reliable and

accurate results.

4.2.3 Optimizing Noise Filtering for critical current measurements

The performance of superconducting devices is significantly impacted by electrical and

thermal noises originating from their surroundings. Various factors such as thermal and

RF radiations, noise induced by current-carrying wires, the presence of metal frames in

refrigeration systems, and residual magnetic fields and flux trapping affect the behavior of

superconductors. Mitigating these issues is crucial for achieving optimal device performance.

A reliable indicator of noise levels can be obtained by measuring the critical currents of

a standardized test device featuring a thin nanowire fabricated from Al or Nb. A higher

critical current corresponds to lower noise levels. To optimize the measurement setup, the

test device was subjected to multiple cooling cycles using different configurations of wiring

and filters in order to maximize the critical currents. This process was carried out using both

the Leiden refrigerator and the Oxford Heliox He3 system. The results of these experiments

are summarized in the table below:

4.2.4 Experimental artifacts in critical current statistics

Although the term critical current is used throughout this thesis, in reality the actual

critical current is unattainable and the measured values are always smaller than the actual

unattainable value. So a more accurate term would be switching current. The switching

current is very sensitive to the experimental setup, noise, contacts including the connectors

along the wiring. We observed that under certain experimental setups, randomly, the critical

current distribution deviates from the actual distribution. But we noticed this disappears
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Calmont coax wires

Twisted pair wires

Fischer connector Lemo connector
Break out box Break out box

sample

Cu block for wire 
cooldown

Resistance headers

Mixing Chamber

RC filter

Cold Plate

Refrigerator

Probe

Cu powder Meander

Still

3K plate

3K plate

Figure 4.3. Arrangement of filters on the dilution refrigerator

when the bnc cables were disconnected and connected properly. Critical current statistics

are prone to such artifacts and need to be separated from real effects.

Moreover the statistics also depends heavily on the current ramp parameters especially

the ramp rate and wait time between ramps. The wait time between ramps ensures that the

device cools down to the lowest temperature after the short joule heating when the device

turns normal.
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Configuration Critical current

Wires Filter

Coax No filters 0.6uA

Coax 100KHz RC 22uA

Coax 1.9MHz LC) 13uA

Coax 100KHz RC +1.9MHz LC 22uA

Twisted pair Cu Meander + 100KHz RC/1.9MHz LC 2uA

Twisted pair Cu Meander + 1K RC @ mixing chamber 15uA

Twisted pair Cu Meander +10K RC @ mixing chamber 12uA

Twisted pair 
Cu Meander+ 10K  RC(grounded to fridge) @ mixing 

chamber
0

Twisted pair 
Cu Meander+1K RC @ mixing chamber +10KO resistance 

header
16uA

Twisted pair (NO meander ) 10K RC @ mixing chamber 0

Oxford Kelvinox 10KO resistance header 23

Figure 4.4. Effect of different wirings and filters on the critical current in the
dilution refrigerator

Header Wires Copper shield Filter Critical current

Leiden Dry 
50mK

No header Calmont coax YES 1.9 MHz filter @RT 35

He3 250mK
10KO 

header
Twisted pair NO No filter 16

He3 250mK
10KO 

header
Twisted pair NO 1.9 MHz LC @ RT 11

He3 250mK
10KO 

header
Twisted pair NO 100KHz RC @ RT 17

He3 250mK No header Twisted pair NO No filter 0

He3 250mK No header Twisted pair YES 1.9 MHz LC / 100KHz RC 6

He3 250mK No header
1 Twisted pair

+ 1 SS coax ending in SMA at 
top

NO 1.9 MHz LC / 100KHz RC 4

He3 250mK No header 2 coax + ending in SMA at top NO No filter 5

He3 250mK No header 2 coax ending in SMA at top NO 1.9 MHz LC 27

He3 250mK No header 2 coax ending in SMA at top NO 100KHz RC 32

He3 250mK No header Twisted pair NO
24 x 100KHz RC filter

on probe top at RT (black 
box)

30

Figure 4.5. Effect of different wirings and filters on the critical current in the
He3 refrigerator
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5. SUMMARY AND PERSPECTIVES

This thesis embarked on a quest to explore topological superconductivity in an Al/InAs

heterostructure. The initial objective was to shift the topological boundary away from the

ends of one-dimensional systems by utilizing curved Josephson junctions, nanowires, and

rings, while modulating the magnetic field to vary the superconducting gap.

However, the investigation of planar Josephson junctions proved unsuccessful due to

a critically low magnetic field and the disruptive effects of flux focusing, which hindered

the formation of a distinct boundary. As a result, attention turned towards studying the

statistics of rings. Although some indications of a quantum transition were observed, the

findings were inconclusive. Notably, an unexpected behavior in the form of a bimodal critical

current distribution was discovered in a superconducting ring, prompting a more detailed

exploration of nanowires.

This deeper investigation led to the identification of non-reciprocal critical currents in the

Al/InAs heterostructure nanowires. The underlying physics responsible for this phenomenon

was elucidated as the diamagnetic response and the formation of Josephson vortices within

the vertical heterostructure, now recognized as the Superconducting Diode Effect.

While significant progress was made, further experiments are warranted to gain a more

comprehensive understanding of the statistics of rings and curved Josephson junctions. En-

hancing the edge uniformity and reducing the Josephson junction gap size could potentially

facilitate these investigations. Moreover, the evolution of the Fraunhofer pattern emerged as

a valuable tool for probing the search for topological superconductivity.

In conclusion, this thesis has shed light on the search for topological superconductivity

in an Al/InAs heterostructure. Through the exploration of various system geometries, sta-

tistical analyses, and the observation of intriguing phenomena, significant progress has been

achieved. The discoveries of the Superconducting Diode Effect and the importance of the

Fraunhofer pattern evolution provide valuable insights for future studies and pave the way

for further advancements in the field of topological superconductivity.
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